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Multimodal platform for assessing drug distribution 
and response in clinical trials
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Abstract
Background. Response to targeted therapy varies between patients for largely unknown reasons. Here, we devel-
oped and applied an integrative platform using mass spectrometry imaging (MSI), phosphoproteomics, and multi-
plexed tissue imaging for mapping drug distribution, target engagement, and adaptive response to gain insights 
into heterogeneous response to therapy.
Methods. Patient-derived xenograft (PDX) lines of glioblastoma were treated with adavosertib, a Wee1 inhibitor, 
and tissue drug distribution was measured with MALDI-MSI. Phosphoproteomics was measured in the same 
tumors to identify biomarkers of drug target engagement and cellular adaptive response. Multiplexed tissue 
imaging was performed on sister sections to evaluate spatial co-localization of drug and cellular response. The 
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integrated platform was then applied on clinical specimens from glioblastoma patients enrolled in the 
phase 1 clinical trial.
Results. PDX tumors exposed to different doses of adavosertib revealed intra- and inter-tumoral heteroge-
neity of drug distribution and integration of the heterogeneous drug distribution with phosphoproteomics 
and multiplexed tissue imaging revealed new markers of molecular response to adavosertib. Analysis of 
paired clinical specimens from patients enrolled in the phase 1 clinical trial informed the translational po-
tential of the identified biomarkers in studying patient’s response to adavosertib.
Conclusions. The multimodal platform identified a signature of drug efficacy and patient-specific adaptive 
responses applicable to preclinical and clinical drug development. The information generated by the ap-
proach may inform mechanisms of success and failure in future early phase clinical trials, providing in-
formation for optimizing clinical trial design and guiding future application into clinical practice.

Key Points

1. Heterogeneous distribution of drug and response help to understand drug 
resistance.

2. DDR markers found by phosphoproteomics can be used to map cellular response 
by multiplexed tissue imaging.

3. Multimodal platform for development and implementation of targeted therapeutics 
and identification of biomarkers to evaluate in clinical practice.

The clinical and preclinical studies that are typically con-
ducted to assess endpoints such as progression-free sur-
vival or overall survival often suffer from a lack of adequate 
molecular characterization. When in vivo studies in mouse 
models of cancer and in patients yield unfavorable results, 
unanswered questions abound as to whether the drug was 
appropriately delivered and distributed throughout the 
tumor, whether the drug successfully inhibited the target, 
and whether tumor growth continued due to inherent or 
adaptive therapeutic resistance. In addition, genetic and 
phenotypic heterogeneity, both across patients or animals 
and within individual tumors, can affect response to therapy 
for most tumor types.1,2

Adavosertib is a Wee1 tyrosine kinase (TK) inhibitor that 
has emerged as a potential adjuvant treatment for high-
grade brain tumors such as glioblastoma (GBM) which 
often overexpress Wee1.3 Wee1 is a negative regulator 

of entry into mitosis and when inhibited, an early G2 to 
M phase transition is induced that leads to mitotic ca-
tastrophe. Therapeutic resistance eventually develops 
through unidentified systems-level adaptive response.4 
Treatment with adavosertib leads to DNA damage in 
S-phase cells, as indicated by increased phosphorylation 
of H2AX.5 Although changes in DNA damage response 
(DDR) associated markers such as γH2AX and cell cycle 
markers such as phosphoCDK1/2 have been measured in 
response to adavosertib treatment,6,7 the overall response 
to adavosertib-mediated DNA damage is incompletely un-
derstood. Other than downregulation of CDK1 Y15 phos-
phorylation, there is a lack of proven drug efficacy markers 
for adavosertib. Additional markers may be identified 
using new approaches for tissue profiling and algorithms 
that facilitate the integration and analysis of the multiple 
datasets acquired by these new technologies.

Importance of the Study

We have developed a multimodal platform to measure 
drug distribution, drug target engagement, and adaptive 
cellular response in the same tumor. Using this com-
prehensive discovery-oriented approach, we identified 
markers of drug target engagement relevant to DNA 
damage response pathways. Additionally, altered tyro-
sine phosphorylation signaling pathways were identified 
as putative mechanisms of cellular adaptation that may 
play a role in drug resistance to adavosertib. Combining 
mass spectrometry imaging, phosphoproteomics and 

multiplexed tissue imaging provide a unique platform 
to characterize the heterogeneous response to therapy 
common in cancer models and early phase clinical 
trials, potentially accelerating drug development and 
identifying biomarkers that can be applied in routine 
clinical settings. This platform can be used to study 
other therapies and solid tumor types and may identify 
the mechanisms that limit the efficacy of drugs in early 
phase clinical trials.
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Methods have recently emerged that allow a more com-
prehensive profiling of the cellular states of tissues in-
cluding phosphoproteomics, mass spectrometry imaging 
(MSI), and multiplexed tissue imaging. Phosphoproteomic 
analysis can simultaneously reveal the quantitative phos-
phorylation state of thousands of proteins. Characterization 
of the DDR by measuring the levels of phosphorylation at 
phosphoserine and phosphothreonine sites in putative 
ATM/ATR substrates can provide information on drug ac-
tion,8 and phosphotyrosine levels can provide informa-
tion on activation of cellular signaling pathways that have 
been associated with adaptive response and resistance.9–12 
Direct mapping and quantifying the spatial distribution of 
drugs, lipids, or metabolites in tissue by MSI13,14 without 
the need for molecular labeling provides insight into the 
pharmacologic mechanisms underlying cellular responses 
to therapy.15 Genetic diversity is one of the main drivers of 
GBM heterogeneity,16 and invasiveness of tumor cells17 af-
fect drug distribution.17,18 Single-cell studies have revealed 
the key role of the tumor microenvironment including im-
mune cells—principally myeloid-lineage cells—and neu-
ronal cells demonstrating cell state plasticity.16,19 Tissue 
cyclic immunofluorescence (t-CyCIF) is a highly multi-
plexed antibody-based imaging method that can char-
acterize cell states and tumor architecture and thereby 
provide insights into the response of tumors to treatment 
at single-cell and subcellular resolution.20,21 The analysis 
of samples assayed with different technologies has cre-
ated a major analytical challenge that requires algorithms 
that account for multiple experimental and biological fac-
tors and that permit cross-modality spatial integration (eg, 
Harmony).22

To identify key features of response to adavosertib, 
we developed a platform to study preclinical GBM PDX 
(patient-derived xenograft) models and clinical trial 
(“on-treatment”) GBM biopsies. This platform integrates 
data acquired from different analytical technologies: we 
use t-CyCIF to measure markers of DNA damage, cell 
cycle, and apoptosis markers (among others) that were 
in part selected based on phosphoproteomic analysis of 
GBM PDX before and after treatment with adavosertib; 
the results were mapped and quantified at single-cell level 
(in GBM PDX and then in human GBM resection samples) 
and correlated with drug distribution measured by MSI. 
Through this work, we hope to demonstrate an approach 
for multi-dataset integration that should ultimately benefit 
clinical practice by reducing complex measurements down 
to key features (nominated and validated across mul-
tiple methods) with the goal of implementation in clinical 
workflows using widely available and standard methods 
(eg, IHC).

Materials and Methods

Abridged versions of methods are included below. Please 
refer to the Supplementary Information for detailed mater-
ials and methods.

The clinical trial specimens were obtained from 6 dif-
ferent patients with recurrent GBM enrolled on the sur-
gical arm of a phase I  study of adavosertib (MK-1775 

or AZD1775) led by the Adult Brain Tumor Consortium 
(ABTC), approved by the human investigations committee 
at Dana-Farber/Harvard Cancer Center, and registered on 
clinicaltrials.gov (NCT01849146). Informed written consent 
was obtained from each participant. The accepting criteria 
included participants with recurrent GBM that required 
surgery for tumor removal. After treatment with 200 mg or 
425 mg of adavosertib daily for 5 days, tumors were sur-
gically resected. Tumors were flash-frozen and stored at 
−80°C.

The animal studies were performed by Mayo Clinic and 
approved by the Mayo Institutional Animal Care and Use 
Committee. Three PDX lines were used: GBM12, GBM22, 
and GBM84 (PDX National Resource, Mayo Clinic). 
Athymic nude mice with xenograft implants were treated 
with adavosertib (Selleck) suspension in 0.5% methocel 
in water for 9 doses BID PO. Two hours after the last treat-
ment, tumors were resected and flash-frozen.

Frozen tumors were split for MALDI-MSI (matrix-assisted 
laser desorption/ionization mass spectrometry imaging), 
phosphoproteomics, and t-CyCIF analysis. Cryo-sections 
with 10-μm thickness of frozen specimens were mounted 
either onto indium tin oxide coated glass slides for MALDI-
MSI or onto regular microscopy glass slides for H&E 
staining.

MALDI-MSI analysis was performed on a 9.4  Tesla 
SolariX XR Fourier transform ion cyclotron resonance mass 
spectrometer with a resolution of 100 µm for flank tumors 
and 30 µm for clinical specimens. Phosphoproteomics was 
performed on frozen tumors as described previously23 
with few modifications detailed in the Supplementary 
Information. Partial least-squares regression (PLSR) anal-
ysis and phosphorylation site identification details are 
described in the Supplementary Information. t-CyCIF was 
validated in fresh-frozen (FF) samples compared to FFPE 
(formalin-fixed paraffin-embedded) using a GBM22 PDX 
line and performed as described in the Supplementary 
Information. Drug distribution data from MALDI-MSI for 
adavosertib were integrated with t-CyCIF markers using 
Harmony pipeline described in Korsunsky et al22 to identify 
drug distribution associated with spatial DDR.

Results

Integrated Multimodal Platform to Study Drug 
Distribution and Molecular Response to Drug

We developed an integrated multimodal platform (Figure 
1) to assess drug distribution, drug action, and tumor 
cell response to the Wee1 kinase inhibitor adavosertib in 
GBM, a therapeutic that is being assessed in a multisite 
phase 1 clinical trial. To evaluate the performance of the 
platform while gaining insight into the in vivo distribu-
tion and response to adavosertib, we first selected 3 dif-
ferent PDX lines of GBM (GBM12, GBM22, and GBM84) 
and generated flank tumors for each in mice. Consecutive 
tissue sections of tumors before and after treatment were 
analyzed by histopathology and matrix-assisted laser de-
sorption/ionization Fourier transform ion cyclotron res-
onance mass spectrometry imaging (MALDI FT-ICR MSI) 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
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was used to map the distribution of adavosertib and 
biometabolites. Pieces of the same PDX tumors were ana-
lyzed by phosphoproteomics to characterize the response 
to drug target engagement (focused on ATM/ATR sub-
strate motifs: phosphoserine/threonine followed by glu-
tamine [pSQ/pTQ])8 and the cellular adaptive response 
(phosphotyrosine [pTyr]). Finally, t-CyCIF was performed 
on tissue sections immediately adjacent to those used for 

MALDI-MSI, thereby allowing us to evaluate the spatial 
co-localization of drug and the resulting tissue response.

MALDI-MSI Reveals Heterogeneous Distribution 
of Adavosertib in Flank Tumors

We observed a heterogeneous distribution of adavosertib 
in tissue sections mapped by MALDI FT-ICR MSI, with 
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Fig. 1 Summary of the experimental design and platform used for assessing drug distribution and response in patient-derived xenograft (PDX) 
models and clinical trial specimens resected from contrast-enhancing (CE) and non–contrast-enhancing (NCE) regions.
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no direct spatial correlation of the drug with vasculature 
in pixel-by-pixel comparisons of drug (according to P 
values) and heme (a cofactor of hemoglobin) which is 
a well-validated marker of vasculature24,25 (Figure 2a–c, 
Supplementary Figure S1). This finding indicates that 
the drug enters the tumor parenchyma. Substantial het-
erogeneity between tumors was highlighted in GBM84 
where the concentrations of adavosertib varied between 
1–19 µM (Figure 2d) for samples in the 50 mg/kg dosing 
group. The coefficient of variation for drug concentra-
tion for GBM22 and GBM84 was above 60% and 20.9% 
for GBM12 (Figure 2c–f). Spatial distribution of the drug 
was evaluated relative to corresponding histopathology 
and showed significantly (P < .001 by ANOVA) lower in-
tensities of adavosertib in necrotic regions annotated by 
a neuropathologist (Supplementary Figure S2). We also 
noted baseline metabolic differences between PDX lines 
independent of treatment (3 distinct clusters—Figure 
2g; t-distributed stochastic neighbor embedding26 in 
Figure 2h).

Potential underlying mechanisms of heterogeneous 
drug distribution were assessed by comparing the dis-
tribution of ions with high spatial variance to the corre-
sponding histopathology (Supplementary Figure S1). 
For instance, in GBM22 adavosertib levels did not cor-
relate with regions of hemorrhage or the vasculature 
(marked by heme) suggesting that the drug penetrated 
into the tumor parenchyma and distributed beyond the 
blood vessels. Selected ceramides such as cer(d34:1) 
were significantly higher in necrotic regions according 
to ANOVA, especially in GBM22 which displayed larger 
necrotic regions (Supplementary Figure S2), while ATP 
distribution was significantly higher in non-necrotic re-
gions (as would be expected for viable and proliferating 
tumor). Treated samples showed an inverse distribu-
tion of adavosertib and the identified ceramides, coin-
ciding with the lower amounts of drug found in necrotic 
tissue (Supplementary Figure S2), thus suggesting that 
intragroup variations of drug levels were in part affected 
by the presence of necrotic regions.
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Fig. 2 Distribution and quantification of adavosertib (m/z 501.2706) and clustering of untreated tumors. (a) Annotated H&E staining of the flank 
tumors. Necrotic regions are delineated in yellow, mainly dense tumor in black, hemorrhagic tumor in red, and infiltrated skeletal muscle in green. 
(b) Spatial distribution of adavosertib in each of the tissue sections. (c) Average concentration of adavosertib measured in each GBM line with 
coefficient of variation of 65.0% for GBM22, 85.6% for GBM84, and 20.9% for GBM12. (d) Variation of the concentration of adavosertib in GBM84. 
(e) Variation of the concentration of adavosertib in GBM22. (f) Variation of the concentration of adavosertib in GBM12. The animal dosing was 
50 mg/kg in all cases. (g) Clustering of the 3 control GBM models using Segmentation by bisecting k-means—3 clusters. (h) t-distributed sto-
chastic neighbor embedding (t-SNE) of the 3 control PDX lines of GBM. Abbreviations: GBM, glioblastoma; PDX, patient-derived xenograft.
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Fig. 2 Distribution and quantification of adavosertib (m/z 501.2706) and clustering of untreated tumors. (a) Annotated H&E staining of the flank 
tumors. Necrotic regions are delineated in yellow, mainly dense tumor in black, hemorrhagic tumor in red, and infiltrated skeletal muscle in green. 
(b) Spatial distribution of adavosertib in each of the tissue sections. (c) Average concentration of adavosertib measured in each GBM line with 
coefficient of variation of 65.0% for GBM22, 85.6% for GBM84, and 20.9% for GBM12. (d) Variation of the concentration of adavosertib in GBM84. 
(e) Variation of the concentration of adavosertib in GBM22. (f) Variation of the concentration of adavosertib in GBM12. The animal dosing was 
50 mg/kg in all cases. (g) Clustering of the 3 control GBM models using Segmentation by bisecting k-means—3 clusters. (h) t-distributed sto-
chastic neighbor embedding (t-SNE) of the 3 control PDX lines of GBM. Abbreviations: GBM, glioblastoma; PDX, patient-derived xenograft.
  

Adavosertib Leads to Dose-Dependent 
Phosphorylation Changes in DDR Network

Inhibition of Wee1 by adavosertib should result in in-
creased DNA damage which can be monitored by meas-
uring substrate phosphorylation in each PDX tumor line. 
Phospho-SQ/TQ-containing peptides were enriched by 
immunoprecipitation with a phospho-motif-specific an-
tibody and quantified by liquid chromatography-tandem 
mass spectrometry (LC-MS/MS) using isobaric tags and 
multiplexed analysis. Adavosertib treatment resulted in a 
significant increase in phosphorylation of 19%, 60%, and 
22% of sites across multiple DDR associated pathways in 
GBM12, GBM22, and GBM84 (50  mg/kg group), respec-
tively (Supplementary Figure S3a), with substantial heter-
ogeneity in response noted for each GBM line (Figure 3a, 
Supplementary Figure S3b and c, Supplementary Tables 
S1 and S2).

Given that drug distribution and DDR phosphoryl-
ation data were both heterogeneous, we assessed 
the response profile relative to the average amount of 
drug present in a given tumor. We built a PLSR model 
for GBM84 (Figure 3b) to identify phosphorylation sites 
that are highly correlated with drug levels in each tumor. 
The PLSR model built for GBM84 was predictive of drug 
levels when assessed by leave-one-out cross-validation 
resulting in the coefficient of determination (Q2) between 
the measured drug levels and cross-validation predicted 
drug levels of 0.80 (Figure 3c). The heatmap resulting 
from hierarchical clustering analysis (HCA) of the phos-
phorylation sites that were contributing most to the 
model (Figure 3d) demonstrated a strong positive cor-
relation between drug amount and phosphorylation re-
sponse. Sites in the phosphorylation signature included 
proteins that are commonly associated with DDR path-
ways such as MRE11 and NBN (double-stranded break 
repair), SMC1A and SMC3 (structural maintenance of 
chromosomes), and NUMA1 (mitotic apparatus). We also 
observed upregulation of the canonical DNA damage 
marker γH2AX (H2AFX pS140), although other sites were 
more responsive to drug levels. Phosphorylation sites 
most predictive of drug levels in this model were found 
in WDHD1 (WD repeat and HMG box DNA-binding pro-
tein 1), also known as AND-1, a protein required for ho-
mologous recombination-based repair, and in UBE3A 
(ubiquitin-protein ligase E3A), a protein involved in 
p53 stability and apoptosis. Separate PLSR models for 
GBM12 and GBM22 were also predictive of drug levels 
(Q2  =  0.80 and 0.87, respectively), with a similar set of 
phosphorylation sites associated with drug levels 
(Supplementary Figure S4). Taken together, adavosertib 
led to increased phosphorylation of numerous putative 
ATM/ATR substrates in each of the PDX lines suggesting 
that the drug is inhibiting Wee1 resulting in increased 
DNA damage. Additionally, the level of DDR was di-
rectly correlated with the amount of drug distributed in 
the tumors.

Considering the overlap in predictive phosphoryl-
ation sites across the 3 PDX lines, we built a predic-
tive model encompassing data from all 3 PDX lines, 
yielding an overlap of 272 unique pSQ/pTQ-containing 
peptides and identifying a common phosphorylation 

signature of drug action. The PLSR “cross-model” was pre-
dictive of adavosertib levels across all tumors (Q2 of 0.83) 
(Supplementary Figure S5a) using leave-one-out cross-
validation. Predictive values (Q2 between 0.44 and 0.65) 
were also obtained when 1 of the 3 GBM lines was used 
as test set while other 2 lines were used as training set 
(Supplementary Figure S5b–d), indicating that this phos-
phorylation signature may be extendable to other GBM 
PDXs. Phosphorylation sites that were most positively cor-
related with drug level consisted of well-characterized pro-
teins such as MRE11, NBN, RAD50, and H2AX (Figure 4a). 
Several sites on VAMP2, XRN2, and CNN3 were differen-
tially phosphorylated in GBM22, where they were weakly 
negatively correlated with drug level, suggesting that there 
were some differences between the PDX lines. Taken to-
gether, the results suggest that heterogeneous drug dis-
tribution leads to drug exposure-dependent changes in 
the DDR network. Moreover, across PDXs from different 
patients, a common set of phosphorylation sites were 
identified. The phosphorylation data are summarized in 
Supplementary Table S1.

Adavosertib Leads to PDX Line-Specific Adaptive 
Response

Although tyrosine phosphorylation (pTyr) only repre-
sents 0.1%–1% of total protein phosphorylation, it can 
provide a readout of the adaptive cell response to drug 
exposure.9,27 Some common mechanisms of drug resist-
ance result in dysregulation of receptor TK networks, and 
the canonical central regulator pathways including PI3K 
and ERK pathways. The activities of these pathways are 
regulated by pTyr, so we captured the adaptive cellular 
response to adavosertib through quantification of pTyr. 
As with the pSQ/pTQ data, pTyr levels demonstrated a 
high degree of inter-tumor heterogeneity within treat-
ment groups. PLSR models were generated for each line 
by regressing pTyr data against the average adavosertib 
level measured for that tumor. Tyrosine phosphorylation 
was associated with drug levels, although less compared 
to the pSQ/pTQ data, as demonstrated by Q2 values of 
0.56, 0.46, and 0.72 for GBM12, GBM22, and GBM84, re-
spectively (Supplementary Figure S6a–c). The adaptive 
response across the entire set of tumors was investi-
gated by building a PLSR “cross-model” of the associ-
ation between pTyr and adavosertib levels. Excluding 
an entire PDX line from the training set resulted in very 
poor Q2 values of 0.28, −9.55, and −0.26 when predicting 
for GBM12, GBM22, and GBM84, respectively, although 
leave-one-tumor-out cross-validation yielded a Q2 value 
of 0.75 (Supplementary Figure S6d–g), suggesting dif-
ferences in pTyr signaling among the PDX lines in re-
sponse to adavosertib. HCA of the most correlated sites 
provided 3 clusters, including a MAPK and p130Cas 
(BCAR1) cluster, an EGFR/Src family kinase (SFK) cluster, 
and a cytoskeletal cluster featuring sites on actin, my-
osin, and titin (Figure 4b). However, unlike the pSQ/
pTQ data, these clusters were differentially regulated in 
each line. For instance, the EGFR/SFK cluster was pos-
itively correlated with drug levels in GBM84, yet nega-
tively correlated with drug levels in GBM22. Similarly, 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
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the MAPK/p130Cas cluster demonstrated positive corre-
lation with drug levels in GBM22 and GBM12, yet was 
either unchanged or slightly decreased with increasing 
adavosertib in GBM84, suggesting probable bypass 
adaptive resistance mechanisms in GBM12 and GBM22 
(Supplementary Figure S6h and i). Together, the pSQ/
pTQ and pTyr data provide unprecedented systems-level 
characterization of tumor response to adavosertib, in-
cluding well-characterized and largely conserved acti-
vation of DNA damage repair pathways and previously 
uncharacterized activation of TK networks that are tumor-
specific. Further characterization of these pathways and 
their potential effects on cellular phenotypes may help to 
provide insight into patient-specific response and resist-
ance mechanisms.

t-CyCIF Shows Differential Cellular Response to 
Drug at High Spatial Resolution

While we had characterized the association of drug 
level and tumor response at the bulk tissue level using 
phosphoproteomics, MSI quantification in tissue sections 
revealed that adavosertib distribution was spatially hetero-
geneous within each tumor. To characterize the spatial heter-
ogeneity of the tumor response to adavosertib on a cellular 
level for each tumor, we mapped cell states using t-CyCIF 
in the same specimens that we had analyzed by MSI and 
phosphoproteomics. We selected antibodies against DDR 
phosphorylation sites that were present in the predictive 
phosphorylation signature (such as SMC1_S957, MRE11_
S676, NBN_S343, and H2AX_S139) along with markers of 
cell proliferation and cell cycle phase (such as Ki67, PCNA, 
CDT1, Geminin, Histone H3_S10, and Cyclin A1).

We validated the t-CyCIF antibody staining on FFPE 
tissue samples and compared the results with FF tissue. 
t-CyCIF is typically performed on FFPE tissue but drug 
distribution is assessed by MSI from FF tissue, so direct 
comparison of t-CyCIF with MSI results required valida-
tion of the t-CyCIF method in FF tissue. Single cells were 
segmented, and the fluorescence signal was calculated 
on a per cell basis. We calculated the percentage of pos-
itive cells identified per marker in both the FFPE and FF 
sections and found a correlation value of R = .8986, P = .004 
indicating that the antibodies performed similarly in FF 
and FFPE samples (Supplementary Figure S7).

In the FF tissues, we used clustering analysis and 
binned cells into 5 different cell state categories 
(non-cycling stromal cells, cycling stromal cells, low 
DNA damage G1 tumor cells, high DNA damage S/
G2 tumor cells, and mitotic tumor cells) depending 
on the co-expression of different markers (Figure 5a, 
Supplementary Table S3). Cells with high Geminin, high 
PCNA, low CDT1, and high phosphorylation of DDR pro-
teins were classified as “high DNA damage S/G2 tumor 
cells.” Representative t-CyCIF images of individual cells 
in each of the 5 cell states are shown in Figure 5b; maps 
showing the spatial distribution of these cell states 
(relative to their corresponding histopathology) pro-
vided spatial information for the evaluation of cycling 
vs non-cycling stroma, along with different tumor cell 
states (Figure 5c and d). t-CyCIF performed on adjacent 

sections to MSI and histology sections from each GBM 
PDX tumor highlighted a shift in tumor cell state fol-
lowing adavosertib treatment, with an increase in high 
DNA damage S/G2 cells and a corresponding decrease in 
low DNA damage G1 tumor cells in adavosertib-treated 
GBM22 and GBM84 tumors relative to their untreated 
controls (Figure 5e and f, Supplementary Table S3) sup-
porting target engagement and the expected effects on 
DNA damage and the cell cycle.

Drug Distribution and Correlated Response in 
Clinical Trial Specimens

We used this multimodal platform to study drug distri-
bution and cellular response in human GBM tissue spe-
cimens acquired as part of a multisite clinical trial of 
adavosertib designed to evaluate intratumoral drug distri-
bution in patients with recurrent GBM. Six patients that un-
derwent surgery in 3 clinical sites were randomly assigned 
to receive a daily dose of either 200 or 425 mg adavosertib 
without other treatments starting 4 days prior to surgery. 
Considering the variability in blood brain barrier (BBB) 
penetration of adavosertib,6,13,28 contrast-enhancing (CE) 
and non–contrast-enhancing (NCE) areas were both surgi-
cally sampled based on preoperative MRI and studied to 
evaluate the propensity of the drug to distribute into dif-
ferent tumor compartments.

Adjacent tissue sections from each tumor specimen 
were analyzed by histology, MSI, and t-CyCIF from each pa-
tient (Figure 6a), and images were registered using a non-
linear approach. Regions of tumor with high adavosertib 
levels showed high levels of DDR (Nibrin (NBN) pS343 
overlayed with adavosertib levels in Figure 6a), however, 
initial analysis of drug response in specimens from all pa-
tients showed that metabolomic and proteomic analyses 
as well as t-CyCIF were confounded by collection site 
(Supplementary Figure S8), likely reflecting the effect of 
different specimen collection protocols at each site.

To study the tissues from the 6 donors spanning 3 col-
lection sites, we integrated the data into a common 
coordinated space to find overlapping signals of drug dis-
tribution and cellular DDR. Batch effect was corrected from 
the t-CyCIF profiles using Harmony and identified 6 “har-
monic” clusters (HC1-6) that were present in all 6 patients 
(Figure 6b), but with distinct profiles (Figure 6c). HC1 and 
HC6 both expressed astrocytic marker GFAP and HC1, 
HC3, HC5, and HC6 expressed SOX2, which is a marker of 
glial tumor cells. Cluster HC1 was more enriched in DDR 
markers pSMC1, pSMC3, and RAD50 and proliferation 
markers pH3 and CDT1. Cluster HC5 had the strongest ex-
pression of drug response associated markers pNBN, p53, 
pMre11, and Geminin. Cluster HC3 likely reflects an apop-
totic population, expressing BIM and cPARP. Finally, clus-
ters HC2 and HC4 did not have any distinguishing markers 
in this panel and may reflect unresponsive stromal cells.

The cellular markers were further correlated to drug 
distribution, using mixed-effects regression to asso-
ciate adavosertib levels to t-CyCIF clusters, accounting in 
this way for the batch effects that were confounding the 
drug levels. This analysis revealed the highest levels of 
adavosertib in cluster HC5 (which also showed high DDR 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab197#supplementary-data
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sections to MSI and histology sections from each GBM 
PDX tumor highlighted a shift in tumor cell state fol-
lowing adavosertib treatment, with an increase in high 
DNA damage S/G2 cells and a corresponding decrease in 
low DNA damage G1 tumor cells in adavosertib-treated 
GBM22 and GBM84 tumors relative to their untreated 
controls (Figure 5e and f, Supplementary Table S3) sup-
porting target engagement and the expected effects on 
DNA damage and the cell cycle.

Drug Distribution and Correlated Response in 
Clinical Trial Specimens

We used this multimodal platform to study drug distri-
bution and cellular response in human GBM tissue spe-
cimens acquired as part of a multisite clinical trial of 
adavosertib designed to evaluate intratumoral drug distri-
bution in patients with recurrent GBM. Six patients that un-
derwent surgery in 3 clinical sites were randomly assigned 
to receive a daily dose of either 200 or 425 mg adavosertib 
without other treatments starting 4 days prior to surgery. 
Considering the variability in blood brain barrier (BBB) 
penetration of adavosertib,6,13,28 contrast-enhancing (CE) 
and non–contrast-enhancing (NCE) areas were both surgi-
cally sampled based on preoperative MRI and studied to 
evaluate the propensity of the drug to distribute into dif-
ferent tumor compartments.

Adjacent tissue sections from each tumor specimen 
were analyzed by histology, MSI, and t-CyCIF from each pa-
tient (Figure 6a), and images were registered using a non-
linear approach. Regions of tumor with high adavosertib 
levels showed high levels of DDR (Nibrin (NBN) pS343 
overlayed with adavosertib levels in Figure 6a), however, 
initial analysis of drug response in specimens from all pa-
tients showed that metabolomic and proteomic analyses 
as well as t-CyCIF were confounded by collection site 
(Supplementary Figure S8), likely reflecting the effect of 
different specimen collection protocols at each site.

To study the tissues from the 6 donors spanning 3 col-
lection sites, we integrated the data into a common 
coordinated space to find overlapping signals of drug dis-
tribution and cellular DDR. Batch effect was corrected from 
the t-CyCIF profiles using Harmony and identified 6 “har-
monic” clusters (HC1-6) that were present in all 6 patients 
(Figure 6b), but with distinct profiles (Figure 6c). HC1 and 
HC6 both expressed astrocytic marker GFAP and HC1, 
HC3, HC5, and HC6 expressed SOX2, which is a marker of 
glial tumor cells. Cluster HC1 was more enriched in DDR 
markers pSMC1, pSMC3, and RAD50 and proliferation 
markers pH3 and CDT1. Cluster HC5 had the strongest ex-
pression of drug response associated markers pNBN, p53, 
pMre11, and Geminin. Cluster HC3 likely reflects an apop-
totic population, expressing BIM and cPARP. Finally, clus-
ters HC2 and HC4 did not have any distinguishing markers 
in this panel and may reflect unresponsive stromal cells.

The cellular markers were further correlated to drug 
distribution, using mixed-effects regression to asso-
ciate adavosertib levels to t-CyCIF clusters, accounting in 
this way for the batch effects that were confounding the 
drug levels. This analysis revealed the highest levels of 
adavosertib in cluster HC5 (which also showed high DDR 

markers supporting target engagement) and slightly in-
creased drug levels in cluster HC1 which also showed high 
DDR markers. The lowest drug levels and highest apoptotic 
markers (BIM and cleaved PARP) were observed in cluster 
HC3 (Figure 6c and d). Among the 3 clusters HC1, HC3, and 
HC5 that showed increased levels of adavosertib, cluster 

HC5 had the lowest expression of Wee1. Case D was no-
table for a significant higher adavosertib levels in the CE 
specimen compared to the NCE specimen (Supplementary 
Figures S8b and S9a). Consistent with higher drug levels, 
the Harmony analysis showed higher DDR in the CE spec-
imen compared to the NCE specimen (Figure 6e).
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Discussion

Here we have developed and implemented a multimodal 
platform for the analysis of drug distribution, drug ef-
ficacy, and tumor cell response, with high spatial reso-
lution. Application of this platform to GBM PDX models 
treated with adavosertib, a WEE1 inhibitor in clinical 
testing for a number of different malignancies, provided 
a biomarker signature for drug efficacy. Components of 
this signature were then spatially connected to drug dis-
tribution in human tumor specimens from a clinical trial 
for adavosertib in GBM. Together, these data quantify 
the effects of therapy at a cellular level in tumors from 
patients in a clinical trial, thus providing insight into 
mechanisms of action or failure in ongoing clinical trials. 
This platform can be used in trials to study a range of 
therapies, including cytotoxic chemotherapies, targeted 
therapeutics such as kinase inhibitors, and biologicals 
including antibodies and antibody-drug conjugates. The 
insights from multimodal studies can then be used to 
identify biomarkers that may be implemented in routine 
clinical practice.

Previous studies attributed the heterogeneous distribu-
tion of adavosertib in an intracranial GBM22 line to the dis-
ruption of the BBB.13 Intriguingly, we observed that PDX 
tumors grown in the flank of animals also resulted in het-
erogeneous drug distribution, despite the absence of the 
BBB. Heterogeneous drug distribution correlated with 
selected MSI-defined biometabolite distributions within 
individual tumors, and generally followed distinct histo-
logical features such as necrosis, tumor cell density, and 
hemorrhagic regions, indicating that drug distribution is 
affected by the biochemical and biophysical properties of 
the tumor, even in flank tumors. In this context, under-
standing the spatial distribution of metabolites such as 
ceramides relative to drug levels in brain tumors can be 
useful in implementing combination therapy since the acid 
ceramidase which metabolizes ceramides is involved in 
the development of resistance to radiotherapy in cases of 
GBM29 and acid ceramidase inhibitors have been proposed 
as a means to overcome treatment limitations in GBM.30

Despite the inherent heterogeneity between different 
PDX tumor lines, PLS-based regression modeling pro-
vided a biomarker signature (eg, consensus pSQ/pTQ 
sites) that was predictive of drug levels in all 3 PDX lines. 
Although H2AX phosphorylation is widely used as a DNA 
damage marker,8 other less characterized proteins such as 
ACTR8 and WDHD1 had a greater increase in phosphoryl-
ation on adavosertib exposure, suggesting their utility in 
measuring DDR. Interestingly, while all 3 PDX lines shared 
consensus DDR pathways, adaptive response pathways 
were dissimilar among lines, suggesting that different 
patient tumors mount different responses to therapy that 
may engage different resistance mechanisms. The syn-
ergistic effect of drug combinations is currently being in-
vestigated to reduce tumor growth and improve patient 
outcomes31,32 and the GBM Adaptive Global Innovative 
Learning Environment (GBM AGILE)33 counts on a mul-
tidisciplinary team of professionals to identify effective 
therapies and biomarkers worldwide. For immune-based 

therapies in GBM,34 identification of the adaptive response 
pathways could lead to optimized personalized combina-
tion strategies.

Spatially resolved evaluation of drug levels and DDR, 
confirmed by statistically significant associations (FDR 
<10%), allowed mapping of the mechanism of action of 
adavosertib at cellular resolution. Highest phosphorylation 
levels for DDR markers in cluster HC5 were consistent with 
the highest drug levels in same cluster.35 DNA damage as-
sociated with drug treatment was highlighted in regions 
enriched in DNA damage and cell cycle response markers 
(cluster HC3), consistent with the expected G2/M arrest fol-
lowing adavosertib treatment.36 Finally, adavosertib has 
been reported to have limited penetration through the 
BBB,13 and astrocytes play an important role in maintaining 
the BBB integrity.37 It was observed that regions with 
high drug intensities presented low levels of the astro-
cyte marker GFAP, highlighting regions that may have a 
compromised BBB.

The integrated models provided a biomarker signature 
of drug efficacy that was applicable across PDX lines and 
phase 1 clinical trial specimens. Furthermore, the approach 
allowed us to resolve the intra-tumor heterogeneity of drug 
distribution and efficacy in human tumors, critical to un-
derstanding differential response to therapy amongst pa-
tients. The comparison of multiple specimens with different 
drug levels from each patient provides an opportunity to 
investigate drug exposure-dependent response directly 
in humans. Considering the limited dataset, our goal is to 
encourage further analyses of clinical trials and the use of 
such platforms to measure drug response. This multimodal 
platform, while developed and implemented specifically for 
the study of adavosertib, should facilitate across a range of 
clinical trials the assessment of drug distribution and drug 
efficacy, information that has previously been largely in-
accessible. The underlying technologies are increasingly 
accessible at academic clinical centers so in the near term 
some of the presented analyses could be centralized in 
these centers for the study of clinical trials and annotated 
clinical cohorts.38 However, efforts are underway to intro-
duce MALDI-MSI39,40 and a wide range of multiplexed tissue 
imaging techniques41 into standard clinical diagnostics and 
to generate phosphoproteomic data from the formalin-fixed 
surgical resection tissues common in pathology labora-
tories.42,43 Ultimately, the goal is to identify critical markers 
of response that can be widely implemented in routine 
clinical workflows using standard and widely accessible 
methodologies.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.

Keywords 

drug distribution | drug response | mass spectrometry im-
aging | phosphoproteomics | t-CyCIF



 76 Lopez et al. Multimodal platform for drug distribution and response in CT

Funding

The clinical samples were obtained from a clinical trial sponsored by the 
Adult Brain Tumor Consortium (ABTC) National Institutes of Health/National 
Cancer Institute (NIH/NCI) UM1 CA137443 and AstraZeneca (clinicaltrials.
gov identifier NCT01849146). This work was funded by NIH U54 CA210180 
MIT/Mayo Physical Science Oncology Center for Drug Distribution 
and Drug Efficacy in Brain Tumors, the MIT Center for Precision Cancer 
Medicine, NIH U54-CA225088 HMS/Cancer Systems Biology Consortium, 
and the Dana-Farber Cancer Institute PLGA Fund. N.Y.R.A. receives sup-
port from the Ferenc Jolesz National Center for Image Guided Therapy NIH 
P41-EB-015898 and NIH R01CA201469. E.C.R.  receives support from NIH 
R25 (R25 CA-89017). S.S.B. receives support from NIH Training Grant T32 
HL007627. A.R.C. receives funding from the Harvard Program in Therapeutic 
Science Therapeutics Graduate Program (T32-GM-7306-42). S.A.S. is sup-
ported by an NIH T32 (1T32EB025823-01A1).

Conflict of interest statement. N.Y.R.A.  is a scientific advisor 
to BayesianDx and key opinion leader to Bruker Daltonics. 
E.Q.L.  reports royalties from Wolters Kluwer (UpToDate, Inc.) 
and is a consultant to Prime Oncology.

Authorship statement. Manuscript writing: B.G.C.L., I.N.K., 
Z.D., E.C.R., N.Y.R.A., A.R.C., F.M.W., and S.S.B. Research 
design: B.G.C.L., I.N.K., Z.D., P.Y.W., B.A., J.S., S.S. F.M.W., 
N.Y.R.A., and E.Q.L. Performed research: B.G.C.L., I.N.K., Z.D., 
M.S.R., B.M.M., A.C.T., D.M.B., and S.A.S. Data analysis con-
tribution: B.G.C.L., I.N.K., Z.D., Y.D., G.G., E.C.R., S.S., W.A., 
Y.D., G.G., I.K., and S.R. Analytical tools contribution: J.N.A.

Data Availability

The mass spectrometry proteomics data have been deposited to 
the ProteomeXchange Consortium via the PRIDE44 partner reposi-
tory with the dataset identifier PXD018782 and 10.6019/PXD018782. 
The MALDI-MSI data are available upon request. The processed 
t-CyCIF montage images were uploaded to Omero.

References

1. Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for 
targeted therapeutics. Br J Cancer. 2013;108(3):479–485.

2. Saunders  NA, Simpson  F, Thompson  EW, et  al. Role of intratumoural 
heterogeneity in cancer drug resistance: molecular and clinical perspec-
tives. EMBO Mol Med. 2012;4(8):675–684.

3. Mir SE, De Witt Hamer PC, Krawczyk PM, et al. In silico analysis of ki-
nase expression identifies WEE1 as a gatekeeper against mitotic catas-
trophe in glioblastoma. Cancer Cell. 2010;18(3):244–257.

4. Sen T, Tong P, Diao L, et al. Targeting AXL and mTOR pathway overcomes 
primary and acquired resistance to WEE1 inhibition in small-cell lung 
cancer. Clin Cancer Res. 2017;23(20):6239–6253.

5. Bukhari  AB, Lewis  CW, Pearce  JJ, Luong  D, Chan  GK, Gamper  AM. 
Inhibiting Wee1 and ATR kinases produces tumor-selective 
synthetic lethality and suppresses metastasis. J Clin Invest. 
2019;129(3):1329–1344.

6. Sanai N, Li J, Boerner J, et al. Phase 0 trial of AZD1775 in first-recurrence 
glioblastoma patients. Clin Cancer Res. 2018;24(16):3820–3828.

7. Keenan TE, Li T, Vallius T, et al. Clinical efficacy and molecular response 
correlates of the WEE1 inhibitor adavosertib combined with cisplatin in 
patients with metastatic triple-negative breast cancer. Clin Cancer Res. 
2021;27(4):983–991.

8. Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate 
analysis reveals extensive protein networks responsive to DNA damage. 
Science. 2007;316(5828):1160–1166.

9. Emdal KB, Dittmann A, Reddy RJ, et al. Characterization of in vivo re-
sistance to osimertinib and JNJ-61186372, an EGFR/Met bispecific an-
tibody, reveals unique and consensus mechanisms of resistance. Mol 
Cancer Ther. 2017;16(11):2572–2585.

10. McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/
ERK pathway in cell growth, malignant transformation and drug resist-
ance. Biochim Biophys Acta. 2007;1773(8):1263–1284.

11. Sasaki T, Koivunen J, Ogino A, et al. A novel ALK secondary mutation 
and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer 
Res. 2011;71(18):6051–6060.

12. Amit  I, Wides  R, Yarden  Y. Evolvable signaling networks of receptor 
tyrosine kinases: relevance of robustness to malignancy and to cancer 
therapy. Mol Syst Biol. 2007;3:151.

13. Pokorny  JL, Calligaris  D, Gupta  SK, et  al. The efficacy of the Wee1 
Inhibitor MK-1775 combined with temozolomide is limited by heteroge-
neous distribution across the blood-brain barrier in glioblastoma. Clin 
Cancer Res. 2015;21(8):1916–1924.

14. Groseclose MR, Castellino S. A mimetic tissue model for the quantifi-
cation of drug distributions by MALDI imaging mass spectrometry. Anal 
Chem. 2013;85(21):10099–10106.

15. Calandra  E, Posocco  B, Crotti  S, et  al. Cross-validation of a mass 
spectrometric-based method for the therapeutic drug monitoring of 
irinotecan: implementation of matrix-assisted laser desorption/ioniza-
tion mass spectrometry in pharmacokinetic measurements. Anal Bioanal 
Chem. 2016;408(19):5369–5377.

16. Neftel  C, Laffy  J, Filbin  MG, et  al. An integrative model of cellular 
states, plasticity, and genetics for glioblastoma. Cell. 2019;178(4):835–
849.e21.

17. Parker JJ, Canoll P, Niswander L, Kleinschmidt-DeMasters BK, Foshay K, 
Waziri A. Intratumoral heterogeneity of endogenous tumor cell invasive 
behavior in human glioblastoma. Sci Rep. 2018;8(1):18002.

18. Qazi MA, Vora P, Venugopal C, et al. Intratumoral heterogeneity: path-
ways to treatment resistance and relapse in human glioblastoma. Ann 
Oncol. 2017;28(7):1448–1456.

19. Friebel E, Kapolou K, Unger S, et al. Single-cell mapping of human brain 
cancer reveals tumor-specific instruction of tissue-invading leukocytes. 
Cell. 2020;181(7):1626–1642.e20.

20. Lin JR, Izar B, Wang S, et al. Highly multiplexed immunofluorescence 
imaging of human tissues and tumors using t-CyCIF and conventional 
optical microscopes. eLife. 2018;7:e31657.

21. Du  Z, Lin  JR, Rashid  R, et  al. Qualifying antibodies for image-based 
immune profiling and multiplexed tissue imaging. Nat Protoc. 
2019;14(10):2900–2930.

22. Korsunsky  I, Millard  N, Fan  J, et  al. Fast, sensitive and accu-
rate integration of single-cell data with Harmony. Nat Methods. 
2019;16(12):1289–1296.

23. Dittmann  A, Kennedy  NJ, Soltero  NL, et  al. High-fat diet in a 
mouse insulin-resistant model induces widespread rewiring of the 
phosphotyrosine signaling network. Mol Syst Biol. 2019;15(8):e8849.

24. Randall  EC, Lopez  BGC, Peng  S, et  al. Localized metabolomic gradi-
ents in patient-derived xenograft models of glioblastoma. Cancer Res. 
2020;80(6):1258–1267.

25. Liu X, Ide JL, Norton I, et al. Molecular imaging of drug transit through 
the blood-brain barrier with MALDI mass spectrometry imaging. Sci Rep. 
2013;3:2859.

26. Van Der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn 
Res. 2008;9:2579–2605.

27. Randall EC, Emdal KB, Laramy JK, et al. Integrated mapping of pharma-
cokinetics and pharmacodynamics in a patient-derived xenograft model 
of glioblastoma. Nat Commun. 2018;9(1):4904.

28. Li  J, Wu J, Bao X, et  al. Quantitative and mechanistic understanding 
of AZD1775 penetration across human blood-brain barrier in glioblas-
toma patients using an IVIVE-PBPK modeling approach. Clin Cancer Res. 
2017;23(24):7454–7466.

29. Doan NB, Nguyen HS, Al-Gizawiy MM, et al. Acid ceramidase confers 
radioresistance to glioblastoma cells. Oncol Rep. 2017;38(4):1932–1940.

30. Doan NB, Alhajala H, Al-Gizawiy MM, et al. Acid ceramidase and its inhibitors: 
a de novo drug target and a new class of drugs for killing glioblastoma cancer 
stem cells with high efficiency. Oncotarget. 2017;8(68):112662–112674.

31. Graham-Gurysh EG, Murthy AB, Moore KM, Hingtgen SD, Bachelder EM, 
Ainslie KM. Synergistic drug combinations for a precision medicine approach 
to interstitial glioblastoma therapy. J Control Release. 2020;323:282–292.

32. McNeill  RS, Canoutas  DA, Stuhlmiller  TJ, et  al. Combination therapy 
with potent PI3K and MAPK inhibitors overcomes adaptive kinome re-
sistance to single agents in preclinical models of glioblastoma. Neuro 
Oncol. 2017;19(11):1469–1480.

33. Alexander  BM, Ba  S, Berger  MS, et  al. Adaptive global innovative 
learning environment for glioblastoma: GBM AGILE. Clin Cancer Res. 
2018;24(4):737–743.



77Lopez et al. Multimodal platform for drug distribution and response in CT
N

eu
ro-

O
n

colog
y

5. Bukhari  AB, Lewis  CW, Pearce  JJ, Luong  D, Chan  GK, Gamper  AM. 
Inhibiting Wee1 and ATR kinases produces tumor-selective 
synthetic lethality and suppresses metastasis. J Clin Invest. 
2019;129(3):1329–1344.

6. Sanai N, Li J, Boerner J, et al. Phase 0 trial of AZD1775 in first-recurrence 
glioblastoma patients. Clin Cancer Res. 2018;24(16):3820–3828.

7. Keenan TE, Li T, Vallius T, et al. Clinical efficacy and molecular response 
correlates of the WEE1 inhibitor adavosertib combined with cisplatin in 
patients with metastatic triple-negative breast cancer. Clin Cancer Res. 
2021;27(4):983–991.

8. Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate 
analysis reveals extensive protein networks responsive to DNA damage. 
Science. 2007;316(5828):1160–1166.

9. Emdal KB, Dittmann A, Reddy RJ, et al. Characterization of in vivo re-
sistance to osimertinib and JNJ-61186372, an EGFR/Met bispecific an-
tibody, reveals unique and consensus mechanisms of resistance. Mol 
Cancer Ther. 2017;16(11):2572–2585.

10. McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/
ERK pathway in cell growth, malignant transformation and drug resist-
ance. Biochim Biophys Acta. 2007;1773(8):1263–1284.

11. Sasaki T, Koivunen J, Ogino A, et al. A novel ALK secondary mutation 
and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer 
Res. 2011;71(18):6051–6060.

12. Amit  I, Wides  R, Yarden  Y. Evolvable signaling networks of receptor 
tyrosine kinases: relevance of robustness to malignancy and to cancer 
therapy. Mol Syst Biol. 2007;3:151.

13. Pokorny  JL, Calligaris  D, Gupta  SK, et  al. The efficacy of the Wee1 
Inhibitor MK-1775 combined with temozolomide is limited by heteroge-
neous distribution across the blood-brain barrier in glioblastoma. Clin 
Cancer Res. 2015;21(8):1916–1924.

14. Groseclose MR, Castellino S. A mimetic tissue model for the quantifi-
cation of drug distributions by MALDI imaging mass spectrometry. Anal 
Chem. 2013;85(21):10099–10106.

15. Calandra  E, Posocco  B, Crotti  S, et  al. Cross-validation of a mass 
spectrometric-based method for the therapeutic drug monitoring of 
irinotecan: implementation of matrix-assisted laser desorption/ioniza-
tion mass spectrometry in pharmacokinetic measurements. Anal Bioanal 
Chem. 2016;408(19):5369–5377.

16. Neftel  C, Laffy  J, Filbin  MG, et  al. An integrative model of cellular 
states, plasticity, and genetics for glioblastoma. Cell. 2019;178(4):835–
849.e21.

17. Parker JJ, Canoll P, Niswander L, Kleinschmidt-DeMasters BK, Foshay K, 
Waziri A. Intratumoral heterogeneity of endogenous tumor cell invasive 
behavior in human glioblastoma. Sci Rep. 2018;8(1):18002.

18. Qazi MA, Vora P, Venugopal C, et al. Intratumoral heterogeneity: path-
ways to treatment resistance and relapse in human glioblastoma. Ann 
Oncol. 2017;28(7):1448–1456.

19. Friebel E, Kapolou K, Unger S, et al. Single-cell mapping of human brain 
cancer reveals tumor-specific instruction of tissue-invading leukocytes. 
Cell. 2020;181(7):1626–1642.e20.

20. Lin JR, Izar B, Wang S, et al. Highly multiplexed immunofluorescence 
imaging of human tissues and tumors using t-CyCIF and conventional 
optical microscopes. eLife. 2018;7:e31657.

21. Du  Z, Lin  JR, Rashid  R, et  al. Qualifying antibodies for image-based 
immune profiling and multiplexed tissue imaging. Nat Protoc. 
2019;14(10):2900–2930.

22. Korsunsky  I, Millard  N, Fan  J, et  al. Fast, sensitive and accu-
rate integration of single-cell data with Harmony. Nat Methods. 
2019;16(12):1289–1296.

23. Dittmann  A, Kennedy  NJ, Soltero  NL, et  al. High-fat diet in a 
mouse insulin-resistant model induces widespread rewiring of the 
phosphotyrosine signaling network. Mol Syst Biol. 2019;15(8):e8849.

24. Randall  EC, Lopez  BGC, Peng  S, et  al. Localized metabolomic gradi-
ents in patient-derived xenograft models of glioblastoma. Cancer Res. 
2020;80(6):1258–1267.

25. Liu X, Ide JL, Norton I, et al. Molecular imaging of drug transit through 
the blood-brain barrier with MALDI mass spectrometry imaging. Sci Rep. 
2013;3:2859.

26. Van Der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn 
Res. 2008;9:2579–2605.

27. Randall EC, Emdal KB, Laramy JK, et al. Integrated mapping of pharma-
cokinetics and pharmacodynamics in a patient-derived xenograft model 
of glioblastoma. Nat Commun. 2018;9(1):4904.

28. Li  J, Wu J, Bao X, et  al. Quantitative and mechanistic understanding 
of AZD1775 penetration across human blood-brain barrier in glioblas-
toma patients using an IVIVE-PBPK modeling approach. Clin Cancer Res. 
2017;23(24):7454–7466.

29. Doan NB, Nguyen HS, Al-Gizawiy MM, et al. Acid ceramidase confers 
radioresistance to glioblastoma cells. Oncol Rep. 2017;38(4):1932–1940.

30. Doan NB, Alhajala H, Al-Gizawiy MM, et al. Acid ceramidase and its inhibitors: 
a de novo drug target and a new class of drugs for killing glioblastoma cancer 
stem cells with high efficiency. Oncotarget. 2017;8(68):112662–112674.

31. Graham-Gurysh EG, Murthy AB, Moore KM, Hingtgen SD, Bachelder EM, 
Ainslie KM. Synergistic drug combinations for a precision medicine approach 
to interstitial glioblastoma therapy. J Control Release. 2020;323:282–292.

32. McNeill  RS, Canoutas  DA, Stuhlmiller  TJ, et  al. Combination therapy 
with potent PI3K and MAPK inhibitors overcomes adaptive kinome re-
sistance to single agents in preclinical models of glioblastoma. Neuro 
Oncol. 2017;19(11):1469–1480.

33. Alexander  BM, Ba  S, Berger  MS, et  al. Adaptive global innovative 
learning environment for glioblastoma: GBM AGILE. Clin Cancer Res. 
2018;24(4):737–743.

34. Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy 
for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–442.

35. Zhu JY, Cuellar RA, Berndt N, et al. Structural basis of wee kinases func-
tionality and inactivation by diverse small molecule inhibitors. J Med 
Chem. 2017;60(18):7863–7875.

36. Hirai H, Iwasawa Y, Okada M, et al. Small-molecule inhibition of Wee1 
kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to 
DNA-damaging agents. Mol Cancer Ther. 2009;8(11):2992–3000.

37. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at 
the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.

38. Rozenblatt-Rosen O, Regev A, Oberdoerffer P, et al. The human tumor 
atlas network: charting tumor transitions across space and time at 
single-cell resolution. Cell. 2020;181(2):236–249.

39. Basu  SS, Agar  NYR. Bringing matrix-assisted laser desorption/ion-
ization mass spectrometry imaging to the clinics. Clin Lab Med. 
2021;41(2):309–324.

40. Basu SS, Regan MS, Randall EC, et al. Rapid MALDI mass spectrometry 
imaging for surgical pathology. NPJ Precis Oncol. 2019;3:17.

41. Bodenmiller B. Multiplexed epitope-based tissue imaging for discovery 
and healthcare applications. Cell Syst. 2016;2(4):225–238.

42. Kohale  IN, Burgenske DM, Mladek AC, et al. Quantitative analysis of 
tyrosine phosphorylation from FFPE tissues reveals patient-specific 
signaling networks. Cancer Res. 2021;81(14):3930–3941.

43. Kalocsay  M, Maliga  Z, Nirmal  AJ, et  al. Multiplexed prote-
omics and imaging of resolving and lethal SARS-CoV-2 infec-
tion in the lung. bioRxiv. Published online October 15, 2020. 
doi:10.1101/2020.10.14.339952

44. Perez-Riverol Y, Csordas A, Bai J, et al. The PRIDE database and related 
tools and resources in 2019: improving support for quantification data. 
Nucleic Acids Res. 2019;47(D1):D442–D450.

https://doi.org/10.1101/2020.10.14.339952

