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Multiplexed and reproducible high content
screening of live and fixed cells using
Dye Drop

Caitlin E. Mills 1,6, Kartik Subramanian1,3,6, Marc Hafner 1,4,6, Mario Niepel 1,5,
Luca Gerosa1,4, Mirra Chung1, Chiara Victor1, Benjamin Gaudio1, Clarence Yapp1,
Ajit J. Nirmal1,2, Nicholas Clark1 & Peter K. Sorger 1

High-throughput measurement of cells perturbed using libraries of small
molecules, gene knockouts, or different microenvironmental factors is a key
step in functional genomics and pre-clinical drug discovery. However, it
remains difficult to perform accurate single-cell assays in 384-well plates,
limiting many studies to well-average measurements (e.g., CellTiter-Glo®).
Here we describe a public domain Dye Drop method that uses sequential
density displacement and microscopy to perform multi-step assays on living
cells. We use Dye Drop cell viability and DNA replication assays followed by
immunofluorescence imaging to collect single-cell dose-response data for 67
investigational and clinical-grade smallmolecules in 58 breast cancer cell lines.
By separating the cytostatic and cytotoxic effects of drugs computationally,
we uncover unexpected relationships between the two. Dye Drop is rapid,
reproducible, customizable, and compatible with manual or automated
laboratory equipment. Dye Drop improves the tradeoff between data content
and cost, enabling the collection of information-rich perturbagen-response
datasets.

Accurate measurement of cellular responses to perturbation—genetic
and drug-induced—is integral to studying regulatory mechanisms and
developing new therapies. In the case of small molecules, dose-
response studies are increasingly performed at high-throughput using
panels of genetically diverse cell lines and compound libraries1,2, with
six to nine-point dose-response curves considered the standard for in-
depth analysis3. When necessary technical and biological repeats are
included, a pre-clinical pharmacology profiling study involving ~100
compounds and ~50 cell lines can encompass over 105 individual
conditions (corresponding to ~350 384-well plates)—a scale similar to a
primary high-content compound screen using diversity libraries or
whole-genome screening with RNAi or CRISPR-Cas9 libraries. A key
difference between a profiling and screening study is that profiling

experiments use a focused set of bioactive compounds or knockouts
that target a specific gene family. Whilemost data points contribute to
a final profiling dataset, only a small number of hits are typically pur-
sued from chemical diversity or genomic screens. Profiling studies,
therefore, benefit greatly from the use of reproducible, sensitive, and
relatively low-cost assays.

In any screen, fundamental tradeoffs exist between throughput,
number ofmeasurements per condition, cost, and reproducibility; this
is true for focused drug and gene panels as well as for genome-scale
screens. To increase throughput, cell-based smallmolecule screens are
often performed using single, relatively simple readouts, such as
luminescence or well-average ATP levels (measured in lysate)4, which
are reasonable but far from perfect surrogates for cell viability5,6. For
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example, mix-and-read assays like CellTiter-Glo® are popular because
they are rapid and simple toperform.However,multiplexed assays can
extract more information from each condition providing superior
insight into mechanism and making follow-up studies more efficient.
Multiplexed screening also promises to better identify the cell types
and disease states in which a small molecule might have the greatest
therapeutic potential7. These advances have led to a variety of new,
high-content screening methods, which are commonly based on
fluorescence microscopy8. For example, cell painting (five-channel,
high resolution, multiplexed imaging of fixed cells) has made single-
cell morphological measurements feasible at scale9,10. As an alternative
to fixed-cell assays, live-cell assays can add detailed information about
cell-to-cell heterogeneity and response dynamics11,12. However, live-cell
assays remain relatively uncommon in pre-clinical drug discovery
because they are perceived to be expensive and require specialized
expertize, instrumentation, and data analysis methods.

Any attempt to balance simplicity and cost with information
content in a screening or profiling studymust consider the substantial
up-front expense of maintaining panels of mammalian cell lines and
setting up a multi-drug dose-response experiment (personnel, media,
multi-well plates, drug treatments, etc.). Thus, methods that extract as
much information as possible from each assay are economically
favorable. Accuracy and reproducibility are also essential13. The public
release of large-scale drug-response data has been marred by con-
troversy arising from the poor agreement between different
databases14,15. We studied the underlying issues16 and concluded that
much of the problem arises from inherent differences between cell
lines that are not adequately accounted for in assay design and data
analysis. For example, the failure to consider the impact of cell pro-
liferation rates—which differ between cell lines—on cytotoxic drug
response contributes to inconsistency across studies17 and obscures
relationships between genotype and phenotype. Another common
contributor to irreproducibility in high-throughput live-cell or immu-
nofluorescence assays performed in multi-well plates is the uneven
loss of cells18, particularly cells that are dying or undergoing mitosis
(which are less adherent than interphase cells). The extent of cell loss
varies with cell type, perturbation, type of assay, and operator16. Thus,
methods performed inmulti-well plates are often highly reliable under
test conditions yet fail to scale as the conditions becomemore diverse.
Overall, we have found that identifying the precise causes of irrepro-
ducibility in a cell screening study can be challenging because the
irreproducibility is itself irreproducible16.

In search of a simple and economical screening approach that
would be robust under diverse assay conditions, we found that a range
of multi-step procedures could be performed on live and fixed cells by
using a sequence of solutions, each made slightly denser than the last
by the addition of iodixanol (OptiPrep™), an inert liquid used in radi-
ology. In this approach, multi-channel pipettes or simple robots add
each solution in the series along the edges of the wells in a multi-well
plate. This dense solution drops gently to the bottom of the well,
displacing the previous solution with high efficiency and minimal
mixing (testing the method with dyes yielded the Dye Drop moniker).
This method effectively eliminates the need for mix and wash steps19.
However, as a practical matter, we found that conventional washing
canbe performedonce live-cell assays are complete and cells are fixed.
Thus, the Dye Drop density-based methods can be combined with
conventional methods in most cases. Additionally, the Dye Drop pro-
cedure helps keep reagent costs to a minimum because the volume
needed for each step is lower than with conventional procedures.

In this paper, we describe the development, testing and use of
minimally disruptive, customizable, microscopy-based Dye Drop and
Deep Dye Drop assays that use sequential density displacement to
collect multiplexed data at low cost and with high accuracy. We
describe severalways to implement DyeDrop assays to obtain detailed
cell cycle information and quantify single-cell phenotypes that are

obscured by population-averages (e.g., the rate of DNA replication or
formation of DNA repair foci). Dye Drop methods are an ideal com-
plement to the normalized growth-rate (GR) inhibition method of
computing dose responses16,17,20, andwhen combined, greatly improve
the depth and accuracyof data. They can alsobe used as an entrypoint
for high-plex immunofluorescence, by CyCIF for example21. We also
expand on the GR computational framework to make it possible to
distinguish cytotoxic and cytostatic drug effects based on Dye Drop
data. By collecting a dataset of ~4000 nine-point dose-response curves
from 58 breast cancer cell lines and 67 small molecule drugs, we
demonstrate unexpected diversity in cell division rates and cell cycle
distributions under basal and drug-induced conditions. We also show
that the cytotoxic and cytostatic drug effects have unexpected rela-
tionships to each other and to dose: with some drugs, dosage affects
only the fraction of cells arrested whereas with others, the extent of
killing varies, and with yet other drugs, both phenotypes vary with
dose. Together, these data provide pharmacological insight and allow
us to validate a pipeline of public domain methods and open-source
software for performing high throughput, multiplexed dose-response,
and screening studies at single-cell resolution.

Results
DyeDrop assays provide accuratemeasurements of cell viability
in multi-well plates
Errors and irreproducibility in experiments involving adherent cells
grown in multi-well plates are thought to have five primary causes: (i)
patterned (systematic) biases that arise from edge effects and unequal
local growth conditions across a plate; (ii) disturbance and loss of
some, but not all, cells in a well due to differences in their properties,
notably adhesion; (iii) incomplete exchange of reagents during wash-
ing steps due to the use of small volumes and high surface tension; (iv)
inconsistent or incorrect data processing; and (v) operator-induced
effects arising from differences in how samples are handled (i.e., how
reagents are added and cells are washed in multi-well plates)16,22,23.
These factors often interact; for example, high flow rate or agitation
during wash or media-exchange steps disturbs dying, mitotic and
weakly adherent cells, whereas gentle methods can result in insuffi-
cient liquid exchange. Several of these problems become substantially
worse as wells become smaller since liquid volumes decrease and
surface tension plays a greater role (e.g., 384- vs 96-well plates)24. We,
and others, have previously described how systematic bias can be
mitigated through sample randomization, use of humidified second-
ary containers, etc16,25.

In thiswork,we focus on errors introducedby cell loss anduneven
reagent exchange duringmulti-parameter 384-well plate assays on live
and fixed cells. Specifically, we sought to develop an approach to
reliably assay living cells inmulti-well plates at single-cell resolution by
optimizing the following factors: (i) simplicity and use of common or
commercially available reagents; (ii) minimal disturbance and good
retention of delicate and poorly adhered cells; (iii) compatibility with
live-cell assays that measure viability, DNA incorporation, and cell
cycle progression; (iv) simple customization to enablemeasurementof
proteins and phenotypes relevant to a specific biological problem
under investigation; (v) compatibility with simple robots and manual
multichannel pipettes; and (vi) cost efficiency, through reduced assay
volumes anduse ofpublic-domainprotocols and software. Preliminary
studies established that many existing cell culture assays could be
performed in the presence of relatively high concentrations of the
density reagent iodixanol26. This reagent makes it possible to perform
multi-step procedures with a series of increasingly dense solutions
(each made denser than the last by addition of increasing iodixanol
concentrations). Successive solutions flow to the bottoms of wells and
displace the previous solutionwithout aspiration,mixing or disturbing
fragile cells. We found that the density displacement (Dye Drop)
method is easy to perform without significant training and is
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compatible with small volumes of solution, reducing the costs of
reagents by ~50% (see below for a detailed discussion).

We next sought to evaluate the accuracy of the Dye Dropmethod
and verify that it does not introduce additional artifacts. To do this, we
measured drug-induced growth arrest and cell death using live cell
microscopy followed by either a standard wash and fixation or fixation
with an iodixanol-containing solution. We used live-cell microscopy of
MCF 10A cells expressing the nuclear marker, H2B-mCherry to moni-
tor proliferation and death at single-cell resolution in a time-resolved
manner without any fixation orwash steps. This nuclearmarker served
as a control for the evaluation of Dye Drop methods. MCF 10A cells
were exposed for 24 h to one of four cytotoxic drugs (dinaciclib,
paclitaxel, staurosporine, or vincristine) at nine doses spanning four
orders of magnitude. The YOYO-1 vital dye was added to the medium
to detect dead and dying cells, and imaging was performed on a
microscope with an environmental control chamber equipped to
handlemicrotiter plates. When live-cell acquisition was complete, cells
were fixed with 4% formaldehyde in 6% iodixanol (note OptiPrepTM is
60% iodixanol) solution in PBS followed by aspiration, addition of PBS
to thenowfixed cells, followedby another roundof imaging.We found
that dose-response curves were indistinguishable before and after
iodixanol fixation (using cell viability as a measure of response) for
each drug recorded (Fig. 1a). In contrast, when live cell imaging was
followed by conventional and relatively vigorous washes using an
automated plate washer and then by fixation in formaldehyde, we
found that the cell number per well decreased following each wash
(Supplementary Fig. 1a, b) and that the magnitude of the effect was
drug dependent (we explore this in greater detail below).

Deep Dye Drop assays enable multiplexed cell viability and cell
cycle measurements
We next applied Dye Drop to study the effects of chemical or genetic
perturbation on cell viability and cell cycle metrics, such as the rate of
division, DNA replication, arrest at discrete cell cycle stages, induction
of polyploidy, etc. To do this, we explored whether a Deep Dye Drop
could combine live-cell LIVE/DEAD and EdU incorporation assays fol-
lowed by fixation and processing for immunofluorescence. First, we
established that OptiPrepTM (60% iodixanol) did not affect cell pro-
liferation at concentrations needed for this procedure by adding it to
cells at concentrations up to 25% for one hour (Supplementary Fig. 1d)
or at concentrations up to 5% for 24 h (Supplementary Fig. 1e). Neither
a pulsed exposure to a high concentration of iodixanol nor prolonged
exposure to a lower concentration had any detectable effect on cell
number, consistent with literature describing the use of iodixanol in
density gradient purification of viable cells27. Based on these data, we
then combined the amine-reactive and fixable LIVE/DEAD dye (LDR)
with Hoechst 3334228 by suspending both in 6% iodixanol in PBS and
then adding the solution to wells with a multichannel pipette, thereby
displacing the overlying growth medium. Following a 30min incuba-
tion, a solution containing 12% iodixanol and 4% formaldehyde was
used to displace the LDR andHoechst dyes and fix the cells (see online
“Methods” for details; Supplementary Fig. 1f, g). Once fixed, live and
dead cells could be easily distinguished by imaging and even dead—
potentially weakly adhered cells—were found to be resistant to wash-
ing, allowing a variety of staining protocols to be followed, as
described below.

To monitor DNA replication, EdU was added to cells at the same
time as the LDR viability dye (but without Hoechst 33342), resulting in
its incorporation by cells actively synthesizingDNA. Following fixation,
EdU incorporated into DNA was fluorescently labeled using Click
chemistry to visualize S-phase cells. M-phase cells were then stained
with an anti-phospho-histoneH3 antibody (anti-pH3; which is available
covalently coupled to fluorophores, thereby avoiding the need for
secondary antibodies) (Fig. 1c–f). Incubating cells in the presence of
antibody overnight resulted in good quality staining and provided a

natural breakpoint in the protocol; Hoechst 33342 staining was per-
formed in parallel. Imaging viable cells processed this way generated
the classic horseshoe profile of DNA synthesis and content29, enabling
detailed analysis of DNA replication rates and S-phase errors; it also
reliably discriminated G1 and G2 populations and detected cells with
aberrant DNA content (Fig. 1g and Supplementary Fig. 1h). Moreover,
the now fixed plates could be subjected to additional staining proto-
cols with the option of using either additional Dye Drop steps to
economize on reagents or switching to conventional plate washing
methods.

To compare the resulting Deep Dye Drop assay to equivalent
multiplexed staining achieved by conventional assays under real-
world conditions, we optimized the settings on an Agilent BioTek
EL406 plate washer so they would be as gentle as possible while also
ensuring effective reagent exchange. The EL406 instrument is
prototypical of compact multi-well plate washing robots found in
many academic and industry screening facilities; this instrument is
also inexpensive enough for a single lab to purchase. We then
exposed six widely used breast cancer cell lines (a subset of the lines
described below) to nine-concentration of each of four drugs hav-
ing different mechanisms of action: CDK1/2 inhibitor BMS-265246,
CDK4/6 inhibitor palbociclib, microtubule stabilizing drug pacli-
taxel, and PLK1 kinase inhibitor volasertib. These drugs arrest cells
at distinct points in the cell cycle, and in many lines also induce cell
death. Parallel assay plates were processed using Deep Dye Drop or
a standard high-throughput protocol (see “Methods”) and respon-
ses quantified using GR values. We then plotted the absolute
GR value for each data point (as measured by Deep Dye Drop)
against the observed difference in GR value obtained by Deep Dye
Drop and standard assays across all drugs (Fig. 1h; shapes), cell lines
(colors) and doses (symbol size; the underlying gray bars represent
the 90% confidence interval for triplicate Deep Dye Drop experi-
ments as a means of comparison). These data revealed cell-line and
drug dependent differences in GR measurements between the two
approaches with the greatest differences observed in the cases of
AU-565 and SKBR3 cells treated with paclitaxel or volasertib, which
are conditions that induce substantial cell killing (see also Supple-
mentary Fig. 1c). These data are consistent with previous results
showing that condition-dependent effects on cells are a primary
contributor to data irreproducibility16. Thus, in comparison to a
conventional staining technique, the Deep Dye Drop approach
improves accuracy and better preserves cells that are vulnerable
to loss.

We then attempted to estimate the costs of CellTiter-Glo®,
conventional staining, and Dye Drop protocols based on an
exemplary study performed by an experienced technician in Boston,
MA in 2022 involving 12 cell lines (processed in two batches of 6 cell
lines each) and 30 drugs, with each drug assayed in triplicate at nine
concentrations per replicate (Supplementary Fig. 1i, Supplementary
Data 1). The bulk cost for this type of study is the time and materials
required to grow multiple cell lines and seed multiple 384-well
plates—48 plates were needed for this experiment. This expense was
the same for all protocols ($170 per plate). Reagent costs for Cell-
Titer-Glo® assays were approximately two-fold higher ($52 per
plate) than for microscopy-based Deep Dye Drop assays ($28 per
plate for assaying viability, EdU incorporation and one immuno-
fluorescent marker) and 10-fold higher than for simpler Dye Drop
assays ($5 per plate for viability alone). Were one to mimic the full
set of DeepDye Drop assays using conventional staining and fixation
procedures (ignoring for the moment problems with cell displace-
ment and reagent exchange), reagent costs would be about three-
fold higher than with Deep Dye Drop due to larger working volumes
per well. However, in comparing CellTiter-Glo® with imaging-based
assays we must also account for the fact that plate scanning
microscopes require more expensive plates than luminescent plate
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readers and more time to perform (increasing salary costs).
Accounting for all these factors and including initial tissue culture,
we found that the final assay steps (DeepDyeDrop or CellTiter-Glo®)
represented only about 10% of the overall cost (Supplementary
Data 1). Thus, multiplexed single-cell assays can be performed at

scale at roughly the same cost as a well-average CellTiter-Glo®
measurement while extracting vastly more information on cell via-
bility, cell cycle state, DNA incorporation and one or two marker
proteins. We conclude that, in many settings, Deep Dye Drop assays
are likely to be the preferred way to measure cell perturbations.
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Customizing Deep Dye Drop assays for different endpoints
To customize the Deep Dye Drop method for different biological
endpoints, we tested a range of antibodies (Fig. 2a–d) and found that it
was straightforward to vary the immunofluorescence component of
the Deep Dye Drop protocol for additional biological insight. For
example, we treated MCF7 cells with the CDK4/6 inhibitor palbociclib
and assayed them with Deep Dye Drop using different antibodies. We
first used an antibody against phospho-pRb, which allowed us to
measure dose-dependent target engagement at a single cell level (i.e.,
drug pharmacodynamics; Fig. 2a) and the degree of G1 arrest. We also
stained palbociclib-treatedMCF7 cells with an anti-beta-actin antibody
and detected a change in cell shape upon drug treatment (Fig. 2b)30,31.
Similarly, treating MCF 10A cells with the topoisomerase II inhibitor,
etoposide and staining themwith ananti-53BP1 antibody, revealed that
the fraction of cells with multiple 53BP1-containing DNA damage foci
increased in a dose-dependent manner (Fig. 2c). In this case, we used
an anti-mouse secondary antibody to show that the addition of
immunofluorescence to Deep Dye Drop does not require fluorophore-
conjugated antibodies. Finally, we stained actinomycin D-treated
MCF7 cells with cytochrome C and were able to quantify mitochon-
drial outer membrane permeabilization (MOMP; a key step in the
commitment to apoptosis32) based on changes in cytochrome C loca-
lization (Fig. 2d). Thus, given a suitable antibody for immuno-
fluorescence, Deep Dye Drop assays can be used to measure many
molecular processes at a single cell level in normally growing and
perturbed cells. Of note, phenotypes such as cell flattening, DNA focus
formation, and MOMP are not readily detectable using well-average
measurements (ELISA assays for example) or multiplexed flow
cytometry.

Mostmodernfluorescencemicroscopes are equipped tomeasure
five or more fluorescent channels. To develop a five-channel Deep Dye
Dropprotocol,weperformeddual antibody staining and identifiedfive
complementary and commercially available assays that could readily
and reproducibly be performed in a 384-well format: (i) LIVE/DEAD
assays, (ii) live-cell EdU incorporation, (iii) fixed cell counting with
DNA content and morphology in the Hoechst channel, and (iv-v)
two-channel immunofluorescence using Alexa 488 and Alexa 750-
conjugated primary or secondary antibodies (anti-pH3 and anti-53BP1
primary antibodies were used in Fig. 2e, but antibody selection should
be adapted to the biological questions being pursued).

Several methods have recently become available to collect
multiplexed immunofluorescence data from cells grown in
culture33 as a means to obtain detailed insight into single cell
states; such methods are a logical follow-on to Deep Dye Drop.
Cyclic immunofluorescence (CyCIF)21, for example, is a public
domain method that enables collection of 10–20 plex images
through sequential rounds of 3 or 4-plex antibody staining, ima-
ging, and fluorophore oxidation (Fig. 3a and Supplementary
Table 1). We found CyCIF and Deep Dye Drop assays to be

compatible with only slight modification—it was necessary to use
EDTA to quench the copper in the click chemistry used for EdU
labeling prior to adding the hydrogen peroxide-containing
fluorophore inactivation solution used for CyCIF. Alternatively,
the click reaction could be performed after all CyCIF staining
cycles were complete. We also found that it was possible to
introduce a gap of up to several weeks (after plates were fixed)
between an initial Deep Dye Drop assay and CyCIF. This enables
Deep Dye Drop analysis to inform the choice of antibodies for
CyCIF and help focus the more complex and expensive assays on
a subset of informative conditions.

To illustrate the integration of Dye Drop assays with CyCIF, we
treatedMCF7 andMCF 10A cellswith ribociclib (CDK4/6 inhibitor that
induces G1 arrest), BMS-265246 (CDK1/2 inhibitor that induces G2
arrest and toxicity) or DMSO for 72 h, then performed Deep Dye Drop
staining followed by three rounds of CyCIF staining (an 11-plex mea-
surement). When the multiplexed single cell CyCIF data were visua-
lized using UMAP (Uniform Manifold Approximation and Projection
for Dimension Reduction)34, we found that MCF7 and MCF 10A cells
clustered separately, as did cells treated with each drug (Fig. 3b and
Supplementary Fig. 2a–d; note that 10 µM BMS-265246 was cytotoxic;
therefore, the UMAP projection contains fewer cells for that condi-
tion).What is striking about these data is that bothCDK1/2 andCDK4/6
inhibitors generated twodifferent arrest states that are not the sameas
those traversed by normally dividing cells. These states are not dis-
tinguished by any single marker in our antibody panel, but rather are
by high dimensional features. This complexity in cell cycle arrest states
is consistent with recent evidence from human tumors35 and reveals
how CyCIF can be used to discriminate drug-induced cell states that
appear similar by lower-plex assays. It seems likely that such data,
when collected at scale, will assist in identifying drug mechanism of
action and response biomarkers.

Acquired and adaptive resistance to therapy is a barrier to suc-
cessful cancer treatment and an area of intense focus in pre-clinical
research36. To illustrate the use of Dye Drop assays in studying this
phenomenon, we exposed hormone receptor positive (HR+) MCF7
cells to three related CDK4/6 inhibitors approved to treat HR+/HER2−

breast cancer (palbociclib, ribociclib, and abemaciclib)37,38. We found
that cell cycle was effectively inhibited, with cells accumulating in G1,
within 24 h of drug exposure but that only abemaciclib was able to
sustain G1 arrest; in cells exposed to palbociclib and ribociclib, the
fraction of S-phase cells increased 5 to 8-fold between 24 and 72 h
(Fig. 3c–e). The greater efficacy of abemaciclib is likely due to its
inhibition of multiple CDKs in addition to CDK4 and CDK639 (Fig. 3c–e
and inset plots). To study the frequencyof cell cycle re-entry at a single
cell level, we asked whether MCF7 cells that had started to grow in the
presence of palbociclib or ribociclib were found in clusters (colonies)
or were distributed across the dish. Acquired drug resistance generally
involves the outgrowth of clones arising from a low-frequency

Fig. 1 | Sequential density-based staining and fixation prevent cell loss from
multi-well plates. a Relative cell viability in OptiPrep™ fixed cells as compared to
live cell microscopy following 24h treatments with increasing concentrations of
dinaciclib, paclitaxel, staurosporine, and vincristine inMCF 10A-H2B-mCherry cells.
Error bars represent the standard error of the mean of eight technical replicates
from one representative biological replicate. b Deep Dye Drop protocol steps: EdU
and LDR dye are added in 10% OptiPrep™ followed by fixation with 4% for-
maldehyde in 20%Optiprep™. Cells are then permeabilized with 0.5% Triton X-100
in 10% OptiPrep, and the EdU is labeled with a fluorescent dye azide via Click
chemistry in 20% OptiPrep™. The contents of the well are aspirated, cells are
blocked, and then stained with a conjugated antibody against phospho-histone H3
(pH3) in 10%OptiPrep™. One well of a multi-well plate is depicted. c Schematic and
representative image of cells stained with the Deep Dye Drop protocol. The image
shown is an example of typical of DeepDyeDrop staining as performed in 58breast
cancer cell lines in thiswork. Nuclei are stainedwithHoechst (gray-scale), deadcells

are stained with LIVE/DEAD red (blue), S-phase cells are labeled with EdU (red) and
M-phase cells are stained with phospho-histone H3 (green). Scale bar is 100 µm.
d Thresholds set to classify dead cells shown on a distribution of LDR intensity
values and e to identify cells in M-phase shown on a distribution of pH3 intensity
values. f Scatter plot of EdU intensity versus DNA content. The red dotted lines
represent gating applied to assign cells to the sub G1, G1, G2, beyond G2, and
S-phases of the cell cycle (see online “Methods”). g DNA content in BT20 cells
treated for 72 h with inhibitors targeting CHK1 (1 µM LY2606368), CDK1/2 (3.16 µM
BMS-265246) and PLK4 (0.316 µM CFI-400495) and untreated controls. All cells
from a single well in a 384-well plate are shown per condition. h The difference in
GR values calculated from Deep Dye Drop and conventional assays with respect to
the GR value from the Deep Dye Drop assay. The gray bars represent the 90%
confidence intervals for GR values from Deep Dye Drop experiments performed in
biological triplicate. Source data are provided as a Source Data file.
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mutation. In contrast, adaptive drug resistance involves a non-genetic
adaptation arising in many cells in a population (Fig. 3f)40. Following
24 h of 1 or 10 µM palbociclib exposure, we found that the physical
distance between S-phase cells increased (Supplementary Fig. 2e–f)
consistent with a reduction in their number and arrest in G1 (Fig. 3d, f).
By 72 h, cells had started to adapt to the drug and S-phase fraction

increased ~8-fold but these cells were as far apart as at 24 h. Thus, drug
resistance arose frequently throughout the population and not in
clones, consistent with rapid adaptation rather than rare mutation41.
These data illustrate the ability of spatially-resolved single-cell data, as
opposed to well-average measurements, to provide valuable insight
into drug resistance.
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Fig. 2 | Customization of antibody incorporation in Dye Drop assays. a MCF7
cells stained with phospho-pRb and b actin untreated and after 72 h in 1 µM pal-
bociclib; effects of increasing concentrations of palbociclib on the fraction of
phospho-pRb positive MCF7 cells, or b on cell size as detected with actin staining
after 72 h. c MCF 10 A cells stained with 53BP1 untreated and after 72 h in 1 µM
etoposide; induction of DNA damage by increasing concentrations of etoposide in
MCF 10A cells as detected with 53BP1 staining after 72 h. dMCF7 cells stained with
cytochromeCuntreated and after 72 h in0.1 µMactinomycinD; effect of increasing

concentrations of actinomycin D on release of cytochrome C from the mitochon-
dria in MCF7 cells after 72 h, performed in duplicate. Nuclei are stained with
Hoechst (gray-scale), and EdU (red) in all images. Error bars represent the standard
deviation of the mean of four replicates. Scale bars are 50 µm. e Schematic and
representative image from three cell lines in a 384-well plate stained with the
addition of a fifth channel to the Deep Dye Drop assay. Cells are stained with
Hoechst (gray-scale), LDR (blue, 1), EdU (red, 2), pH3 (purple, 3) and 53BP1 (green,
4). Scale bar is 50 µm. Source data are provided as a Source Data file.
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UsingDyeDrop to systematically screen smallmolecule drugs in
breast cancer cell lines
To demonstrate the use of Dye Drop assays at scale, a panel of 58
breast cancer cell lines was exposed to a library of 67 approved and
investigational kinase inhibitors and other small molecules. The panel
included multiple non-malignant breast epithelial lines (labeled NM)

and many cell lines routinely used to study the three major breast
cancer subtypes: hormone receptor positive (HR+), HER2 amplified or
overexpressing (HER2amp), and triple negative (TNBC; which lack
expression of estrogen, progesterone andHER2 receptors). Responses
were measured 72 h after the addition of drug at nine concentrations
spanning a 104 dose range (plus DMSO-only negative controls). All
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assays were performed in triplicate or quadruplicate to measure
technical repeatability. This yielded a total of ~3900 nine-point dose-
response curves computed from ~116,000 wells (~35,000 unique
conditions), with each well yielding data on ~0.5 to 15 × 103 single cells
(Fig. 4a, Supplementary Fig. 3, and Supplementary Data 2).

GR valuesweredetermined for each drug, dose and cell line based
on the number of viable cells at t =0 h and 72 h followed by curve-
fitting to estimate the four primary metrics of drug response17:
(Fig. 4b): (i) potency, as measured either by GR50 (the drug con-
centration at which GR =0.5) or by GEC50 (the concentration at half-
maximum effect), which is relevant when the magnitude of drug-
induced arrest or killing is insufficient for GR =0.5 to be reached; (ii)
efficacy, as measured by GRmax (the maximum drug effect, typically
achieved at the highest dose); (iii) the slope of the fitted dose response
curve, hGR; and (iv) and the integrated drug effect as measured by the
area over the GR curve GRAOC (AOC in this setting is directly analogous
to AUC data used with other drug response metrics)42–44. Drug
response data exhibited good reproducibility (median standard
deviation of GR values = 0.07 andmedian coefficient of variation ~11%)
and recapitulated genetic associations observed in the clinic. For
example, PIK3CA mutant lines were significantly more sensitive than
PTEN-low45 lines to alpelisib (PIQRAY®, approved for PIK3CA-mutant
HR+/HER2− advanced and metastatic disease; 2-way ANOVA P-value
<0.01 for kinase domain mutants and <0.05 for helical domain
mutants);46 HER2amp lines weremore sensitive to neratinib (NERLYNX®
approved for HER2amp disease; 2-way ANOVA P-value <0.01);47 luminal
lines were more sensitive than basal lines to everolimus (AFINITOR®
approved for HR+ disease; two-tailed unpaired t-test P-values
<0.001);48 and pRb-deficient lines39 were resistant to the CDK4/6
inhibitors palbociclib, ribociclib and abemaciclib (IBRANCE®, KIS-
QALI®, and VERZENIO®; two-tailed unpaired t-test P-values <0.001)
(Fig. 4c; see Supplementary Fig. 4a for all others). Several additional
drugs exhibited subtype specificity thatmatched their targeted clinical
indication. For example, relative to other subtypes, HR+ cell lines were
more sensitive to the AKT inhibitors AZD5363 and ipatasertib, and to
the mTOR inhibitors everolimus, AZD2014 and LY3023414; TNBC cell
lines were more sensitive to the WEE1 inhibitor adavosertib, the ATR
inhibitor AZD6738, and the PARP inhibitors rucaparib and olaparib49–51.
Observing such associations between clinical and preclinical data is
not trivial: we have previously shown that it requires accurate pheno-
typic measurement and the use of growth rate-corrected drug
response metrics20.

One striking feature of these data is that non-transformed (NM)
cell lineswerenot on averagemore resistant todrugs than cancer lines;
this was true of pre-clinical compounds and drugs approved by the
FDA for treatment of breast cancer (Fig. 4c, in bold). As a whole, NM
cells were actually more sensitive than tumor cells to the ERK1/2
inhibitor BVD523, and to the MEK1/2 inhibitor trametinib (two-tailed
unpaired t-test, P-value <0.05). This is not a new observation52, but it
demonstrates that even with approved therapeutics and a panel of
non-transformed and cancer cell lines, we should not expect to
observe a consistent difference in drug response between cells
representative of normal and diseased states.

Distinguishing cytostatic and cytotoxic drug effects
To further explore the biological implications of GR values, we looked
more closely at the balance between cell birth, death, and arrest in our
dataset. A value of GR = 1 corresponds to unperturbed proliferation
resulting in identical numbers of viable cells in drug-treated and con-
trol cultures; GR = 0 corresponds to no increase in viable cell number;
andGR<0 tonet cell loss. In principle, theGR =0condition could arise
because all cells in a culture arrest in a viable state (true cytostasis) or
because the number of cells that die equals the number born during
the assay. To distinguish these possibilities, we compared the fraction
of dead cells to GR values across all drugs, concentrations, and cell
lines (Fig. 4d). We observed the anticipated negative correlation
between GR value and dead cell fraction but with high dispersion
around the trend line: atGR=0, the fractionof deadcells varied from0
to 48% (median = 12%). We then compared the drug-induced change in
S-phase and dead cell fractions (for −0.1 <GR <0.1) and found that
birth and death balanced (S-phase and death fractions within 5% of
each other) fully in ~44% of conditions, resulting in the absence of net
cell growth. In a further ~24% of conditions, high cell death was
accompanied by low S-phase fraction (i.e., when the difference was
>10%); these are likely cases inwhichGR =0 is a transient phenomenon
preceding cell death (many anti-cancer drugs exert their cytotoxic
effects after several days of delay)53,54. The opposite scenarioof low cell
death with high S-phase fraction (observed in ~7% of conditions) may
reflect adaptation: maximum drug effect likely occurred at an earlier
time point and by 72 h, cells had resumed S-phase (Fig. 4e). In such
cases, the underlying assumption inGR calculations that growth rate is
constant is violated and time-dependent GR measurements are
required (Fig. 3c–e). Based on this analysis, we conclude that true
cytostatic cell-cycle arrest is likely to occur in only ~25% of GR =0
conditions, or ~2% of all conditions assayed in total with balanced
proliferation and death about twice as common.

We identified two limitations with these data. First, we found that
a subset of cultured cells died in the absence of any drug treatment
(median value 5%; range ~1–19% depending on cell line). Cytotoxicity
was therefore computed as the difference in dead cell count between
samples with and without drug present. Second, we found that a
subset of cells undergoing programmed cell death lysed completely
and were therefore not captured as LDR-positive cells in the dead cell
count. In the absence of continuous live-cell imaging it is not possible
to quantify the fraction of cells undergoing lysis, but we surmised that
it varied with condition and was greatest when GR ~ −1.0 (i.e., under
highly cytotoxic conditions) and the total cell count (live + dead) was
much lower than the time = 0 cell count. A low fraction of dead cells
under cytotoxic conditions canbemisleadingwhen the total cell count
is low (i.e., when many dead cells have lysed); it is therefore important
toflag cases inwhichboth lowcell number and lowcell death co-occur.
These limitations do not weaken our conclusion that true cytostasis is
less common than balanced birth and death; if anything, lysis of dead
cells leads to an underestimate of the extent of cell killing.

To further distinguish between cytostasis and cytotoxicity under
conditions when cells are both dividing and dying, we estimated rates
of cell transition from proliferation to stasis (ks) or death (kd) using an

Fig. 3 | Integration of Dye Drop assays with CyCIF and time series. a Schematic
and representative image from technical triplicates of multiplexing Deep Dye Drop
assays with cyclic immunofluorescence: the Hoechst (gray-scale), EdU (red), pH3
(green), beta-catenin (cyan), phospho-pRb (blue), and p21 (yellow) signals are dis-
played, and contrast was adjusted for visualization purposes only. Scale bar is
100 µm. b UMAP representation of MCF7 and MCF 10A cells treated with BMS-
265246 (1 µM, 10 µM), ribociclib (10 µM) or DMSO stained with Deep Dye Drop and
cyclic immunofluorescence. c The number of MCF7 cells in S-phase following
treatment with increasing concentrations of ribociclib, d palbociclib, and
e abemaciclib after 6, 24, 48, and 72 h. Data are presented as mean +/− standard
deviation of four technical replicates. EdU versus DNA content scatter plots show

the single cell cell-cycledistributions fromonewell at 1 µMdoses of eachdrugat the
time points indicated, the percentage of cells in S-phase (average from four tech-
nical replicates) is indicated on each plot. The scatter plots showall cells in a single,
representative well of a 384-well plate for each condition. f Illustration of possible
patterns of the emergence of resistant cells. A, clonal, genetic resistance or B, non-
clonal, non-genetic adaptation followed by representative images from biological
duplicates performed in technical quadruplicate of MCF7 cells treated with 1 µM
palbociclib for 24h or 72 h. Nuclei are visualized with Hoechst in white and EdU
positive cells are shown in red, scale bars are 100 µm. Source data are provided as a
Source Data file and on Synapse.
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Fig. 4 | DyeDropscreeningof abreast cancer cell linepanel treatedwithakinase
inhibitor library. a Dye Drop and Deep Dye Drop assays were used to measure the
responses of 58 breast cancer cell lines treated with 67 drugs at nine concentrations
after 72 h in technical triplicate or quadruplicate. GR-dose response curves for all
drugs in AU-565 cells and all cell lines treatedwith neratinib. The response of AU-565
cells to neratinib is shown in pink. Error bars are omitted for simplicity.b Illustration
of GR metrics shown on the neratinib-AU-565 dose-response curve. Data are pre-
sented as mean +/− standard deviation of technical quadruplicates. c Boxplot of
GRAOC values for FDA-approveddrugs included inour screen.Cell lines are separated
by clinical subtype (n = 5 NM, 13 HER2amp, 13 HR+, 26 TNBC), dose responses were
measured in technical triplicate or quadruplicate. The bottom and top of the box

show the first and third quartiles, the bar within each box represents the median
value and error bars represent the range of values. P-values from 2-way ANOVA with
Tukey’s correction for multiple comparisons, or unpaired 2-tailed t-test when only
comparing two groups are shown for significantly different comparisons. The sha-
ded region indicates responses that align with known biomarkers. d Variability in
fraction deadwith respect to GR value for all dose response data, GR values > 0.8 are
not shown. e Fraction of cells in S-phase relative to fraction dead for conditions
resulting in −0.1 >GR<0.1. Regions indicative of late-onset cell death and adaptation
to drug are highlighted in yellow. f GRS and GRT curves for AU-565 cells treated with
neratinib. Data are presented as mean +/− standard deviation of technical quad-
ruplicates. Source data are provided as a Source Data file and on Synapse.
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ordinary differential equation (ODE) model of cell proliferation. We
then computed dose-response curves and metrics for cytostatic and
cytotoxic responses (GRS andGRT). Note that, while GRS andGRT values
can be compared to each other across conditions, they are based on
transition rates and therefore do not sum up to the GR value; instead,
GR values are approximately equal to the product of GRS and GRT (see
methods for details; Fig. 4f, Supplementary Fig. 4b). With data com-
prising only two time points, the model is formulated such that ks and
kd are constant over the course of the experiment (the collection of
time-series data overcomes this limitation). Using neratinib response
in the HER2amp AU-565 cell line as a case study, we found that the GR
values were well fit by a sigmoidal curve (hGR = 0.84) that exhibited
both high potency (GR50 = 1.2 nM, GEC50 = 3.0nM) and high efficacy
(high cell killing; GRmax = −0.70) (Fig. 4a, b, Supplementary Fig. 5a, b).
When the response was decomposed, the cytostatic component was
40-fold more potent (GECS

50 = 1.1 nM) than the cytotoxic component
(GECT

50 = 48nM) (Fig. 4f). Thus, at low neratinib concentrations, cell
cycle arrest predominated, but arrest and death co-existed at drug
doses near the serum Cmax in humans55. In support of this conclusion,
EdU incorporation exhibited half-maximal inhibition of DNA synthesis
at 1.5 nM, consistent with cell cycle arrest at this concentration and a
requirement for HER2 in cell cycle progression56; in contrast LDR data
confirmed half-maximal cell killing at ~30 nM (Supplementary Fig. 5c,
d). In general, we found that cytostatic effects were elicited at lower
concentrations than cytotoxic effects although in the case of drugs
such as dinaciclib, cytostatic and cytotoxic drug concentrations were
very similar (median 2-fold difference in GECS

50 vs GRT
50 across all

cell lines).
Maximal cell killing (GRT

max), and potency (GECS
50) varied widely

across the dataset (GRT
max = 0.06 to −0.74; GECS

50 median = 0.49 µM,
interquartile range (IQR) = 4.85 µM) and were correlated (Spearman
r =0.41, P-value <0.001) (Supplementary Figs. 4b, 5e). However, the
overall correlation masked different relationships between dose,
cytostasis, and cell killing fordifferent drugs. For example, the potency
of palbociclib, ribociclib and theCDK4/6-targeting BSJ-03-124 PROTAC
(PROteolysis Targeting Chimera; a drug that induces proteasome-
mediated degradation of a target)57 varied widely across cell lines
(GECS

50,median=0.54 µM, IQR = 8.2) but induced littleorno cell death
(GRT

max ~ 0) (Fig. 5a). In contrast, varying the concentrations of dina-
ciclib and alvocidib, which target multiple CDKs (i.e., CDK1/2, CDK4/6,
CDK5, 7, 9) changed the fraction of cells killed (GRT

max = 0 to −0.7 for
both), but the potency remained nearly constant (GECS

50 = 15 ± 7 nM
for dinaciclib; GECS

50 = 150 ± 70 nM for alvocidib) (Fig. 5b). Com-
pounds such as abemaciclib39 and BSJ-03-12358,59—which have multiple
CDK targets—varied on both potency and efficacy axes (Fig. 5c). A
similar pattern was observed for the CDK7 inhibitor YKL-5-124, which
varied in potency and efficacy, whereas drugs with activity against
CDK12/13 such as THZ1 (CDK7/12/13) and THZ531 (CDK12/13) varied
primarily in cytotoxicity (Fig. 5d). Thus, deconvolution of Dye Drop
dose-response data reveals unique modes of anti-cancer drug action
with dose (Fig. 5e–g). The reasons for these differences, and their
relationship to target specificity and activity in patients requires fur-
ther study. However, we note that drugs in our collection that varied
little in potency, such as dinaciclib and alvocidib, failed in trials due to
excess toxicity, whereas drugs such as abemaciclib that vary in both
potency and efficacy appear to be superior as human therapeutics to
drugs that induce little or no cell killing, such as ribociclib39,60.

Pre-treatment cell cycle distributions and drug-induced cell
cycle effects
As expected, we found that drug-induced changes in the G1, S, and/or
G2 fractionsweredependent on the drug and cell line: a decrease inGR
from 1 to 0 (net arrest) was most strongly associated with a reduction
in S-phase cells (Spearman r = 0.57,P-value <0.0001) and accumulation
of cells in G1 or G2 (Fig. 6a). The CDK4/6 inhibitors ribociclib and

abemaciclib shifted cell cycle distribution fromSphase toG1 reflecting
inhibition of the G1/S transition39, whereas BMS-265246, a drug pri-
marily targeting CDK1/261 induced G2 arrest (Fig. 6a and Supplemen-
tary Fig. 6a, b).

The most remarkable feature of the data was not the drug
response per se but the wide diversity of proliferation rates (reported
here in divisions per day) and cell cycle distributions in the absence of
drug exposure. Doubling times, as measured in DMSO-only cultures,
varied ~7-fold (from 17 to 114 h per doubling) with HER2amp lines the
slowest growing (median 0.33 doublings/day) and NM cells the fastest
growing (median 0.95 doublings/day) (Fig. 6b). This wide range of
division times, a known confounder in comparative studies that use
relative viabilitymetrics like IC50or AUC, highlights the importance of
using GR metrics or similar methods to mitigate growth rate bias17,20.
Across all lines, G1 fraction exhibited a significant negative correlation
with division rate and S-phase exhibited a positive correlation
(Spearman r = −0.58 and r =0.56, respectively; P-values <0.001; Sup-
plementary Fig. 6c, d). However, these anticipated relationships
masked dramatic variation in basal cell cycle state: under conditions of
normal growth, G1 fraction varied from 15 to 86%, G2 fraction from6 to
40%, and S-phase fraction from 4 to 63% with no obvious association
with subtype. The distribution of cell cycle states in actual tumors has
also been shown to vary within and across cancers35 and clearly war-
rants additional study.

We do not yet understand, in molecular terms, why cell division
varies so widely across breast cancer cell lines. To demonstrate the
potential for combiningDyeDrop results with existing expression data
to study the cell cycle we looked at cells with extended S-phase
duration. Slow DNA replication and sensitivity to DNA damaging
agents are features of cells exhibiting replication stress62. When we
compared S-phase duration to division time for all cell lines, we found
that a subset of HR+ and TNBC cells had S-phases longer than 20h, as
compared to amedian of 11.5 h (Fig. 6c, red dashed box). Using Cancer
Cell Line Encyclopedia (CCLE) gene expression data63, we found that
the expression of genes such as PKD1, amarker of poormetastasis-free
survival64 (Fig. 6d) andMVP, which is linked to chemoresistance (effect
size > 2, t-test P-value <0.05)65 was enriched in TNBC lines with
extended S-phases (as compared to all other TNBC lines). GSEA of the
25 most differentially expressed genes revealed upregulation of ‘Wnt-
activated receptor activity’ (GO:0042813) and ‘sphingosine-1-phosphate
receptor activity’ (GO:0038036) (Supplementary Data 3) in cell lines
with extended S phases. Dysregulation ofWNT signaling is common in
TNBC66,67 and both WNT and sphingosine-1-phosphate pathways are
implicated in metastasis53. Moreover, when we examined the correla-
tion between S-phase duration (in the absence of drug) and GRmax for
TNBC cell lines, we observed significant correlation between time
spent in replication and efficacy of drugs including: AZD6738, which
inhibits ATR, a kinase that detects and responds to replication stress
(Spearman r = 0.38, P-value = 0.06), adavosertib, which inhibits WEE1,
the G2/M checkpoint kinase (Spearman r =0.49, P-value = 0.01), two
drugs (BMS-265246 Spearman r =0.45, P-value = 0.02; and Dinaciclib
Spearman r = 0.41, P-value = 0.05) that inhibit CDK1, a key driver of
M-phase entry and progression68 and Everolimus (Spearman r =0.34,
P-value = 0.09) and INK128 (Spearman r =0.49, P-value = 0.01) that
targetmTOR, known to be important in replication stress69 (Fig. 6e and
Supplementary Fig. 6e). These data suggest that the differences in
baseline and drug-induced cell cycle states measured by Deep Dye
Drop assays can serve as a starting point for identifying genes asso-
ciated with a disordered cell cycle and responsiveness to specific
drugs, such as those that target DNA damage pathways.

Discussion
In this paper, we describe the development and testing of a family of
Dye Drop methods for performing reliable and efficient high-
throughput multi-well plate assays of viable and fixed single-cells.
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Fig. 5 | Variation instatic andtoxic componentsof responses toCDKinhibitors.
a Relationship between GRT

max and GECS
50 for drugs targeting CDK4/6, b pan-

CDKs, cCDK4/6 andoff-targets, anddCDK7/12/13. Shading is for visualization only.
e The GR dose-response curves for the same conditions shown in (a–d) 72 h after
drug addition. Summary boxplots of f GECS

50 and g GRT
max values by subtype for

the same conditions shown in (e), the bottom and top of the box show the first and

third quartiles, the bar within each box represents the median value and error bars
represent the range of values. n = 5 NM, 13 HER2amp, 13 HR+, 26 TNBC and 1 TNBC/
HER2amp cell lines. The TNBC/HER2amp cell line was excluded from (f) and (g) for
simplicity. Dose responses were measured in technical triplicate or quadruplicate.
Source data are provided as a Source Data file.
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We show that gentle displacement of small volumes of liquid using a
series of solutions having increasing concentrations of iodixanol, an
inert chemical approved for use in humans, makes it possible to per-
form multi-step protocols without disturbing dying or weakly adher-
ent cells. This improves the accuracy and reproducibility of simple
LIVE/DEAD assays with the additional benefit of reducing costs by

using smaller reagent volumes. However, the most valuable feature of
DyeDrop is that it greatly facilitatesmulti-step live-cellmeasurements,
such as EdU-incorporation, in 384-well plates while also enabling
follow-on assays of fixed-cells using immunofluorescence. By mea-
suring the responses of a panel of 58breast cancer cell lines to 67 small
molecule drugs (~4000 nine-point dose-response curves), we
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demonstrate that these benefits of Dye Drop can be achieved at scale,
even by individuals with only a few days of training on the method.

Dye Drop is flexible—different types of reagents (i.e., dyes, anti-
bodies, etc.) can be combined in a single experiment and various
antibodies can be used to quantify relevant metrics like DNA focus
formation,MOMP, cell flattening etc. As a result, DyeDrop can capture
morphological changes that cannot be readily detected using well-
average methods or flow cytometry. Both manual multi-channel pip-
ettes and automated reagent dispensers can be used in Dye Drop, and
once cells are fixed, conventional plate washing is possible. Thismakes
the method suitable for smaller research groups and also for core
facilities. Dye Drop can also be coupled with multiplexed imaging (i.e.,
CyCIF70) so that 10–15 single-cell measurements can be performed on
each well. In this case, it is possible to separate Dye Drop assays and
CyCIF by several weeks, allowing the CyCIF antibody panel to be cus-
tomized based on preliminary findings and to focus high-plex assays
on the most informative conditions. We conclude that Dye Drop and
its variants constitute a flexible and extendable set of methods for
efficiently and accurately performing a wide variety of cell-based
assays in 384-well plates.

Standardized data analysis pipelines are important for ensuring
the accuracy and reproducibility of multi-parametric assays16. We have
therefore developed a set of computational routines for designing and
performing drug dose-response assays using the Dye Drop method
(Supplementary Fig. 7, see online “Methods”). These are combined into
a single tool box with scripts we previously developed for computing
GRmetrics17. Dye Drop dose-response analysis also features a series of
flags that alert users when experimental design criteria and results
such as the number of controls, the dose range, and the accuracy of
curve fitting are suboptimal. Using these methods, Dye Drop can be
used to study a range of acute drug-induced phenotypes as well as
time-dependent changes in GR values associated with adaptive drug
resistance.

Simply counting viable cells or measuring a well-average surro-
gate such as ATP level (most commonly by assaying ATP levels in cell
extracts using CellTiter-Glo®) does not distinguish cell cycle arrest
(cytostasis) from cell killing (cytotoxicity). However, using a simple
ODE-basedmodel of cell cycle progression andDyeDropdatamakes it
possible to decompose the cytostatic and cytotoxic components of a
drug response (GRS andGRT) based on a single on-treatment timepoint
(the collection of time-dependent response data enables more
sophisticated decomposition). We have used this to study conditions
where a drug causes GR ~ 0 and there is no net cell growth. Under these
conditions, we find that a state of balanced cell proliferation and death
is about twice as common as true cytostasis (cell cycle arrest). More-
over, we indirectly infer that many drug responses are time-depen-
dent, either involving adaptationordelayed cell killing (althoughproof
that this is truewill require additional time-dependentmeasurements).
Finally, we find that the dose-dependence of GRS and GRT vary dra-
matically by cell line and drug. Some drugs—the FDA-approved CDK4/
6 inhibitors, ribociclib and palbociclib for example—differ widely in
potency (GECS

50) across a cell line panel but elicit little orno cell killing.
In contrast, drugs such as the CDK1/2/5/9 inhibitor dinaciclib (whose
clinical development ended in phase 2), have nearly the same potency

in all cell lines and differ instead in cytotoxicity (GRT
max). Drugs such as

abemaciclib differ in both potency and efficacy39. These phenomena
have not previously been described and their significance as yet
unknown, but we note that abemaciclib is the most clinically active of
the approved CDK4/6 inhibitors71, whereas dinaciclib and alvocidib72

are associated with serious toxicity in humans. We speculate that
variation in both efficacy and potency, as exhibited by abemaciclib or
the tool compound YKL-5-124, may be a property of an ideal cancer
therapeutic.

The breast cancer lines used in this study vary up to 7-fold in
their doubling times under normal growth conditions and the dis-
tributions of cells across the cell cycle also differ widely. Non-
malignant cells are the fastest growing on average and HER2amp cells
the slowest growing (non-malignant cells also have the lowest rates
of cell death in the absence of drug, median ~2%). G1 and S-phases
are the most variable across all lines, varying from 15%
(HS578T cells) to 86% (MDAMB330) G1 fraction and 4%
(MDAMB175VII) to 63% (HS578T) S-phase fraction. The origins of
this remarkable variability are not known but likely include the
presence of recurrent mutations in genes that ensure the fidelity of
DNA synthesis and repair (e.g., TP53 and BRCA1/2) and the con-
sequent replication stress62. Subtype-specific differences in pro-
liferation demonstrate the importance of normalizing drug
response to division rates using GR metrics or similar approaches.
When such normalization is performed, multiple statistically sig-
nificant genetic associations between drug response in cell lines and
human patients can be identified; most of these are obscured by use
of conventional IC50 metrics. Use of GR data also makes clear that
non-malignant lines are not, on average, more resistant to approved
anti-cancer drugs than cancer cell lines and that this criterion
should not be used as a measure of tolerability in pre-clinical drug
screens.

Even though imaging-based high content screening has been
around for several decades, well average CellTiter-Glo® assays remain
the most common measurement performed in cell-based drug dis-
covery screens—particularly in oncology. The perceived simplicity and
low cost of CellTiter-Glo® likely explains its popularity, but it yields
only limited data that is not always interpretable as viable cell number.
Our calculations show that reagent costs for Dye Drop and Deep Dye
Drop assays are actually lower than those for CellTiter-Glo® assays
(performed according to the manufacturer’s instructions). When the
additional costs of high-quality imaging plates and increased labor are
factored in, Deep Dye Drop and CellTiter-Glo® are similar in cost.
However, any of these assays represent only a small fraction (~20%) of
the total cost of performing a cell-based profiling or screening study at
scale. Thus, Dye Drop methods represent a substantially more favor-
able balance between throughput, information content, and cost
compared to current approaches. For chemistry campaigns or anno-
tation of known bioactive collections (for which response rates are
high),DeepDyeDropplusCyCIF70 is likely thebest approach; for large-
scale, low hit-rate rate screens of small molecules, siRNA, or CRISPR-
Cas9 libraries,minimal Dye Drop assaysmay be preferred (followed by
re-screening hits with higher content assays). In both cases, Dye Drop
assays provide insight into response phenotypes and their relationship

Fig. 6 | Cell cycle at baseline and in response to drug treatment. aDrug-induced
change (compared to DMSO control) in the G1, S, and G2 fractions with respect to
GR value for all dose response data (left panels) and highlighted for ribociclib,
abemaciclib and BMS-265246 (right panels). The size of the data point represents
dose. b The baseline distribution throughout the cell cycle phases and growth rate
in doublings per day for 58 breast cancer cell lines. Boxplots of the growth rate, and
the fraction of cells at baseline in the G1, G2, and S-phases of the cell cycle for the
same cell lines separated by clinical subtype (n = 5 NM, 13 HER2amp, 13 HR+, 26
TNBC). The bottom and top of the box show the first and third quartiles, the bar
within each box represents the median value and error bars represent the range of

values. All cell lines were pulsed with EdU for 1 h to identify those in S-phase. The P-
values indicated are adjusted P-values from 2-way ANOVA tests with Tukey’s cor-
rection for multiple comparisons. c Duration of S-phase with respect to division
time for 58 breast cancer cell lines, colored by clinical subtype. The dashed red box
indicates S-phase duration > 20h. d Genes enriched in TNBC cells with S-phases >
20h relative to those with shorter S-phases (Cohen’s d). The 25 genes with the
largest effect sizes are highlighted in red. e Spearman correlation between the
duration of S-phase and the GRmax of the dose response curves across TNBC cell
lines for the drugs indicated. Source data are provided as a Source Data file and on
Synapse.

Article https://doi.org/10.1038/s41467-022-34536-7

Nature Communications |         (2022) 13:6918 13



to doses that have been difficult to study at scale but are highly rele-
vant to the useof smallmolecule drugs as research tools aswell as their
development into human therapeutics.

Methods
Cell culture
Cell lines weremaintained in their recommended growthmedium and
culture conditions as detailed in Supplementary Data 4. Conventional
cell lines were identity verified by STR profiling, and newly established
cell lines were STR profiled to ensure they were unique and to set
benchmarks for future reference.

Screening
Drugs were arrayed in nine-point half-log dilution series in 384-well
library plates (Supplementary Data 5). The identity and purity of the
drugs were verified by LC-MS. Each daughter plate contained 10 µl per
well, andwas thawed amaximumof 12 times. Cells were seeded in 384-
well CellCarrier or CellCarrier ULTRAplates (catalog number 6057300,
Perkin Elmer, Waltham, MA) with a multidrop combi liquid dispenser
at the densities listed in Supplementary Data 4, and allowed to adhere
for 24–36h prior to drug treatment. Drugs were delivered from library
plates via pin transfer with a custom E2C2515-UL Scara robot (Epson,
Long Beach, CA) coupled to stainless steel pins (V&P Scientific, San
Diego, CA) at the ICCB-Longwood Screening Facility, or from stock
solutions with a D300 digital drug dispenser (Hewlett-Packard, Palo
Alto, CA). At the time of drug delivery, replicate plates were stained
and fixed to serve as time = 0 reference data for GR-based calculations,
and 72 h later treated plates were stained and fixed according to the
Dye Drop or Deep Dye Drop protocol (see below).

Dye Drop assay
Cells, in 384-well plates, were stained by adding 15 µl of a staining
solution per well: 1 µg/ml Hoechst 33342 (catalog number H3570,
ThermoFisher,Waltham,MA) and 1:2000LIVE/DEAD far red dye (LDR)
(catalog number L-34974, Thermo Fisher, Waltham, MA) in 10% Opti-
Prep™ (final concentration of 6% iodixanol) (catalog number D1556-
250ML, Sigma, St. Louis, MO) in PBS (catalog number 21-040-CV,
Corning, Glendale, AZ). After 30min at room temperature (RT), cells
were fixed by adding 20 µl of 4% formaldehyde (catalog number F1635-
500ML, Sigma, St. Louis,MO) in 20%OptiPrep™ (final concentration of
12% iodixanol) in PBS perwell and incubating for 30min. After fixation,
the wells were aspirated and filled with 80 µl PBS, plates were sealed
with foil adhesives (catalog number MSF1001, BioRad, Hercules, CA)
and stored at 4 °C until imaged. A 16-channel automatic multi-pipette
was used for the addition of the stain and fix solutions, all aspirate
steps and other dispense steps were performed with an EL406 washer
equipped with a 96-channel head (Biotek,Winooski, VT).

Deep Dye Drop assay
15 µl of a 10% OptiPrep™ (final concentration of 6% iodixanol) solution
in PBS containing 10 µM EdU (catalog number 10540, Lumiprobe,
Waltham,MA) and 1:2000LDRwas added cell in eachwell of a 384-well
plate and incubated for one hour at 37 °C. Cells were then fixed in
20 µl/well 4% formaldehyde in 20% OptiPrep™ (final concentration of
12% iodixanol) for 30min at RT. The duration of the EdU pulse can be
adjusted depending on the division time of the cell line or on the
experimental conditions, however, in our experience a one-hour pulse
of EdU at 37 °C is sufficient for most conventional cell lines. Following
fixation, the wells were aspirated using an EL406 washer. 15 µl of cell
permeabilization solution, 0.5% Triton-X100 (catalog number X100-
100ML, Sigma, St. Louis,MO) in 10%OptiPrep™ (final concentration of
6% iodixanol), was then added per well at room temperature (RT)
followed, 20min later, by 20 µl of Click chemistry solution (2mM
copper sulfate (catalog number 12849, Sigma, St Louis, MO), 4 µM
Sulfo-Cy3 azide (catalog number B1330, Lumiprobe, Waltham, MA),

20mg/ml ascorbic acid (catalog number A4544, Sigma, St Louis, MO))
in 20% OptiPrep™ (final concentration of 12% iodixanol) to fluores-
cently label the incorporated EdU. After 30min at RT, once the Click
reaction was complete, the wells were aspirated, and 40 µl of Odyssey
blocking buffer (catalog number 927-40150, LI-COR Biosciences, Lin-
coln, NE) was added perwell for aminimumof one hour at RT, or up to
overnight at 4 °C to block the cells for immunofluorescence labeling.
Next, an Odyssey blocking buffer solution containing 10% OptiPrep™
(final concentration of 6% iodixanol) and 1:2000Alexa 488-conjugated
anti-phospho-histone H3 (S10) antibody (pH3) (clone D2C8, catalog
number 3465, lot number 14, Cell Signaling Technology, Danvers, MA)
to labelM-phase cells and 2 µg/mlHoechst 33342 to stain all nuclei, was
dropped onto the cells and incubated overnight at 4 °C. The overnight
incubation ensures that the Hoechst staining saturates enabling
accurate, image-based quantitation of DNA content. Post incubation,
the plates were washed once with 0.01% PBS-Tween (catalog number
BP337-500, Thermo Fisher, Waltham, MA) and twice with PBS, leaving
a final volume of 80 µl of PBS in each well. The plates were then sealed
with foil adhesives (catalog number MSF1001, BioRad, Hercules, CA)
and kept at 4 °C until imaged. As above, a 16-channel automatic multi-
pipette was used for the addition of all stain and fix solutions, and all
aspirate steps and other dispense steps were performedwith an EL406
plate washer. Detailed DyeDrop andDeepDyeDrop protocols are also
available on protocols.io: https://www.protocols.io/view/deep-dye-
drop-protocol-96zh9f6.

Microscopy and feature extraction
Image acquisition was performed with either an Operetta (Perkin
Elmer, Waltham, MA) or an ImageXpress Micro-Confocal (IXM-C)
(Molecular Devices, San Jose, CA) high throughputmicroscope using a
10× objective. Six fields of view per well were acquired with the
Operetta, and four with the IXM-C to achieve full well coverage. Both
systems were equipped with robotics to enable continuous imaging
24 h/day. Cell segmentation was performed with Columbus (version
2.7.0, Perkin Elmer, Waltham, MA) or MetaXpress (version 6.5.3.427,
Molecular Devices, San Jose, CA) depending on the system used for
image acquisition. Inboth cases, nuclei were segmentedbasedon their
Hoechst signal, a ringwas drawnaround eachnucleus, and the average
intensity of each stain was measured in each mask. For segmentation
with Columbus, ‘Find Nuclei’ method ‘B’ was used to identify nuclei
with the following settings: Common Threshold 0.5, Area > 50 µm2,
Split Factor 7, Individual Threshold 0.4, and Contrast > 0.1. ‘Select Cell
Region’ method ‘Resize Region [%]’ was used to draw a ring around
each nucleus with the following settings: Region Type Nucleus Region,
Outer Border −100%, Inner Border −30%. For segmentation with
MetaXpress, nuclei were found using the ‘Find RoundObjects’module
with minimum and maximum width thresholds of 8.2 µm and 23.4 µm,
respectively, and an intensity above background threshold of 1366.
The ‘Grow Objects Without Touching’ module was used to draw a
4-pixel ring around each nucleus. To account for local changes in
background intensity, the ring intensity was subtracted from the
nuclear intensity. The average nuclear Hoechst intensity was multi-
plied by the nuclear area to obtain the DNA content measurement.

Validation of other antibodies and five channel Deep Dye Drop
Cells were seeded, treated, and subjected to the Deep Dye Drop pro-
tocol as described above with the following modifications. Alternate
antibodies were used in the place of pH3: actin (1:500, catalog number
8844, clone 13E5, lot number 4, Cell Signaling Technologies, Danvers,
MA), 53BP1 (1:500, catalog number 612523, clone 19, lot number
9017821, BD Biosciences, Franklin Lakes, NJ), cytochrome C (1:200,
catalog number MA338200, clone 6H2.B4, lot number RK242765,
Invitrogen, Carlsbad, CA), pRb (1:500, catalog number 4277, clone
D20B12, lot number 4, Cell Signaling Technologies, Danvers, MA). For
five channel Deep Dye Drop, the protocol was followed as above, and
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cells were incubated overnight in the presence of pH3(S10) (1:2000,
catalog number 3377, clone D2C8, lot number 9, Cell Signaling Tech-
nologies, Danvers, MA) and 53BP1 (1:500, catalog number 612523,
clone 19, lot number 9017821, BD Biosciences, Franklin Lakes, NJ)
primary antibodies. The cells were then washed and incubated with
1:2000 secondary donkey-anti-rabbit Alexa 488 (catalog number A-
21206, Thermo Fisher, Waltham, MA) and goat-anti-mouse Alexa 750
(catalog number A-21037, Thermo Fisher, Waltham, MA) antibodies in
Odyssey buffer for one hour at RT.

Cyclic immunofluorescence
MCF7 and MCF 10A cells were seeded 15,000 and 8000 cells per well
in two96well plates (catalognumber 3603,Corning,Glendale, AZ) and
allowed to adhere for 24 h prior to treatment with ribociclib, BMS-
265246 or DMSO for 72 h. Cells were then stained and fixed according
to the Deep Dye Drop protocol, the click-chemistry EdU labeling step
was omitted on plate one. Cells were then imaged, plate two was
washed once with EDTA (10mM in PBS), incubated at RT for 2 h. in
10mMEDTA (60 µl/well) andwashed three timeswith PBS. Both plates
were then bleached for 1 h (60 µl per well of 3% (wt/vol) H2O2, 20mM
NaOH in PBS) exposed to light, washed three times with PBS and
subjected to three rounds of cyclic immunofluorescence21. Plate one
was then bleached again, washed three times with PBS, and the EdU
was labeled per the Deep Dye Drop protocol. Hoechst (1 µg/ml) was
included in all staining rounds. Image registration was performed with
ASHLAR (version 1.11.1) and nuclear segmentation and extraction of
intensity features for each channel was performed with MCMICRO
(version 2020-04-30)73,74. Uniform Manifold Approximation and Pro-
jection (UMAP) was applied to the single cell intensity data for all
antibody markers, EdU and the first instance of Hoechst staining (11-
plex data, see Supplementary Table 1) using the umap library in
python.

Data analysis
Analysis of the single cell level feature data was performed auto-
matically with custom scripts (see Data and code availability below).
The detailed computational protocol for gating measured signal
intensities is available at https://github.com/datarail/DrugResponse/
wiki. Briefly, The LDR, EdU, and pH3 intensities were log transformed
and smoothed using a kernel density estimate (KDE) function. A peak
finding algorithm was used to identify the global minima of the KDEs.
The minima were used to set thresholds above which the cells were
classified as dead (based on LDR), in S-phase (based on EdU) or in
M-phase based on pH3 intensity. The integrated Hoechst intensity was
used to quantify DNA content to discriminate between cells in the G1-
and G2-phases of the cell cycle. Cells that were negative for EdU but
had intermediate DNA content between thresholds set for G1 and G2
were classified as ‘S dropout’. Cells positive for LDR but that no longer
harbored any Hoechst signal were scored as ‘corpses’ and were inclu-
ded in the total dead cell count. Spatial analysis was performed by
using X–Y pixel coordinates to calculate the shortest Euclidean dis-
tancebetween every S-phase cell to its nearest S-phase cell and also the
shortestdistance between eachS-phase cells and thenearest cell in any
other phase. The distribution of the distances between the two groups
were compared. Boxenplots to visualize the data were generated using
https://seaborn.pydata.org/generated/seaborn.boxenplot.html. Sta-
tistical analyses were performed in python (version 3.8.5) or GraphPad
Prism (version 9.4.0) for macOS (GraphPad Software, San Diego, CA).

Standard GR, GR static, and GR toxic
Standard GR value are calculated as defined previously based on the
number of viable cells (Hoechst positive and LDR negative)17. Quanti-
fication of the cytostatic and cytotoxic components of the response
relies on a simple model of population growth with live cells, x,

growing exponentially at a doubling rate ks while dead cells, d, are
dying proportionally to x at a rate [log(2) kd]. Consequently, the
population model is ruled by the ODE system:

d x c,tð Þ
dt

= log 2ð Þ � ks c, tð Þ � kd c, tð Þ� � � xðc, tÞ
dd c, tð Þ

dt
= logð2Þ � kd c, tð Þ � xðc, tÞ

ð1Þ

Note that the term log 2ð Þ is a factor to convert doubling rate into
growth rate and allows us to solve this ODE system for ks and kd as:

ks c, tð Þ= 1
t
� 1 +

d c, tð Þ � d0

x c, tð Þ � x0

� �
� log2 x c, tð Þ

x0

� �
, kd c, tð Þ= 1

t
� d c, tð Þ � d0

x c, tð Þ � x0
� log2 x c,tð Þ

x0

� �
,

ð2Þ

Where:
• x(c,t) is the number of viable cells at time t at drug concentra-

tion c
• d(c,t) is the number of deadcells at time t at drug concentration c
• x0 = x(0,0), the number of live cells at the beginning of the

treatment
• d0 = d(0,0), the number of dead cells at the beginning of the

treatment
• t is the continuous time in an experiment over which responses

are integrated

The rates ks(c,t) and kd(c,t) can be normalized by the untreated
control rates and mapped to range of [0, 1] and, respectively, [−1, 0]
defining GRs cð Þ and GRT cð Þ as:

GRsðcÞ=2grs ðcÞ � 1, where grsðcÞ=
ksðcÞ
ksð0Þ

=
ð1 + dðc,tÞ�d0

xðc,tÞ�x0
Þ � log 2ðxðc,tÞx0

Þ
ð1 + dð0,tÞ�d0

xð0,tÞ�x0
Þ � log 2ðxð0,tÞx0

Þ
ð3Þ

And

GRT ðcÞ=2grT ðcÞ � 1, where

grT ðcÞ= kdð0Þ � kdðcÞ

=
1
t

dð0,tÞ � d0

xð0,tÞ � x0

� �
� log2 xð0,tÞ

x0

� �
� dðc,tÞ � d0

xðc,tÞ � x0

� �
� log 2 xðc,tÞ

x0

� �� �

ð4Þ

Note that we set d c, tð Þ � d0 to 1 if below 1 because dead cells are
meant to be cumulative over the course of the experiment and that a
numerical approximation based on a Taylor expansion is used if
x c, tð Þ ffi x0 (see code below).

GR values are related to GRs and GRT values as follows:

GRðcÞ=2grðcÞ � 1, wheregrðcÞ= ksðcÞ � kdðcÞ
ksð0Þ � kdð0Þ

and ks=das above ð5Þ

With the simplification of kd 0ð Þ=0:

ðGRsðcÞ+ 1Þ � ðGRT ðcÞ+ 1Þ= 2^½grsðcÞ+ grT ðcÞ�=2^
ksðcÞ � kdðcÞ � ksð0Þ

ksð0Þ

� �

ð6Þ

Thus we can see that:

GRs cð Þ+ 1� 	 � GRT cð Þ+ 1� 	
≈ GR cð Þ + 1ð Þ in caseswhere kdðcÞ ≫ 0or ks 0ð Þ ffi 1:

ð7Þ
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Gene set enrichment analysis in cell lines with long S-phase
duration
Gene expression data for TNBC cell lines in our study were down-
loaded from the Broad Cancer Cell Line Encyclopedia 21Q2 data
release (https://depmap.org/portal/download/)75. Cell lines were
separated into those with S-phase longer than 20h and all others.
Cohen’s d was used to measure the effect size for all genes. The 25
genes with the largest effect sizes were entered in Enrichr (https://
maayanlab.cloud/Enrichr/)76,77 to identify enriched Gene Ontology
(GO) Molecular Function terms.

Statistics and reproducibility
Nostatisticalmethodwasused topredetermine sample size. Screening
data were collected in technical triplicate or quadruplicate which
enabled the processing of batches of six cell lines at a time. The scaleof
the studypresented in this paper (67drugs at nine concentrations in 58
cell lines) exceeded what could be collected in biological replicates.
However, we have previously shown that dose response data collected
in our lab are highly reproducible16. All other data were collected in
technical and biological triplicates to facilitate statistical comparisons
between groups. Investigators were not technically blinded to alloca-
tion during experiments andoutcome assessment; however, datawere
collected in 384-well plates using randomized treatment designs. Data
for cell lines that did not grow over the duration of a 72 h assay were
excluded from the study since it is not possible to calculate growth rate
inhibition values on cells that are not growing. All analysis (feature
extraction, classification of cells) was automated essentially making it
blind to the investigators.

Data availability
All data and code as well as additional relevant resources are available
at https://labsyspharm.github.io/dye-drop-microsite/. This site will
continue to be updated with new results, tools, and links to com-
plementary projects in our lab. GR, cell death, and cell cycle results for
the breast cancer profiling dataset presented in this paper are available
for download from synapse syn26133007 and can be browsed online:
https://labsyspharm.shinyapps.io/HMSLINCS_BRCA_Browser/. Addi-
tional data corresponding to the figures presented in this paper are
also available under the same synapse ID. Specifically, the cyclic
immunofluorescence data corresponding to Fig. 3b and Supplemen-
tary Figs. 2a–d are available under synapse ID syn32364956; all GR
values for Fig. 4d and Supplementary Fig. 3 are under synapse ID
syn26133013; all cell cycle data are under synapse ID syn26133010 for
Fig. 6a; Synapse IDs syn38204424, syn38204484, and syn38204586
contain the single cell data for Fig. 2e. All other source data are pro-
vided with this paper as a Source Data file. 21Q2 public CCLE gene
expression data were used for Fig. 6d and were obtained from: https://
depmap.org/portal/download/. Source data are provided with
this paper.

Code availability
All scripts needed to analyze single cell intensity data are available
on github: https://github.com/datarail/DrugResponse/tree/master/
python/cell_cycle_gating and a user guide detailing installation of
these tools and their execution is available online: https://ddd-gating.
readthedocs.io/en/latest/index.html. The code needed for GR calcu-
lations is on https://github.com/datarail/gr_metrics. The github repo-
sitories are linked to Zenodo: https://zenodo.org/record/7130620#.
YzdHy3YpCUk, https://doi.org/10.5281/zenodo.713062078. A web
resource for calculating GR values and metrics is also available at
http://www.grcalculator.org. The modularity of the suite of tools
means that each component can be used independently of the others,
or jointlydependingon the experiment andequipment available. Refer
to Supplementary Fig. 7 for an overview of these resources and how
the modules fit together.
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