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Abstract

Multiplexed tissue imaging facilitates the diagnosis and understanding of complex disease traits. 

However, the analysis of such digital images heavily relies on the experience of anatomical 

pathologists for the review, annotation, and description of tissue features. In addition, the wider 

use of data from tissue atlases in basic and translational research and in classrooms would benefit 

from software that facilitates the easy visualization and sharing of the images and the results of 

their analyses. In this Perspective, we describe the ecosystem of software available for the analysis 

of tissue images and discuss the need for interactive online guides that help histopathologists make 

complex images comprehensible to non-specialists. We illustrate this idea via a software interface 

(Minerva), accessible via web browsers, that integrates multi-omic and tissue-atlas features. We 

argue that such interactive narrative guides can effectively disseminate digital histology data and 

aid their interpretation.

Diagnostic pathology relies on the microscopic analysis of histological specimens stained 

with colorimetric dyes or antibodies. Multiplexed high-resolution imaging1–4 can provide 

information on the expression levels and subcellular localization of 20–60 proteins, 

facilitating the study of cell states, tissue biomarkers and cell–cell interactions in normal 

and diseased conditions, and enabling the molecular profiling of tissues while preserving the 

native tissue architecture5. A common application of tissue imaging in oncology involves 

the identification and quantification of immune cell types and the mapping of their locations 
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relative to the tumour boundaries and to stromal cells5. This type of spatially resolved data 

is particularly relevant to the study of the mechanisms of action of immunotherapies, such as 

the immune checkpoint inhibitors targeting the programmed cell death protein 1 (PD-1) or 

its ligand PD-L16, which function by blocking juxtracrine signalling between immune cells 

and tumour cells. However, images of tissues can be complex owing to the range of sizes 

of the biologically relevant structures: from the micrometre scale of subcellular vesicles 

and nuclear granules to the millimetre scale of cell configurations in blood and lymphatic 

vessels, to the centimetre scale required to visualize the interactions among endothelia, 

epithelia, muscle and the other cell types forming functional tissues.

There are a number of multiplexed tissue-imaging methods in current use. Imaging 

mass cytometry (IMC)1 and multiplexed ion beam imaging (MIBI)2 detect antigens via 

antibodies labelled with metal isotopes, followed by tissue ablation and atomic mass 

spectrometry. Methods such as multiplexed immunofluorescence (MxIF)3, co-detection 

by indexing (CODEX)7, tissue-based cyclic immunofluorescence (t-CyCIF)4, multiplexed 

immunohistochemistry (mIHC)8,9, and immunostaining with signal amplification by 

exchange reaction (immuno-SABER)10 use fluorescently labelled (or enzyme-linked) 

antibodies followed by microscopy. These methods differ in the number of antigens that 

they can detect on a single tissue section (at present, ~12 for multiplexed IHC and ~40–60 

for IMC, MxIF, CODEX and t-CyCIF). Some methods are restricted to selected fields of 

view (in particular, ~1 mm2 for MIBI and IMC), whereas others can perform whole-slide 

imaging (WSI) on areas ~100–400 times larger (this is the case for MxIF, t-CyCIF, CODEX 

and mIHC). Most multiplexed tissue-imaging methods are in active development, and hence 

their strengths and limitations regarding imaging speed, sensitivity, resolution and other 

performance parameters are in flux. However, they all generate multiplexed two-dimensional 

(2D) images of cells and supporting tissue structures in situ. It is also possible to generate 

three-dimensional (3D) images via optical-sectioning and tissue-clearing methods11.

Tissue and tumour atlases

International projects are currently underway to create publicly accessible atlases of 

normal human tissues and tumours (Table 1). These include the Human Cell Atlas12, the 

Human BioMolecular Atlas Program (HuBMAP)13, and the Human Tumor Atlas Network 

(HTAN)14. For example, HTAN is envisioned as the spatially resolved counterpart of the 

well-established Cancer Genome Atlas15 (TCGA) (Figure 1). HTAN atlases aim to integrate 

genetic and molecular information from dissociative single-cell methods, such as single-cell 

RNA sequencing, with morphological and spatial details obtained from tissue imaging and 

spatial transcriptomics13,14. These atlases will combine images from many specimens into 

common reference systems to enable systematic inter-patient and cross-disease analysis of 

the data13. Conceptually, integration across samples and data types is easiest to achieve at 

the level of derived features, such as a census of cell types and positions (from imaging 

data) or transcript levels (from single-cell RNA sequencing). Adding mesoscopic-scale 

information from images—such as the arrangement of supporting stroma, membranes, blood 

and lymphatic vessels—is more challenging.
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Computational methods that automatically extract spatial information from images are still 

under development; therefore, the practice of annotating slides by anatomical pathologists 

remains essential. Ongoing research to better understand how pathologists make diagnoses 

from tissue specimens16 and to quantify connections between features computed from 

cellular neighbourhoods and clinical outcome17 will provide useful insight into the 

development of automated image-analysis pipelines. However, human oversight of tissue 

images will remain essential for relating morphology to pathophysiology and for assessing 

the quality of image-processing algorithms and training machine-learning classifiers. 

Therefore, any software-based solution aimed at users of digital atlases must enable free 

exploration of image data while also allowing users to benefit from the expertise of 

pathologists who currently work almost entirely with physical specimens on glass slides. 

In this Perspective, we describe software interfaces that meet these considerations. The 

software interfaces allow users working in research or in clinical practice to browse 

increasingly large image datasets at low cost and without the need for complex software. 

The interfaces accomplish this by using ‘digital docents’ and narration so that users can 

benefit from the expert description of a complex specimen, while also facilitating access 

to quantitative information derived from computational analysis. They can also augment 

reports and publications so that reported imaging data are not restricted to showing selected 

small fields of view.

Tissue imaging in a clinical setting

An expansion in the use of multiplexed tissue-imaging methods in research settings 

is happening at the same time as a transition to digital technologies in clinical 

histopathology18; the two developments are, however, not optimally linked or coordinated 

(Figure 1). Although genetics is increasingly pertinent to disease diagnosis, particularly in 

cancer and in inherited diseases, histology and cytology remain the central pillars of routine 

clinical work for the confirmation or diagnosis of many diseases. In current practice, tissue 

samples recovered by biopsy or surgical resection are formaldehyde-fixed and paraffin-

embedded, sliced into 5-μm sections, and stained with haematoxylin and eosin (H&E). 

Samples for immediate study (used when a patient is undergoing surgery, for example) are 

frozen, sectioned and stained (these are often called OCT samples, because of the ‘optimal 

cutting temperature’ medium in which they are embedded). Liquid haematological samples 

are spread on a slide to create blood smears, which are also stained with colorimetric dyes 

(Romanowsky–Giemsa staining). H&E staining imparts a characteristic pink-blue colour on 

cells and other structures, and pathologists review these specimens using simple bright-field 

microscopes; other stains are analysed in a similar way. Some clinical samples are also 

subjected to IHC to obtain information on the expression of one or few protein biomarkers 

per slide19. Although cost-effective and widely used, many histopathology methods were 

developed over a century ago, and IHC is itself 75 years old20 (Figure 1). Moreover, 

diagnoses based on these techniques generally do not capture the depth of molecular 

information needed to optimally select targeted therapies. The latter remains the purview of 

mRNA and DNA sequencing, which, in a clinical setting, often involves exome sequencing 

of several hundred selected genes.
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Recently, pathologists have started to leverage the pattern-recognition capabilities of 

machine-learning algorithms to extract deeper diagnostic insight into histological data. 

The digital analysis of histological specimens first became possible with the introduction 

of bright-field WSI instruments 20 years ago21,22, but it was not until 2016 that the 

United States Food and Drug Administration (FDA) released guidance on the technical 

requirements for the use of digital imaging in diagnosis23. Digital-pathology instruments, 

software and start-ups have proliferated over the past few years, fuelled in large part by the 

development of machine-learning algorithms that assist in the interpretation of H&E-stained 

slides24, which histopathology laboratories need to process at high volumes (often more than 

1 million slides per year in a single hospital). Machine learning of images has shown its 

worth in several areas of medicine25,26, and promises to assist practitioners by increasing 

the efficiency and reproducibility of pathological diagnoses24. The pathology departments 

at several comprehensive cancer centres (institutions that are part of a network coordinated 

by the United States National Cancer Institute) have recently introduced multiplexed image-

based immunoprofiling services for the identification of patients most likely to benefit 

from immune checkpoint inhibitors. Nonetheless, in most hospitals, the vast majority 

of diagnostic pathology still involves the visual inspection of physical specimens; only 

a minority of slides are scanned and digitized for concurrent or subsequent review on 

a computer screen. This is widely anticipated to change over the next decade; in fact, 

several European countries have national digital-pathology programs. As clinical pathology 

incorporates new measurement modalities and becomes increasingly digital, compatible 

and interoperable software and standards for clinical and research purposes need further 

development, and this is likely to be particularly important in the conduct of clinical trials. 

From a technical perspective, standards for digital image files (such as the OME-TIFF 

format) developed for preclinical research can work well with multiplexed images from 

clinical services. However, software for clinical use also requires security, workflows and 

billing features that are not necessary components of software used for research.

Sharing imaging data from tissue atlases

Algorithms, software and standards for high-dimensional image data27,28 remain 

underdeveloped in comparison to the tools avail- able for almost all types of genomic 

information. Moreover, with sequencing data, the information present in primary data files 

(such as FASTQ files) are fully retained (or enhanced) when reads are aligned or when count 

tables are generated; it is rarely necessary to re-access the primary data. In contrast, methods 

for the extraction of features from tissue images are immature, and their visual inspection by 

experts for diagnostic or scientific purposes, or for the testing of new algorithms, requires 

repeated access to the original images at their native resolution.

As far back as 2008, the Journal of Cell Biology worked with the founders of the Open 

Microscopy Environment (OME)29 to deploy a JCB DataViewer30, which provided direct 

access to primary high-resolution microscopy data (much of it from tissue culture cells 

and model organisms). Economic pressures ended this ambitious effort31, which emphasizes 

that funds have long been available to purchase expensive microscopes but not to distribute 

the resulting data. Currently, most H&E, IHC and multiplexed tissue images are shared 

only as figure panels in manuscripts, a form that typically provides access to a few 
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selected fields of view at a single (and often downscaled) resolution. In the best case, 

these data might be available via public data repositories such as figshare32. The European 

Bioinformatics Institute (EBI) Image Data Resource (IDR) is a notable exception; IDR 

uses the OME-compatible OMERO33 server to provide full-resolution access to selected 

microscopy data34. The importance of sharing image data is particularly pronounced in 

the case of research biopsies, including those being used to assemble tumour atlases. 

These biopsies are obtained to expand scientific knowledge rather than to inform the 

treatment of individual patients, and there is an ethical obligation for the resulting data 

(appropriately anonymized) to be made widely available in an open and useful form for 

research purposes35. Open-source data and code are widely recognized as valuable tools 

in genomics36,37 and in basic cell-and-developmental-biology research, but availability has 

only recently been flagged as a significant barrier to scientific progress38. More generally, 

digital pathology and medical imaging are disciplines in which the goal of making research 

findable, accessible, interoperable and reusable (FAIR)39 is desirable, but the computational 

infrastructure is insufficient to meet these aspirations.

Software for image analysis and interpretation

A wide variety of academic and commercial microscopy software systems are available 

either as a desktop system, for data analysis, or as a client–server relational database 

management system (RDBMS), for image management (Figure 2a and Boxes 1 and 2). 

Desktop software is particularly good for interactive image analysis because it exploits 

graphics cards for rapid image rendering as well as high-bandwidth connections to local 

data for computation. RDBMSs are instead ideal for data management because they enable 

relational queries, support multiple simultaneous users, ensure data integrity and effectively 

manage access to large-scale local and cloud-based computer resources (Figure 2b provides 

a detailed comparison of available software).

However, with the introduction of high-plex and whole-slide tissue images, new software 

is required to guide users through the extraordinary complexity of images that encompass 

multiple square centimetres of tissue, 105–107 cells and upwards of 100 channels. Images of 

this size are not only difficult to process and share but they are also difficult to understand. 

We envision a key role for ‘interpretive guides’ or ‘digital docents’ that help walk users 

through a series of human-provided and machine-generated annotations about an image in 

much the same way that the results section of a published article guides users through 

a multi-panel figure. Genomic science faced an analogous need for efficient and intuitive 

visualization tools a decade ago, and this led to the development of the influential Integrative 

Genomics Viewer40 and its many derivatives.

Interactive guides of pictures and images have proven highly successful in other scientific 

fields, as exemplified by Project Mirador (https://projectmirador.org). Project Mirador 

focuses on the development of web-based interpretive tours of cultural resources such as 

art museums, illuminated manuscripts and maps of culturally or historically significant 

cities. In these online tours, a series of waypoints (reference points used to help navigate 

the information displayed) and accompanying text direct users to areas of interest while 

also allowing free exploration (the user can then return to the narrative when needed). 
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This type of interactive narration—also known as digital storytelling or visual storytelling

—mimics some of the benefits provided by tour guides and functions as a pedagogical 

tool that enhances comprehension41 and memory formation42. Multiple studies have 

identified benefits associated with receiving complex information in a narrative manner, 

and digital storytelling has been applied to several areas of medicine and research, including 

oncology43, mental health44, health equity45 and science communication46,47.

How might these lessons be applied to tissue images? At the very least, they suggest 

that simply making gigapixel-sized images available for download and analysis on desktop 

software is insufficient to optimally advance scientific discovery and to improve diagnostic 

outcomes. Instead, an easy approach that guides users through the salient features of an 

image with associated annotation and commentary would be beneficial to both specialists 

and non-specialists. Currently, pathologists share insights with colleagues using a multi-head 

microscope to pan across an image and to switch between high and low-power fields 

(magnifications), thereby studying cells in detail while also placing them in the context of 

the overall tissue. In this process, key features are often highlighted using a pointer. In the 

case of multiplex images, time-tested pathology practice must be built into software along 

with the means to toggle channels on and off (so that the contribution of specific antibodies 

to the final image can be ascertained) and display quantitative data arising from image 

analysis.

Software-based interpretive guides

How might interpretive guides for tissue images be implemented? One possibility involves 

the use of an OMERO33 client. OMERO is the most widely deployed open-source image-

informatics system, and it is compatible with a range of software clients. However, an 

OMERO client requires access to an OMERO database and, as images get larger, the 

server becomes substantially loaded, which limits the number of concurrent sessions. 

Database-independent viewers are used by Project Mirador and are based on the open-

source OpenSeadragon48 platform. OpenSeadragon makes it easy to zoom and pan across 

images (in a manner similar to Google Maps49). Minerva, which is customized for guided 

viewing of multiplexed images, has taken this approach50. Minerva is a web application that 

uses a client-side JavaScript (and thus requires no downloaded software), and it is easily 

deployable on standard commercial clouds such as Amazon Web Services (AWS) (Figure 3) 

or on local computing servers that support the static site generator Jekyll51. OpenSeadragon 

has been previously used for displaying H&E images52, but in Minerva, it is paired with 

narrative features, interactive views of derived single-cell features within the image space, 

lightweight implementation and the ability to accommodate both bright-field (H&E and 

IHC) and multiplexed immunofluorescence images. Minerva can also display images and 

annotations on smartphones.

Minerva is OME-compatible and BioFormats-compatible and is therefore usable with 

images from virtually any existing microscope or slide scanner. There is no practical 

limit to the number of users who can concurrently access narrative guides developed in 

Minerva and there is no requirement for specialized servers or a relational database, thereby 

keeping complexity and costs low. Anyone familiar with GitHub and AWS (or similar 
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cloud services) can deploy a Minerva story in a few minutes, and new stories can then 

be generated by individuals with little expertise in software and computational biology. 

Developers can also build on the Minerva framework to develop narration tools for other 

applications (for example, for interpreting protein structures or complex high-dimensional 

datasets). Software viewers such as Minerva are not intended to be all-in-one solutions to 

the many computational challenges associated with processing and analysing tissue data; 

rather, they are specialized browsers that perform one task well. In the case of Minerva, it 

provides an intuitive and interpretive approach to images that have already been analysed 

using other tools. Genome browsers are similar: they do not perform alignment and data 

analysis; instead, they make it possible to interact with the processed sequences effectively.

Within a Minerva window on a standard web browser, a narration panel directs the user’s 

attention to particular regions of an image and to specific channel groupings, and is 

accompanied by a text description (which Minerva can read aloud) and by image annotations 

involving overlaid geometric shapes or text (Figure 4). Each image can be associated with 

more than one narrated story and with different ways of viewing the same type of data. A 

fundamental aspect of the narrative guides is that individuals with expertise in a particular 

disease or tissue (in particular, a pathologist) can create stories for use by others to assist 

them in the understanding of the morphology of a specimen. Creating narrations requires 

an authoring tool; for Minerva, this is the Minerva Author. Minerva Author is a desktop 

application (in JavaScript React with a Python Flask backend) that converts images in 

OME-TIFF format53 to pyramid images (layered images with different resolution, with the 

largest one at the bottom and the smallest one on the top) and that assists with the addition of 

waypoints and text annotations. Minerva Author supports RGB images, such as bright-field, 

H&E and IHC, as well as multichannel images such as immunofluorescence, CODEX and 

CyCIF. After specifying the rendering settings and writing the waypoints in Minerva Author, 

a user receives a configuration file and image pyramids to deploy to AWS S3 or to another 

web-based storage location (Figure 3). Stories can be as simple as a single panel with a 

short introduction or a multi-panel narration enriched with a series of views with detailed 

descriptions, changes in zoom level and associated data analysis. It takes users a few hours 

to learn the software and then from about 30 min to a few hours to create a story; this is 

about the same time required to create a good static figure panel for a published article, and 

much less time than that needed for data collection, image registration, segmentation and 

data analysis.

Interactive guides for exploring human tumours

As a case study of an interactive tissue guide, we used Minerva Story to mark up a large 

specimen of human lung adenocarcinoma (https://www.cycif.org/MinervaLungHistology). 

This primary tumour measured ~5 × 3.5 mm and was imaged at subcellular resolution using 

44-plex t-CyCIF4. Multiple fields were then stitched into a single image (described in ref. 

54; the image is referred to within that paper as LUNG-3-PR). Because there is no single 

best way to analyse an image containing several hundred thousands of cells, we created two 

guides: a guide focused on the histological review of regions of interest and on specific types 

of immune cells and tumour cells, and a guide focused on the presentation of quantitative 

data analysis in the context of the original image (Figure 4a). A panel to the left of the 
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Minerva Story window (outlined in orange in Figure 4a) shows the name of the samples, 

the links to its related stories, a table of contents and the navigation tools. On the right of 

the window (outlined in pink), another navigation panel allows for the selection of channels 

of interest. Channels and channel groups, as well as the cell types that they define, can be 

pre-specified. Each protein (antigen) is linked to an explanatory source of information (such 

as the GeneCards55 database; a more customized and tissue-specific annotation of markers is 

under development).

Stories progress from one waypoint to the next (analogous to the numbered system used 

by museum audio guides), and each waypoint can involve a different field of view, 

magnification and set of channels, as well as arrows and text describing specific features 

of interest (marked in grey). At any point, users can diverge from a story by panning and 

zooming around the image or by selecting different channels, and then return to the narrative 

by selecting the appropriate waypoint on the table of contents. In Figure 4a, ‘waypoint 

one’ shows pan-cytokeratin-positive tumour cells growing in chords and clusters at the 

tumour–stroma interface. This region of the tumour is characterized by an inflammatory 

microenvironment, as evidenced by the presence of a variety of lymphocyte and macrophage 

populations distinguishable by the expression of their cell surface markers. By using the 

panel on the right, users can toggle these markers on and off to explore the images and data, 

and to evaluate the accuracy of the classification. The remainder of the story explores the 

expression of PD-L1 and the localization of populations of lymphocytes and macrophages.

Narrative guides are also useful for showing the results of quantitative data analyses in the 

context of the original image (as described in the lung adenocarcinoma story). For example, 

the data analysis of high-plex tissue images typically involves measuring the co-expression 

of multiple cell type markers (such as immune lineage markers) for the identification 

of individual cell types. The analysis of cell states, morphologies and neighbourhood 

relationships are also common. Within Minerva Story, it is possible to link representations of 

quantitative data directly to the image space. For example, when data are captured in a 2D 

plot, such as a UMAP for dimension reduction (Figure 4b), selecting a data point takes the 

user directly to the corresponding position of the cell in the image (denoted with an arrow). 

This is a standard feature in desktop software such as histoCat56 and Facetto57, and greatly 

enhances a user’s understanding of the relationship between images and image-derived 

features. The display of segmentation masks is similarly useful for troubleshooting and for 

assessing data quality (for example, in Figure 4b, middle, unwanted fusion and fission events 

are highlighted by arrows, both of which result from errors in segmentation). Additionally, 

users can interactively highlight areas of interest, add notes and generate sharable links that 

allow others to navigate to the same position in the image and to view any added annotations 

and text (for example, a high-magnification view with a labelled CD8+ Foxp3+ regulatory T 

cell in Figure 4b, right).

Narrative guides for medical education

Narrative tissue guides can be used for teaching. Histology is challenging to teach in an 

undergraduate setting58 and changes in curriculum have reduced the amount of time that 

medical students and residents spend in front of a microscope. Online collections of tissue 
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images are a frequent substitute. In fact, pairing classroom instruction with dynamic viewing 

and flexible interaction with image data is essential for learning59. We therefore created a 

narrative guide of H&E images obtained from specimens of heart tissue from a patient who 

experienced multiple episodes of myocardial infarction (Figure 5). An introductory panel 

depicts the overall structure of the heart and the positions from which various specimens 

were resected. These images display the histological hallmarks of ischaemic heart disease: 

severe coronary artery atherosclerosis, plaque rupture, stunned myocardium, reperfusion 

injury, as well as the early, intermediate and late features of myocardial tissue infarction. 

Rather than looking at snippets of histological data in a textbook or in poorly annotated 

online images, the interactive narrations of tissue-image data provide context that facilitates 

the more nuanced understanding of common cardiac pathophysiology.

Software such as Minerva Story should be useful for medical education and could enhance 

interactive textbooks. With relatively little effort, text can be hyperlinked to stories and 

waypoints, and students could use image-annotation features to take notes and to ask 

questions. Audio-based narration is advantageous in this context, as it could allow students 

to receive lecture content while simultaneously concentrating on a relevant image.

Outlook

Multiplexed tissue-imaging methods generate images that are data-rich; however, their 

potential to inform basic, translational and clinical research remains largely untapped, which 

is in large part because the complexity and size of these images makes it difficult to process 

and share them. As tissue atlases become increasingly available, software that enables 

interactive data exploration with cloud-based storage of pre-rendered narrative guides could 

dramatically increase the number of people who can access a pathologist’s expertise and 

view an image. Ideal systems combine intuitive panning, zooming and data-exploration 

interfaces, guidance from digital docents and low costs for the data providers. These 

possibilities are illustrated by the Minerva software and the OpenSeadragon platform on 

which it is based. Ideally, publication of high-plex images could in the future be tied to the 

release of the primary data and to software viewers having digital docents to make the data 

easier to interpret; this would meet the key goals of the JCB DataViewer project30 and be a 

step towards realizing FAIR data standards.

With respect to data analysis, a long-term goal of computational biology is to have 

a single copy of the data in the cloud so that computational algorithms can be more 

easily used across cloud datasets. At present, however, the dominant approach of local 

data analysis remains, in particular for interactive tasks such as optimizing segmentation, 

training machine-learning algorithms, and performing and validating data clustering, which 

all require local access to full-resolution primary data. With commercial cloud services, 

data download has become the primary expense and can be substantial for multi-terabyte 

datasets. A solution could be the use of ‘requester pays’ buckets, available on cloud services 

from Amazon, Google and other providers of these services. These would allow a data 

generator to make even large datasets publicly available by requiring the requester to 

cover the cost of data transfer. In the short term, we envision an ecosystem in which web 

clients for databases such as OMERO provide interactive viewing of primary data in private 
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datasets for which demand on the OMERO server can be better managed. Lightweight 

viewers such as Minerva would provide unrestricted access to published and processed data, 

making the data easy to access and understand by non-experts, and requester-pays cloud 

buckets would allow experts (in particular, computational biologists) to access primary data 

and to perform their own analyses locally. In the longer term, these functions are likely to 

merge, with OMERO providing sophisticated cloud-based processing of data and Minerva 

serving as a means to access data virtually cost-free, either in OMERO or in a static file 

system.

An obvious extension of Minerva would be the addition of tools that facilitate supervised 

machine learning; in such an application, a Minerva variant would provide an efficient 

way of adding the needed labels to data to train classifiers and neural networks. The 

results of the machine-learning-based classification could also be checked in Minerva, as 

its lightweight implementation facilitates crowdsourcing. With these possibilities in mind, a 

key question is whether tools such as Minerva should also expand to include sophisticated 

image-processing functions. We do not think so; instead, we believe that narrative guides 

should be optimized for image review, publication and description, and other interoperable 

software should continue to be used for data analysis. These tools can be joined together into 

efficient workflows (such as MCMICRO60) that use software containers (such as Docker)61 

and pipeline frameworks (such as Nextflow62). This approach is not perfect63 (Box 2), 

but it cannot reasonably be replaced by all-in-one commercial or academic software. 

Recent interest in single-cell tissue biology derives not only from advances in microscopy 

but also from the widespread adoption of single-cell sequencing64,65. Comprehensive 

characterization of normal and diseased tissues will almost certainly involve the integration 

of data from multiple analytical modalities, including imaging, spatial transcriptomic 

profiling66,67, mass spectrometry imaging of metabolites and drugs68,69, and computational 

registration of dissociated single-cell RNA sequencing70 with spatial features. Minerva 

cannot currently handle all of these tasks, but it can be readily combined with other tools 

to create the multi-omic viewers that are needed for tissue atlases. An attractive possibility 

is to add narrative tissue guides to widely used genomics platforms such as cBioPortal 

for Cancer Genomics71 to create environments in which genomic and multiplexed tissue 

histopathology can be viewed simultaneously. Better visualization could also help with the 

more conceptually challenging task of integrating spatiomolecular features in multiplex 

images with gene expression and mutational data. With regards to clinical applications, the 

biomedical community needs to ensure that digital-pathology systems do not become locked 

behind proprietary data formats based on non-interoperable software. OME and BioFormats 

for microscopy, and DICOM for radiology72, exemplify that it is possible for academic 

developers, commercial instrument manufactures and software vendors to work together 

for mutual benefit. Easy-to-use visualization software based on permissive open-source 

licensing could readily be deployed by research groups, instrument makers and scientific 

publishers to make high-plex image data widely accessible and easy to understand. This 

would help to realize a FAIR future for tissue imaging and digital pathology.
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Box 1:

Software for managing and visualizing image data

The OME-based OMERO33 server is the most widely used image-informatics system 

for microscopy data in a research setting. It is the foundation of the IDR-based resource 

at the EBI34, a prominent large-scale publicly accessible image repository, and is part 

of more specialized repositories such as Pancreatlas76. OMERO has a client–server 

three-tier architecture involving a relational database, an image server and one or more 

interoperable user interfaces. OMERO is well suited to managing image data and 

metadata and to organizing images so that they can be queried using a visual index 

or via search77 (Figure 2a). In its current form, it does not perform sophisticated image 

analysis and it is not specialized for the creation of narrative guides.

A range of other software tools are available for the static visualization or partially 

interactive visualization of H&E and IHC images in a web browser. In particular, 

caMicroscope78 is used to organize IHC and H&E images for TCGA15. Other publicly 

available image interfaces include the Cancer Imaging Archive79, the Digital Slide 

Archive38, PathPresenter80 and Aperio81 (Figure 2b). A white paper from the Digital 

Pathology Association provides a description of the tools being developed to view bright-

field digital-pathology data52. However, such H&E and IHC viewers are not generally 

compatible with multichannel images or with the integration of different types of omics 

data.
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Box 2:

Software for the analysis of image data

Multiple software suites—CellProfiler82, histoCAT56, Facetto57, QuPath83, Orbit84, 

Mantis85 and ASAP86, among others—have been developed for the analysis of 

high-dimensional image data from tissues or cultured cells. Many of these software 

systems are desktop-based and run locally (Figure 2b). They generally perform image 

segmentation to identify individual cells or tissue-level features, determine cell centroids 

and shape parameters (such as area and eccentricity), and compute staining intensities 

in designated regions of an image and across all channels. The resulting vectors can 

then be processed using standard tools for high-dimensional data analysis such as 

supervised and unsupervised clustering, t-SNE87 or uniform manifold approximation and 

projection (UMAP)88 to identify cell types and to study cell–cell interactions89. Although 

some tools support segmentation, others require pre-generated segmentation masks and 

single-cell feature tables. As an alternative, other approaches can analyse tissues at the 

level of individual pixels via the use of machine-learning algorithms and convolutional 

neural networks90. This approach potentially bypasses the need to segment individual 

cells from densely packed tissues, in which cells can dramatically vary in size. A key 

feature of software such as histoCat56 or Facetto57 is the integration of an image viewer 

with feature-based representations of the same data. This is essential for training and 

testing classifiers, for the quality control of image-processing routines and for obtaining 

insight into spatial characteristics. Pipelines that integrate and simplify the processing of 

high-plex images have started to appear60 and are based on technologies used in existing 

pipelines for the processing of sequencing data.

Several cloud-based computing platforms for digital pathology are being commercially 

developed, such as HALO (Indica Labs), Visiopharm (Visiopharm) and PathViewer 

(Glencoe Software, the commercial developer of OMERO). Academic efforts such 

as the Allen Cell Explorer91 and napari92 build on highly successful open-source 

software platforms such as ImageJ93. Napari is particularly attractive to computational 

biologists because it is written entirely using the programming language Python and 

has user-interface elements and a console. Commercial tools often strive for an all-in-

one approach to analysis and visualization, but this comes at the cost of complexity, 

proprietary implementations, and licensing fees. It also ignores one of the primary 

lessons from genomics: progress in rapidly developing research fields rarely involves the 

use of a single integrated software suite; rather, it relies on an ecosystem of interoperable 

tools specialized for specific tasks.
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Figure 1. Milestones in the development of histopathology, image processing and microscopy.
Methods used for histology and anatomical pathology have evolved towards digitalization 

in parallel with the growth of image-processing capabilities, multiplexed imaging modalities 

and the launch of multiple tissue-atlas projects. The first use of the term “machine learning”, 

in 1959, is widely credited to A. Samuel (ref. 73). Publicly available atlases of human 

tissues, tumours and cell types are listed in Table 1. Video microscopy image reproduced 

with permission from ref. 74. Slide scanner diagram reproduced with permission from ref. 

75. AI, artificial intelligence; AJCC, American Joint Committee on Cancer; CCD, charge-

coupled device; WHO, World Health Organization.
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Figure 2. Software used to visualize, analyse, manage and share tissue images.
Software systems for processing tissue images are typically optimized to perform a select 

number of tasks and to co-evolve to complement each other’s strengths and weaknesses as 

part of an ecosystem held together by common data standards and interoperable application 

programming interfaces. a, Desktop applications such as histoCat provide sophisticated 

tools for the interactive quantification and analysis of primary image data, and effectively 

exploit embedded image-rendering capabilities. Many desktop applications can be run in 

a ‘headless’ configuration on computer farms to accelerate the analysis of large images. 
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They can also fetch images from three-tier client–server systems such as OMERO. OMERO 

involves a RDBMS, an image server and one or more browser-based clients and desktop 

clients; such systems provide a full-featured approach to organizing, visualizing and sharing 

large numbers of images, but they typically support limited data processing. The Minerva 

application discussed in this Perspective is optimized for data sharing and interpretive image 

viewing and enables a detailed narration of image features and derived data. Pre-rendering 

of stories with multiple waypoints in an image mimics the insight provided by a human 

expert or guide (a ‘docent’). Public access to large-scale primary data is typically limited 

with all of these systems because of the costs of data transfer. However, in some OMERO 

configurations (in particular, the IDR), primary data can be downloaded from the same file 

system. Another approach to primary-data access being used by HTAN involves ‘requester 

pays’ cloud-based storage (for instance, an AWS S3 bucket). Minerva Author may also be 

extended to enable direct access to primary data stored in OMERO or these S3 buckets. 

b, The key features of commercial and academic software tools suitable for viewing image 

data; each tool has its strengths and weaknesses, but none comprehensively satisfies all 

of the functions needed for complete image analysis. Data generators and consumers rely 

on a suite of interoperable desktop-and-server or cloud-based software systems. Panel a 

reproduced with permission from ref. 57, IEEE (left) and ref. 33 (right).
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Figure 3. A system for generating and viewing online narrative guides for histopathology tissue 
images.
The illustrated architecture is based on the OpenSeadragon viewer Minerva Story and 

the narration tool Minerva Author. The thickness of the arrows indicates the amount of 

data transferred. Whole-slide images, including bright-field and multi-channel microscopy 

images, in the standard OME-TIFF format are imported into Minerva Author by a user 

with expertise in tissue biology and image interpretation (the ‘docent’); in many cases this 

individual is a pathologist, histologist or cell biologist. The docent uses tools in Minerva 

Author to pan across the image and to then set channel-rendering values (background levels 

and intensity scale), specify waypoints and add text and graphical annotations. Minerva 

Author then renders image pyramids for all channel groupings as JPEG files and generates a 

YAML configuration file that specifies waypoints and associated information. The rendered 

images are stored on a cloud host (such as AWS S3) and accessed via a static web server 

supporting Jekyll (on GitHub, for example). A user simply opens a web browser, selects 

a link, and Minerva Story launches the necessary client-side JavaScript (.JS), making it 

possible to follow the story and to freely explore the image by panning, zooming and 

selecting channels. Because interactivity is handled on the client side, no special backend 

software or server is needed. Images rendered by Minerva Story are compatible with 

multiple devices, including cell phones. Source code for the Minerva Story can be found 

at https://github.com/labsyspharm/minerva-story, and detailed documentation and user guide 

at https://github.com/labsyspharm/minerva-story/wiki.
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Figure 4. The key features of the user interface of Minerva Story.
Two stories exemplify the use of Minerva for a multiplexed image of a specimen of lung 

adenocarcinoma. Story 1 focuses on histology and immune populations and can be accessed 

at https://www.cycif.org/MinervaLungHistology. Story 2 focuses on data generation and 

analysis and can be accessed at https://www.cycif.org/MinervaLungData. a, The home 

screen for story 1. A narration panel on the left-hand side shows the title and narrative 

text, which can be read aloud by the software (through the use of the audio panel). Also, the 

left panel has links to related stories for the specimen and a table of contents (TOC) listing 
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each waypoint in the story (outlined in orange). Users can select the navigation arrows to 

step through each waypoint or skip to a waypoint of interest by using the table of contents. 

On the right-hand side, the channel-selection panel allows users to change which channels 

are rendered (outlined in pink). At any point, users can depart from a story and freely pan 

and zoom in or out of the image by using a mouse, trackpad or the magnification icons 

in the navigation panel. Arrowheads, concentric circles and other graphical elements can 

be used to annotate images and to generate web URLs specific to the current rendering. 

The viewer also contains a scale bar that grows and shrinks as a user navigates across 

zoom levels (grey). The screenshot shown includes only a subset of the waypoints and 

channel groups. Extensive information on these features is available at https://github.com/

labsyspharm/minerva-story/wiki. b, Left: waypoint 6 from story 2 displays an interactive 

plot of a UMAP performed on a random sample of 2,000 cells from a tissue. Users can 

select any data point in the plot (each data point represents a single cell), and the browser 

will zoom to the position of that cell in the image and place an arrow on it. Middle: 

waypoint 3 from story 2 shows each cell in the tissue overlaid with a segmentation mask 

in which the colour denotes the cell type, as determined by quantitative k-means clustering. 

This makes it possible for users to assess the accuracy and the effects of segmentation 

on downstream cell-type-calling. The user can toggle image data and segmentation masks 

for different immunofluorescence channels on and off, and also overlay the clustering 

results and the image data in the same view. Waypoint 3 annotates two types of common 

segmentation errors: fission and fusion. Right: on-the-fly annotation tool. Users can add 

annotations and enter text and then hit the blue button to generate a URL that allows anyone 

to render the same image and location, preserving the panning and zoom settings, the marker 

group and the annotations. The screenshots displayed in this figure contain text of size and 

rendering that are optimized for presentation in this figure panel.
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Figure 5. Minerva Story for medical education.
Minerva Story can be used for the guided viewing of conventional H&E-stained sections. 

For example, a Minerva story was created to guide students through tissue specimens from 

different anatomical regions of the heart of a patient who suffered multiple myocardial 

infarcts. The Story homepage shows an anatomical schematic of the heart, indicating the 

regions from which tissue specimens in the Minerva story were collected. Waypoint 1 

shows a specimen sliced with a posterior view of the left ventricle, with box, arrow and 

text annotations of a few histological features. Waypoint 2 of the story shows a zoomed-in 

view of a papillary muscle, characteristic of the left ventricle, with annotations indicating 

regions of tissue showing acute (~12 days old) and remote (6 weeks to years old) myocardial 

infarction. Waypoint 3 and Waypoint 4 guide the user to the regions of remote infarct and 

acute infarct in the papillary muscle, describing histological hallmarks to distinguish the 

two types of infarcts. Waypoint 5 depicts microscopic cellular structures of cardiomyocytes 

at high resolution in a region of the tissue with a late acute infarct. This Minerva story is 

available at https://www.cycif.org/MinervaHeart.
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Table 1.

Available atlases of normal and diseased human tissue

Atlas
Year 

Established Microscopy
Lead 

Country Atlas Link Description/Goals

Human Genome 
Project 1990 − International https://www.genome.gov/human-

genome-project
Map all genes of the human 

genome

FANTOM 
(Functional 

ANnoTation Of 
the Mammalian 

genome)

2000 − International https://fantom.gsc.riken.jp/

Assign functional 
annotations to full-length 

cDNAs collected in Mouse 
Encyclopedia Project at 

RIKEN

ENCODE 
(Encyclopedia of 
DNA Elements)

2003 + US https://www.encodeproject.org/
Identify functional 

elements in the human 
genome

Human Protein 
Atlas (HPA) 2003 ++ Sweden https://www.proteinatlas.org/ Map all human proteins in 

cells, tissues, and organs

Wellcome Trust 
Case Control 
Consortium 
(WTCCC)

2005 + UK https://www.wtccc.org.uk/

Understand patterns of 
human genome sequence 
variation to explore the 

utility, design and analyses 
of genome-wide association 

studies (GWAS)

The Cancer 
Genome Atlas 

(TCGA)
2005 + US https://portal.gdc.cancer.gov/

Obtain a comprehensive 
understanding of the 

genomic alterations that 
underlie all major cancers

International 
Cancer Genome 

Consortium 
(ICGC)

2007 − International https://icgc.org/

Unravel genomic changes 
present in many forms of 

cancer that contribute to the 
burden of disease

European 
Bioinformatics 

Institute (EMBL-
EBI) Expression 

Atlas

2009 − International/
EBI https://www.ebi.ac.uk/gxa/home

Database for querying 
differential gene expression 

across tissues, cell types 
and cell lines under various 

biological conditions

The Genotype-
Tissue Expression 

(GTEx) project
2010 + US https://gtexportal.org/home/

Study how inherited 
changes in genes lead to 

common diseases

LungMAP 2010 +++ US https://www.lungmap.net/

Generate structural and 
molecular data on perinatal 

and postnatal lung 
development

BLUPRINT 2011 − Netherlands/E
U https://www.blueprint-epigenome.eu/

Understand how genes are 
activated or repressed in 

both healthy and diseased 
haematopoietic cells

Cancer Cell Line 
Encyclopedia 

(CCLE)
2012 − US https://depmap.org/portal/ccle/

Compile gene expression, 
copy number and 

sequencing data from 947 
human cancer cell lines

GenitoUrinary 
Development 

Molecular 
Anatomy Project 

(GUDMAP)

2015 ++ US https://www.gudmap.org/
Develop tools to facilitate 

research on the genito-
urinary (GU) tract

Accelerating 
Medicine 

Partnership 
(AMP)

2014 + US
https://www.nih.gov/research-

training/accelerating-medicines-
partnership-amp

Identify and validate 
biological targets for 
diagnostics & drug 

development
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Atlas
Year 

Established Microscopy
Lead 

Country Atlas Link Description/Goals

Human Cell Atlas 2016 ++ International https://www.humancellatlas.org/

Develop reference maps of 
all human cells as a basis 

for diagnosing, monitoring, 
treating disease

Stimulating 
Peripheral 

Activity to Relieve 
Conditions 
(SPARC)

2016 ++ US https://sparc.science/

Accelerate development 
of devices that modulate 

neuronal activity to 
improve organ function

Pancreatlas 2016 +++ US https://pancreatlas.org/
Generate comprehensive 

images of the human 
pancreas

Human Tumor 
Atlas Network 

(HTAN)
2017 ++ US https://humantumoratlas.org/

Multidimensional 
molecular, cellular, and 

morphological mapping of 
human cancers

4D Nucleome 
(4DN) 2017 ++ US https://www.4dnucleome.org/

Study the three-
dimensional organization of 

the nucleus in space and 
time (the 4th dimension)

Kidney Precision 
Medicine Project/

Kidney Tissue 
Atlas

2017 ++ US https://atlas.kpmp.org/repository

Study kidney biopsies to 
map heterogeneity and 
molecular pathways for 

drug discovery

Human 
BioMolecular 
Atlas Program 

(HuBMAP)

2017 ++ US https://hubmapconsortium.org/
Develop an open and global 

platform to map healthy 
cells in the human body

Single Cell 
Expression Atlas 2018 − International/

EBI https://www.ebi.ac.uk/gxa/sc/home Display gene expression in 
single cells from 12 species

BRAIN Initiative 
Cell Census 

Network (BICCN)
2018 +++ US https://biccn.org/

Identify and provide 
experimental access to 

different brain cell types 
to determine their roles in 

health and disease

Oncobox Atlas of 
Normal Tissue 

Expression 
(ANTE)

2019 − Russia https://www.nature.com/articles/
s41597–019–0043–4

Atlas of RNA sequencing 
profiles for normal human 

tissues

LifeTime Initiative 2019 +++ International/
EU https://lifetime-initiative.eu/

Single-cell multi-omics & 
imaging, AI and patient-

derived experimental 
disease models of health & 

disease

Pediatric Cell 
Atlas 2019 ++ US https://www.humancellatlas.org/pca/

Cytogenomic framework 
for study of pediatric health 

and disease.

Japanese cancer 
genome atlas 

(JCGA)
2019 − Japan https://pubmed.ncbi.nlm.nih.gov/

31863614/ The Japanese TCGA

Gut Cell Atlas 2019 ++ International https://
www.gutcellatlas.helmsleytrust.org/

Catalogue cell types in 
small, large intestines
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