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SUMMARY
Intra-tumor heterogeneity (ITH) of human tumors is important for tumor progression, treatment response, and
drug resistance. However, the spatial distribution of ITH remains incompletely understood. Here, we present
spatial analysis of ITH in lung adenocarcinomas from 147 patients using multi-region mass spectrometry of
>5,000 regions, single-cell copy number sequencing of �2,000 single cells, and cyclic immunofluorescence
of >10 million cells. We identified two distinct spatial patterns among tumors, termed clustered and random
geographic diversification (GD). These patterns were observed in the same samples using both proteomic
and genomic data. The random proteomic GD pattern, which is characterized by decreased cell adhesion
and lower levels of tumor-interacting endothelial cells, was significantly associated with increased risk of
recurrence or death in two independent patient cohorts. Our study presents comprehensive spatial mapping
of ITH in lung adenocarcinoma and provides insights into the mechanisms and clinical consequences of GD.
INTRODUCTION

Lung cancer is the most common type of cancer and the leading

cause of cancer death worldwide.1 Lung adenocarcinoma, the

most frequent subtype of non-small cell lung cancer (NSCLC), is

characterized by heterogeneity among individual tumors2 and

between regions in a single tumor.3 The heterogeneity between

regions, termed intra-tumor heterogeneity (ITH), has been shown

to contribute to treatment failure and drug resistance through the

expansion of pre-existing resistant subclones and their deriva-

tives.4–7 For example, EGFR T790M-positive cells are observed

in response to the treatment of NSCLCwith EGFR tyrosine kinase

inhibitors.7 Furthermore, several studies have shown that certain
This is an open access article under the CC BY-N
patterns of ITH, mostly measured in terms of the subclonal alter-

ation burden, are associated with poor clinical outcomes in multi-

ple cancer types including NSCLC.3,8–10 Previous studies have

attempted to decode the spatial patterns of such heterogeneity

using multi-region profiling.3,11–15 However, the small number of

regions analyzedper tumor limits the conclusions of these studies.

This caveat has resulted in major gaps in our understanding of

spatial tumor heterogeneity and its contribution to tumor progres-

sion and the organization of the tumor-immune ecosystem,16–18

which is particularly important in light of the recent success of

immune checkpoint blockade.19

Here, we present a large-scale, integrative analysis of ITH and

its spatial organization in lung adenocarcinoma based on
Cell Genomics 2, 100165, August 10, 2022 ª 2022 The Authors. 1
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Figure 1. Overview of methods used to investigate intra-tumor spatial heterogeneity in this study

(A) Overview of multi-region MALDI-TOF.

(B) Overview of cyclic immunofluorescence.

(C) Overview of multi-region single-cell copy number sequencing.
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multiple orthogonal methods that are able to profile multiple re-

gions and/or single cells across a tumor sample while preserving

their spatial context. These analyses include multi-region

MALDI-TOF (matrix-assisted laser desorption ionization-time of

flight) of �5,000 regional spectra from 147 patients in two inde-

pendent cohorts (Figure 1A), CyCIF (cyclic immunofluorescence)

of >10 million cells from 12 patient samples (Figure 1A), and

multi-region single-cell copy number sequencing of �2,000 sin-

gle cells from 51 regions of 7 patient samples (Figure 1C). These

data aim to elucidate the extent of ITH and its spatial pattern in

both proteomic and genomic spaces in lung adenocarcinoma

and to explore how such spatial heterogeneity variation across

patients is associated with the tumor microenvironment and

copy number variation, and how it influences clinical outcomes.

RESULTS

Multi-region MALDI-TOF analysis of lung
adenocarcinomas
To study spatial heterogeneity of lung adenocarcinomas in the

proteomic space, we sectioned resected frozen human lung

adenocarcinoma specimens and collected paired neighboring

sections for each biopsied specimen—one for the identification

of histologic patterns of tumor cells or normal alveolar and bron-

chial epithelial tissues, and one for MALDI-TOF profiling. Intratu-

moral histologic subtypes that could be identified included

lepidic, acinar, papillary, micropapillary, solid, complex gland,

and cribriform types.20 Areas from these various intratumoral
2 Cell Genomics 2, 100165, August 10, 2022
histologic subtypes were selected for mass spectrometry

profiling such that each site yielded a spectral profile and its

geographic location within the tumor section (Figure 1A). All tu-

mor sections were obtained from the largest cross-sections of

a given tumor, and the best effort was made to sample the entire

section for unambiguous representatives of the seven classic

histologic categories mentioned above.20 An example of a histo-

logic annotation is shown in Figure 2A. In the discovery cohort,

we collected 4,007 regions of interest (ROIs) (diameter 200 mm)

from 95 patients, with an average of 30 tumor spectra and 12

normal spectra per patient (Figure 2B). Furthermore, three

mesenchymal stem cell (MSC) and three basal stem cell samples

were profiled to obtain stem cell protein expression profiles as a

reference for further analysis, since the molecular distance of a

cancer sample from stem cells was found to be associated

with worse outcome in multiple cancer types.21 A range of

110–935 spectra was profiled for each sample across different

histologic subtypes (Figure S1A). For each regional sample, a

total of 525 protein peaks were identified, and the signal inten-

sities of the peaks were integrated to capture the expression

levels of individual proteins (see STAR Methods and Figure 1A).

Distance matrix-based principal-component analysis (PCA)

demonstrated a continuous trajectory in proteomic space from

normal lung tissue to tumor to stem cells, the latter being farthest

away from normal lung tissue (Figure S1B). There was no clear

separation between different histologic subtypes, neither in a

single patient nor when all patients were considered as a set

(Figures S1B and S1C); this was also true for transcriptomes in
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Figure 2. Proteomic spatial heterogeneity in lung adenocarcinoma

(A) Example of histologic annotation and sample profiling.

(B) Number of normal and tumor spectra profiled in patients from the discovery cohort.

(C) Proposed patterns of intra-tumor GD.

(legend continued on next page)
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The Cancer Genome Atlas dataset.2 There were no notable

proteins that showed histology-specific expression. However,

clear differences were observed between tumor and normal tis-

sues with regard to their differentially expressed proteins, and

these gave rise to an intermediate cluster (Figures S1D and

S1E) that contained a large proportion of normal samples

and low-grade histologies, and a low proportion of more clini-

cally aggressive histologies except for micropapillary (Pearson’s

correlation coefficient = �0.72; p < 0.05).20 When the trajectory

of samples was further investigated relative to MSC and normal

differentiated tissues in PCA space, the most aggressive histol-

ogies (such as solid) clustered with MSCs, whereas the least-

aggressive subtypes (such as lepidic) clustered with normal

differentiated tissues (Figure S1B).

Proteomic ITH in lung adenocarcinoma
We next sought to investigate the extent of ITH in proteomic

space using MALDI data. The Shannon index (a measure of en-

tropy) has previously been used to quantify the degree of ITH in

tumors when the ‘‘species’’ (cells or samples with unique

features) are clearly identifiable.22 However, such species are

usually unobtainable in systematic studies of the whole tumor

proteome or transcriptome. We recently used mean cell-to-cell

distance for quantifying ITH based on single-cell RNA

sequencing (RNA-seq) data.23 Here, we defined a similar metric,

the scaled mean pairwise distance (sMPD), to quantify ITH

across regional samples from patient samples present in the

MALDI dataset (Figures S2A and S2B). To test the accuracy of

this metric in the setting of MALDI data, we performed a simula-

tion study to compare sMPD with the true ITH quantified by

Shannon or Simpson indices by using subclonal information

(see STAR Methods; subclonal information is blind to the

sMPD calculation). We obtained a high prediction accuracy of

sMPD (Figures S2C and S2D; receiver operating characteristic

area under the ROC curve ranging from 0.8 to 0.99). Down-sam-

pling analysis demonstrated that the sMPD is robust to sample

size (Figure S2E; all samples had an ITH rank change less than

10%when the sample size was larger than 10). We found a trend

between higher ITH, as quantified by sMPD, and increased risk

of patient death (Figure S2F; p = 0.063, log-rank test); this
(D) Illustration of a clustered GD pattern (patient P137149). Left panel: geographic

Right panel: scatterplot of geographic and molecular distances. Each dot repres

coefficient; P, Mantel test p value.

(E) Illustration of a random GD tumor (patient P132654). Left panel: geographic l

Right panel: scatterplot of geographic and molecular distances. Each dot repres

coefficient; P, Mantel test p value.

(F) Kaplan-Meier survival curves shown for patients with clustered and random G

significantly worse outcomes than those with clustered GD patterns. HR, hazard

Figure S3D. Multivariate Cox proportional hazards regression analysis with conti

Table S3.

(G) Number of normal and tumor spectra profiled in patients from the validation

(H) Kaplan-Meier survival curves shown for patients with clustered and random G

significantly worse outcomes than those with clustered GD patterns. HR, hazard

Figure S3F. Multivariate Cox proportional hazards regression analysis with con

Table S5.

(I) Growth pattern presence in clustered and randomGD tumors. The y axis shows

the number of clustered and random tumors with at least one sample for the indica

to have a region with the indicated growth pattern. The points represent estimat

(J) Grade of clustered and random GD tumors. Fisher’s exact test p value is sho

4 Cell Genomics 2, 100165, August 10, 2022
association was non-significant when controlling for known clin-

icopathological risk factors (Tables S1 and S2; p = 1, Cox

proportional hazards model with continuous sMPD).

We next investigated the spatial organization of ITH—the

geographic diversification (GD) of samples in proteomic

space. A variety of approaches have been proposed to study

spatial patterns of the proteome and transcriptome.24,25 How-

ever, these methods were not designed to quantify intra-tumor

spatial heterogeneity by integrating all measured features in a

spatially resolved manner. We therefore designed a novel

analysis approach: we defined GD to be a measure of the as-

sociation between molecular features and geographic loca-

tions, quantified using the Mantel correlation test26 (see

STAR Methods). Tumors can have one of two GD patterns: a

clustered pattern, in which molecularly similar cells are clus-

tered together in space, or a random pattern, in which molec-

ularly similar cells are randomly distributed in space

(Figures 2C and S3A). When applied to our data, the Mantel

correlation test provides the extent of correlation and its signif-

icance between the pairwise molecular distances obtained

from protein expression patterns and the pairwise geographic

distances (Figure S3B). We again used down-sampling anal-

ysis to demonstrate the robustness of this metric (Figure S3C;

all samples had a GD rank change less than 10% when sample

size was larger than 20). We identified two groups of tumors:

those whose Mantel correlations were significantly positive

and those whose correlations were non-significantly different

from zero (p value cutoff: 0.01; Figure S3D). To compare our

findings with those obtained using an existing approach, we

clustered the ROIs within each tumor sample based on their

MALDI profile using PhenoGraph27 and visualized the spatial

distribution of different proteomic clusters (Figure S3E). We

found that ROIs from the same proteomic clusters tended to

be localized close to each other in clustered GD tumors, while

the ROIs from the different proteomic clusters tended to

intermix in random GD tumors. Quantification of this pattern

obtained using PhenoGraph showed a significant difference

between clustered and random GD tumors as defined by the

Mantel test (p = 0.00041, Wilcoxon test; Figure S3F). Together,

our observations demonstrate that tissues with similar protein
locations of regional samples and their nearest neighbors in proteomic space.

ents a pairwise distance between two regional samples. R, Mantel correlation

ocations of regional samples and their nearest neighbors in proteomic space.

ents a pairwise distance between two regional samples. r, Mantel correlation

D patterns from the discovery cohort. Patients with random GD patterns had

ratio; P, log-rank p value. Clustered and random GD patterns are defined in

nuous GD score by controlling for clinicopathological risk factors are shown in

cohort.

D patterns from the validation cohort. Patients with random GD patterns had

ratio; P, log-rank p value. Clustered and random GD patterns are defined in

tinuous GD score by controlling clinicopathological risk factors are shown in

the base 2 logarithm of the odds ratio from Fisher’s exact test when comparing

ted growth patterns. Values < 0 indicate that random GD tumors are less likely

es while the bars represent the 95% confidence interval. N.S., not significant.

wn.
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composition were spatially co-localized in clustered GD tu-

mors and more evenly distributed in random GD tumors.

Representative tumors from each group are shown in

Figures 2D and 2E. We then investigated overall survival times

of patients within these two groups, observing that the random

GD pattern was significantly associated with an increased risk

of patient death (Figure 2F; p = 0.008, log-rank test); this asso-

ciation was robust when controlling for clinicopathological risk

factors in a multivariate Cox proportional hazards regression

analysis, and was not dependent on the GD cutoff (Table S3;

p = 4.41E–08, hazard ratio (95% CI) = 3.17 (2.10–4.79), Cox

proportional hazards model with continuous GD).

To validate this finding, we performed MALDI TOF analysis on

a validation cohort of 52 additional patients (1,016 additional

ROIs with a diameter of 200 mm; Figures 2G, S3G, and S3H).

The validation cohort was generated after all analyses on the dis-

covery cohort were completed. In this validation cohort, we

focused on the patient progression-free survival (PFS) because

of the low number of death events, and detected the same trend

as in the discovery cohort between GD patterns and patient PFS

using Kaplan-Meier analysis (Figure 2H; p = 0.099, log rank test).

Multivariate Cox regression analysis further showed that the

random GD pattern was significantly associated with increased

risk of PFS after adjusting for known clinicopathological risk fac-

tors, andwas not dependent on the GD cutoff (Tables S4 and S5;

p = 0.0038, hazard ratio (95%CI) = 1.36 (1.10–1.67), Cox propor-

tional hazards model with continuous GD). Further analysis of

overall survival demonstrated that GD patterns were also signif-

icantly associated with patient death in a multivariate Cox

regression analysis even though the number of deaths was low

in this cohort (Tables S4 and S6; p = 0.017, hazard ratio

(95% CI) = 1.35 (1.05–1.73), Cox proportional hazards model

with continuous GD).

Sample covariates are associated with GD patterns
To gain further insight into the etiology of the observed spatial

patterns, we investigated the correlation between random GD

and sample covariates in the discovery cohort. Patients with

random GD tumors did not differ significantly in terms of

smoking history, type of adjuvant treatment, tumor size, stage,

or the number of regional tumor or normal samples. However,

the total number of regional samples from random GD tumors

was smaller (p = 0.012, Wilcoxon test; Figures S4A–S4E).

Furthermore, random GD tumors less frequently contained

samples with the acinar growth pattern (p = 0.001, Fisher’s

exact test; Figures 2I and S4F), and were more frequently

high grade (p = 0.02, Fisher’s exact test; Figure 2J). Out of

the total number of samples, the presence of acinar histology,

and grade, only grade was significantly associated with sur-

vival in univariate analysis (p = 0.03; Figures S4G–S4I). Impor-

tantly, the association between GD and survival remained sig-

nificant when grade was included as an additional variable in

the Cox proportional hazard’s model (p = 1.02E–7), while

grade was not significant (p = 0.94 and p = 0.52, grade 2

and 3 versus grade 1, respectively). These findings suggest

that GD is related to tumor grade, but that GD contains addi-

tional information relevant to outcome beyond the information

encoded by grade.
Intercellular heterogeneity in normal tissue adjacent to
tumor
A recent study revealed that normal tissue adjacent to tumor

(NAT) exhibits a transcriptional program intermediate between

normal tissue (that is distant from the tumor) and the tumor it-

self.28 Due to this observation, we sought to quantify intercellular

NAT heterogeneity in proteomic space. NAT was selected as

normal bronchioles or normal alveolar tissue within a distance

of 0.1–0.5 cm from the tumor and profiled as above. We did

not detect a significant association between tumor and NAT

samples in terms of ITH (Pearson’s r = 0.289, p = 0.0568;

Figure S5A) and GD (Pearson’s r = 0.07, p = 0.65; Figure S5B).

In addition, NAT GD was not significantly associated with overall

survival (Figure S5C).

Transcriptional programs associated with GD
We hypothesized that the different patterns of GD—clustered

versus random—observed in MALDI data might reflect different

degrees of cellular motility in these tumors. To test this hypothe-

sis and to study the transcriptional programs associated with

different GD patterns, we performed bulk RNA-seq on 53 tumors

from the discovery cohort. We found that cell-cell adhesion-

related pathways, such as cadherin binding (NES = �2.16;

q = 0.05), transmembrane transport (NES = �2.32; q = 0.04),

and extracellular matrix genes (NES = �2.27; q = 0.05) were

the top enriched gene sets, with significantly lower expression

in tumors of a random, as opposed to clustered, GD pattern

(Figure S6A; Table S7). Reduced expression of cadherin family

genes is related to a decrease in cell-cell adhesion and can pro-

mote cell migration and invasion,29 which might contribute to the

random GD pattern in tumors (Figure S6B). Alternatively,

reduced expression of cell adhesion markers in random GD tu-

mors could reflect a decrease in epithelial cell content in these

samples. However, detailed functional studies are required to

validate whether cell-cell adhesion pathway genes are indeed

associated with different GD patterns, and to determine the

mechanistic basis of this result, in a large sample set. In contrast,

random GD tumors showed an increased expression of genes

related to immune response pathways as the top regulated

gene sets (Figures S6C and S6D; Table S7), although this finding

was not statistically significant.

Since it has previously been demonstrated that immune infil-

tration is associated with patient outcome in primary

tumors,16,30,31 we hypothesized that immune activation may be

implicated in the formation of random GD tumors. To test this

hypothesis, we utilized the RNA-seq data to estimate the propor-

tion of various immune cell types by using a signature32,33 that

had previously been applied toNSCLC.31 This signature consists

of �60 marker genes whose expression levels measure 14

immune cell populations (see STAR Methods). The inferred pro-

portions of different immune cell types were correlated with

estimates based on CyCIF imaging of the same samples (see

next section; average Pearson’s r = 0.72, range from 0.32 to

0.95 for different immune cells; Figure S7A). We found that

none of the immune infiltrates, except neutrophils (p = 0.03, Wil-

coxon test), were associated with ITH (Figure S7B). In contrast,

the number of CD8+ T cells were significantly associated with

random GD tumors (Figure S7C; p = 0.036, Wilcoxon test),
Cell Genomics 2, 100165, August 10, 2022 5
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Figure 3. The tumor-immune landscape associated with proteomic spatial heterogeneity

(A) Example images of H&E and immunofluorescence of a representative patient biopsy.

(B) Example images of H&E and immunofluorescence of representative histological regions. First row, H&E image; second row, immunofluorescence image; third

row, single-cell quantification results; fourth row, cell type classification results; 2003 200 mm regions are shown, which represent the same sized regions as in

MALDI data.

(C) t-SNE plot on 5% of all single cells profiled by CyCIF. The upper panel shows the dimensional reduction results of all identified cells; t-SNE was performed on

all proteins except S100A11. The lower panel shows the dimensional reduction results of all identified immune cells; t-SNEwas performed on the immunemarkers

CD45, CD8A, CD3D, CD4, CD163, FOXP3, CD20, CMA1, CD11C, PD1, and GZMB.

(D) Inter- and intra-tumor heterogeneity with respect to immune cell infiltration. Upper panel: the proportion of different cell types in each tumor specimen. Lower

panel: the proportion of different immune cell types in each tumor specimen.

(legend continued on next page)
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with other infiltrating immune cells, such as B cells, natural killer

cells, and regulatory T cells showing the same trend albeit not

statistically significant. Further analysis showed that the propor-

tions of different immune cell types were not associated with

overall patient survival (Figure S8A; p > 0.05, Cox proportional

hazards model), indicating that GD is more significantly associ-

ated with overall survival than the extent of immune cell infiltra-

tion estimated from bulk RNA-seq data, even though GD may

be partly driven by immune cell composition.

To characterize the repertoire of T and B cell receptors in clus-

tered and random GD tumors, we applied the RNA-seq Immune

Analysis (RIMA) (https://kateyliu.github.io/RIMA/index.html)

pipeline to our bulk RNA-seq data.We found no significant differ-

ence in statistics quantifying the level of B cell somatic hyper-

mutation or T and B cell receptor diversity (p > 0.05, Wilcoxon

tests; Figures S9A and S9B). However, we found that random

GD tumors had a significantly higher fraction of B cell receptor

reads (p = 0.044, Wilcoxon test; Figure S9A), consistent with

our earlier result suggesting higher levels of B cell infiltration in

random GD tumors compared with clustered GD tumors. The

fraction of T cell receptor reads was higher in randomGD tumors

than clustered tumors, but the difference was not significant

(Figure S9B). Taken together, these results indicate that the for-

mation of randomGD tumors is associated with a combination of

repression of cell adhesion and increased immune infiltration.

Tumor cellular composition and microenvironmental
interactions
To further characterize tumor composition and spatial interac-

tions between tumor and microenvironmental cells, such as infil-

trating immune cells, endothelial cells, and mesenchymal cells,

we performed multiplexed tissue imaging by CyCIF using anti-

bodies against KERATIN, CD45, PCNA, CD8A, CD3D, CD4,

KI67, PD1, CD163, CD11C, FOXP3, CD20, VIM, CK7, GZMB,

CMA1, CD31, and S100A11 on 12 tumors from the discovery

cohort. We sectioned resected, formalin-fixed, paraffin-

embedded tumors and collected paired neighboring sections

for each biopsied specimen—one for conventional H&E staining

for histopathological analysis and one for CyCIF (Figure 1B).

Paired images were overlaid (Figures 3A and 3B), regions of in-

terest were identified based on histological patterns, and corre-

sponding cells in the CyCIF image were then segmented and

quantified based on whole-cell fluorescence intensity (see

STAR Methods). Since S100A11 expression was measured by

both CyCIF and MALDI, we used this marker to compare across

orthogonal methods and observed correlation between the two

methods across patients (Pearson’s r = 0.77, p = 0.0031;

Figure S10A).

To identify individual cell types based on staining patterns, we

adopted the following strategies: (1) epithelial and immune cells

were identified by gating intensity distributions of KERATIN and

CD45 protein levels (Figures S10B and S10C); (2) the complexity
(E) Correlation between proteomic GD and percentage of immune-interacting tu

(F) Correlation between proteomic GD and percentage of tumor-interacting endo

(G) Correlation between proteomic GD and percentage of tumor-interacting mes

(H) Examples of patient biopsies with high and low frequencies of tumor-interac

non-tumor epithelial cells; Tumor, tumor cells; Endo., endothelial cells; Mes, mes
of major immune populations was resolved by using a consensus

clustering method (see STAR Methods) of lineage-specific

markers (e.g., CD8A, CD3D, CD4, etc.; Figures S10D–S10G and

3C); and (3) other minor subpopulations (such as mesenchymal

cells, endothelial cells, and cytotoxic CD8+ T cells) were identified

by gating intensity distributions of specific markers (such as VIM,

CD31, and GZMB; Figure S10H). Cell type assignment was eval-

uated in local regions by comparison with the expression of all

markers, and examples are shown in Figure S11–S13. We

observed variability in the percentageof immunecells as a fraction

of all retained cells among tumors as well as between different re-

gions of a single tumor (Figures 3D and S14A). When investigating

the numbers of immune cells in regions with different histologic

grade, we found that the degree of immune infiltration was asso-

ciated with grade, such that high-grade/poorly differentiated his-

tologies were associatedwith a lower extent of immune infiltration

(Figures S14B and S14C); examples of different histological

regions are shown in Figure 3B.We also found that lepidic tumors

(which are lowgrade andwell differentiated) exhibited a lower pro-

liferation rate, as measured by PCNA staining, and a higher abun-

dance of macrophages compared with other histological

subtypes (p < 0.001, Wilcoxon test; Figures S14C and S14D).

To investigate the spatial pattern of immune infiltration and ITH,

we calculated the proportion of infiltrating immune cells (‘‘%Im-

mune’’) in each histological region. We then quantified the extent

of heterogeneity of %Immune across regions within each patient

to ascertain whether immune-related heterogeneity was corre-

lated with the extent of heterogeneity determined from MALDI

data (see STAR Methods). We found that proteomic GD was not

significantly associated with %Immune GD (Pearson’s r = 0.4,

p = 0.2). Similarly, the proportion of different immune cell types

and the total number of cells in different histological regions

were not associated with proteomic GD either (Pearson’s correla-

tion test, p > 0.1; Figure S14E). Furthermore, we found that prote-

omic GD was not significantly correlated with the percentage of

tumor-interacting immune cells (Pearson’s r = 0.31, p = 0.32; Fig-

ure S14F) or the percentage of epithelial cell-interacting immune

cells (Pearson’s r = 0.087, p = 0.79; Figure S14G). However, there

was a trend toward a negative association between proteomicGD

and the percentage of immune-interacting tumor cells (Pearson’s

r =�0.46, p = 0.13; Figures 3E and S14H), and a borderline signif-

icant negative association between proteomic GD and the per-

centage of immune-interacting epithelial cells (Pearson’s

r =�0.52, p = 0.084; Figure S14I). Cellular interaction was defined

as tumor or epithelial cells and immune cells having a physical dis-

tance less than 30 mm (see STARMethods). Negative correlations

between proteomic GD and the percentages of immune-interact-

ing tumor and epithelial cells were observed for most immune cell

types, and were most pronounced for the macrophage and T cell

populations (Figures S14H and S14I). These results suggest that a

larger fraction of tumor cells interact with immune cells in random

than in clustered GD tumors.
mor cells.

thelial cells.

enchymal cells.

ting endothelial and mesenchymal cells. Imm., immune cells; Non-tumor Epi.,

enchymal cells; Other, other cells.
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To examine the spatial arrangement of tumor cells in the

broader microenvironment, we also carried out a similar analysis

to assess the interactions between tumor cells and endothelial

and mesenchymal cells. We found that proteomic GD was not

significantly correlated with the percentage of endothelial cell-in-

teracting tumor cells (Pearson’s r = 0.16, p = 0.61; Figure S15A) or

the percentage of endothelial cell-interacting epithelial cells (Pear-

son’s r = �0.14, p = 0.66; Figure S15B). Similarly, proteomic GD

was not significantly correlated with the percentage of mesen-

chymal cell-interacting tumor cells (Pearson’s r = 0.42, p = 0.18;

Figure S15A) or the percentage of mesenchymal cell-interacting

epithelial cells (Pearson’s r = 0.26, p = 0.42; Figure S15B). Howev-

er, proteomic GDwas significantly correlated with the percentage

of tumor-interacting endothelial cells (Pearson’s r = 0.71,; p =

0.0099; Figure 3F), the percentage of epithelial cell-interacting

endothelial cells (Pearson’s r = 0.59, p = 0.046; Figure S15C),

and the percentage of tumor-interacting mesenchymal cells

(Pearson’s r = 0.74, p = 0.0059; Figures 3G and S15D). Represen-

tative examples of different tumor-immune landscapes illustrating

these interactions are shown in Figure 3H.

To further investigate these results, we examined the propor-

tions of mesenchymal, endothelial, epithelial, tumor, and

immune cells in random GD and clustered GD tumors. As ex-

pected based on the RNA-seq data, we found that the proportion

of immune cells was higher in random GD tumors, although this

trend was not significant based on our CyCIF data (p = 0.34, Wil-

coxon test). By contrast, we found that, despite the relatively

small sample number, tumor cells were significantly enriched

in clustered GD tumors (p = 0.018; Figure S15E). Moreover, we

found that both the number and proportion of tumor cells within

30 mm of an endothelial cell was significantly higher in clustered

GD tumors (p = 0.005 both comparisons, Wilcoxon test; Fig-

ure S15F), and we made similar observations for the number

and proportion of tumor cells within 30 mm of a mesenchymal

cell (p < 0.02; Figure S15G). This observation suggests that the

observed correspondences between proteomic GD and

percentages of epithelial cell and tumor-interacting endothelial

and mesenchymal cells may be due to differences in overall

levels of tumor cells between samples exhibiting different pat-

terns of geographic diversity. One potential explanation for these

findings may be that, in randomGD tumors, increased tumor cell

motility leads to lower observed levels of tumor cells, which are

able to migrate away from areas of high density. These findings

support our hypothesis that the random GD pattern results from

higher tumor cell motility. Further data are needed to validate this

hypothesis.

Genomic intra-tumor spatial heterogeneity
To investigate whether the GD patterns identified in proteomic

space could also be observed in genomic space, we performed

genome-wide single-cell copy number profiling of multiple sec-

tions of seven tumors from patients in the discovery cohort

(Figure 1C). Each frozen tumor specimen was macrodissected

into six to eight sections (Figures 4A and S16), followed by

FACS to isolate aneuploid cells that were then subjected to

single-cell copy number profiling at 220 kb resolution. In total,

1,942 single tumor cells were profiled, with about 300 cells per

patient and �40 cells per section (Figures 4B and S16). Two-
8 Cell Genomics 2, 100165, August 10, 2022
dimensional visualization using UniformManifold Approximation

and Projection (UMAP) demonstrated that the single cells clus-

tered by patient (Figure 4C), suggesting that the majority of cells

from individual tumors are genetically more related to each other

than to cells from other tumors.

The multi-region single-cell genomic profiling approach

allowed us to investigate subclonal distributions of individual

copy number changes within each tumor. Interestingly, we

observed distinct patterns of spatial distributions of subclones

as represented by the clusters identified (Figures 4B, 4D, S16,

and S17A). In some tumors, such as those from patient

P132630, single cells from each section clustered together in

both UMAP (Figure 4D) and clustering analyses (Figure 4B),

showing that single cells sharing a common ancestral lineage

proliferated in a restricted spatial location, representing a clus-

tered GD pattern. In contrast, in other tumors, such as

P137974, single cells from different sections co-localized in

both UMAP and clustering analyses (Figures 4D and S16F), sug-

gesting a potential loss of restrictions on motility leading to a

random GD pattern. These results suggest that the GD patterns

we observed in proteomic data also exist in genomic space.

To study the dynamics of tumor evolution in individual tumor

samples, we constructed phylogenetic trees from the single-

cell copy number data (Figure S18). The phylogenetic trees

were built usingminimumbalanced evolution trees fromdistance

matrices based on the segmented log2 copy number ratios. The

trees were rooted with a pseudo-diploid sample with zero log2

copy number ratios across all segments. The phylogenetic trees

of random GD samples show that tumor cells from distinct sec-

tions tend to intermix in the leaves of the phylogenetic tree, as

exemplified by P132234 (Figure S18A). In contrast, the phyloge-

netic trees of clustered GD samples show that tumor cells from

the same section tend to cluster together on the phylogenetic

tree since they have similar copy number profiles, as exemplified

by sample P132630 (Figure S18B). The phylogenetic trees of the

remaining samples are shown in Figures S18C–S18G. These re-

sults elucidate the evolutionary dynamics of individual tumors us-

ing phylogenetic reconstruction.

We next sought to quantify the extent of genomic ITH and

compare this quantity with identified patterns of proteomic

heterogeneity. Genomic ITH was measured using the scaled

mean cell-to-cell distance of copy number alterations (CNAs)23

aswell as the proportion of subclonal CNAs3 (see STARMethods

and Figure 4E). These two metrics agreed with each other (Pear-

son’s r = 0.76, p = 0.048; Figure S19A), but demonstrated non-

significant correlation with ITH estimated from MALDI data

(Pearson’s r = 0.14 and 0.3, p = 0.77 and 0.51; Figures S19B

and S19C). Genomic GDwas quantified using a k-nearest neigh-

bors-basedmethod, whichmeasures whether genetically similar

tumor cells reside within the same or different tumor sections

(see STAR Methods, Figures 4F, S19D, and S19E). In contrast

to ITH, we observed a borderline significant correlation between

GD estimated from genomic copy number and proteomic data

(Pearson’s r = 0.71, p = 0.07; Figure 4G). These results suggest

that the spatial distribution of tumor cells with regard to genomic

and non-genomic featuresmay have similarities, while the extent

of cell-to-cell ITH is less correlated between genomic and non-

genomic features. Given the limited number of samples
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Figure 4. Copy number spatial heterogeneity in lung adenocarcinoma

(A) Macrodissection of frozen tumor specimen of patient P132630. Each patient sample was cut into six to eight sections.

(B) Heatmap showing the copy number profiles of aneuploid tumor cells in patient P132630. Single cells are plotted along the y axis, and copy number alterations

(CNAs) are plotted in genomic order along the x axis. The single-cell clusters are shown on the left. Single cells from different regions are color coded on the left.

(C) UMAP plot of aneuploid tumor cells from seven patients. Single cells are colored by individual patients. The shades of the colors indicate different regions of

the same tumor.

(D) UMAP plot of aneuploid tumor cells from patient P132630, who exhibited a clustered GD pattern. Single cells from different regions are color coded.

(E) Genomic ITH represented by scaled mean cell-to-cell distance (left panel) and CNA clonality (right panel).

(F) Genomic GD quantified from single-cell copy number data.

(G) Correlation between proteomic GD and genomic GD.

(H) Distribution of clonality of CDKN2A, TP53, EGFR, and MET CNAs in macrodissected regions of each tumor. Copy number gain is plotted in red and copy

number loss is plotted in blue.
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available, further studies are required to validate these findings in

a larger sample size and to further evaluate the connection

between genomic and proteomic GD patterns.

Finally,we investigated theGDofCNAs for cancer genes in lung

adenocarcinoma obtained from the Cancer Gene Census and

TCGA databases. We found that, in our data, oncogenes experi-

enced copy number gain in 21% of cells on average (0.4%–67%

for different genes) while tumor suppressors exhibited copy num-

ber loss in 47%of cells on average (12%–73% for different genes)

across all 1,942 single cells (Figure S20A). We observed distinct

CNA clonality patterns for the same cancer genes in different tu-

mors (Figure S20B). Interestingly, some CNAs also displayed

distinct clonality in different macrodissected regions of the same

tumor, which is illustrated by the proportion of cells with the cor-

responding CNAs in each section (Figures 4H and S20C). For

example, the proportions of cells with CDKN2A loss ranged

from 51% to 100% in sections from patient P132630, but were

100% in all sections from patient P137889. This observation im-

plies that CDKN2A loss might be clonal in some regions and sub-

clonal in other regions of a single tumor. In other patients,

CDKN2A loss appears to be clonal across the entire tumor

(Figure 4H). This observation was also made for several other

CNAs of both oncogenes and tumor suppressors (Figures 4H

and S20C). When investigating whether EGFR and KRAS muta-

tion status obtained from bulk sequencing of DNA from 87 pa-

tients in the discovery cohort was associated with intra-tumor

spatial heterogeneity, we found that the mutation status of these

genes was not associated with random GD tumors (p = 0.06

and p = 0.096, Wilcoxon test; Figure S21C). Together, our results

demonstrate that clonality is not only different between tumors,

but can display distinct patterns of ITH.

DISCUSSION

In this paper, we present an integrative analysis of ITH and its

spatial organization (GD) in lung adenocarcinoma using multiple

orthogonal methods to profile large numbers of regions or single

cells from the same tumor while preserving spatial context. To

this end, we performed multi-region MALDI-TOF analysis

of �5,000 regional spectra from 147 patients in 2 independent

cohorts (Figure 1A), CyCIF on more than 10 million cells from

12 patient biopsies (Figure 1B), and multi-region single-cell

copy number sequencing of�2,000 single cells from 51 sections

of 7 patients (Figure 1C). When analyzing and integrating these

data, we found that proteomic ITH was not associated with sur-

vival while proteomicGDwas significantly correlatedwith patient

survival in both the discovery (Figure 2F) and validation

(Figure 2H) cohorts. In both cohorts, spatially clustered tumors

were associated with better clinical outcome than randomly

distributed tumors.

To explore the biological underpinnings of such features, we

compared RNA expression, proteomic, and imaging data. Bulk

RNA-seq data showed that patients with random GD tumors

exhibited downregulation of programs connected to cell-cell

adhesion pathways compared with patients with clustered GD

tumors. To determine whether these GD patterns might be asso-

ciated with different patterns of spatial interaction between

tumor cells and other cells in the tumor microenvironment, we
10 Cell Genomics 2, 100165, August 10, 2022
performed CyCIF analysis on 10 million single cells from 12

tumors. When analyzing patterns of immune infiltration across

spatially clustered versus random GD tumors as identified from

MALDI data, we found that there was no significant correlation

between proteomic GD and immune infiltration GD as measured

by imaging. We therefore concluded that proteomic GD does not

simply reflect geographic diversity in immune cell infiltration.

However, we found that proteomic GD is positively correlated

with the percentages of tumor-interacting endothelial cells and

mesenchymal cells. We also observed that clustered GD tumors

are characterized by increased tumor cell content, and that both

the number and proportion of tumor cells near to endothelial and

mesenchymal cells is higher in clustered GD tumors. These find-

ings are consistent with the possibility that decreased tumor cell

motility in clustered GD tumors leads to high densities of tumor

cells around mesenchymal and endothelial cells in these

samples.

We therefore performed single-cell whole-genome DNA copy

number profiling of about 2,000 single cells frommultiple sections

each of 7 tumors from the discovery cohort. Using these data, we

were able to characterize the extent of diversity in CNAs, both

within a section as well as across sections and patients. We

demonstrated that the clustered and random GD patterns

observed in proteomic data also exist in genomic space. We

also observed diverging patterns of subclonal CNA frequencies

(Figure 4H), both within and across patients, further elucidating

patterns of genomic heterogeneity in lung adenocarcinoma.

We have presented a comprehensive dataset that illustrates

the extent of spatial intra-tumor proteomic heterogeneity across

tens of regions in single tissue sections, depicts spatial patterns

of tumor-infiltrating immune cells, and elucidates spatial intra-tu-

mor genomic heterogeneity of single tumor cells in lung adeno-

carcinoma. Taken together, these findings suggest that the

cellular composition of the tumor microenvironment and, to an

even larger extent, genomic heterogeneity of individual tumor

cells, contribute to the spatial diversification of human lung

adenocarcinoma. Unlike ITH, which does not take into account

the spatial arrangement of molecularly different cells reported

in numerous previous studies,4,34–38 we found that such spatial

diversification was significantly associated with patient survival

in two independent cohorts.

Tissue analysis of individual biomarkers has been widely used

for cancer prognosis,39 such as expression of estrogen receptor

in breast cancer40 and expression of PDL1 for immunotherapy.41

Our results demonstrate the potential of a new strategy—that of

assessing higher-order tumor structural features, such as spatial

ITH. This strategy will provide new insights for the future devel-

opment of prognostic biomarkers in tissue sections.

Limitations of the study
Our study has some limitations. Although we were able to obtain

a large amount of proteomic data for spatially resolved ROIs,

only a small proportion of proteins profiled is identifiable in pub-

licly available databases. Characterization of each individual

protein would require significant follow-up investigation, which

is outside the scope of this work. Furthermore, we did not

perform single-cell single-nucleotide variant sequencing

because the TRACERx study3 showed that CNAs but not point
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mutations were prognostic in lung cancer. Also, our MALDI and

CyCIF data were not obtained from consecutive sections of tu-

mor material, which limits our conclusions by preventing direct

comparisons between these two data types. We also did not

perform CyCIF using all possible markers informative for lung

cancer for technical reasons reflecting as-yet incomplete valida-

tion of antibodies for analysis of lung tissue. Additional data of

this typemight be helpful in delineatingmechanisms of treatment

response and resistance if applied to patient cohorts treatedwith

different treatment modalities. Of particular interest would be a

careful characterization of tumor-immune interactions as well

as spatial localizations of neoantigens in patients treated with

immunotherapy.
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Spatiotemporal dynamics of molecular pathology in amyotrophic lateral

sclerosis. Science 364, 89–93. https://doi.org/10.1126/science.aav9776.

25. Arnol, D., Schapiro, D., Bodenmiller, B., Saez-Rodriguez, J., and Stegle,

O. (2019). Modeling cell-cell interactions from spatial molecular data

with spatial variance component analysis. Cell Rep. 29, 202–211.e6.

https://doi.org/10.1016/j.celrep.2019.08.077.

26. Mantel, N. (1967). The detection of disease clustering and a generalized

regression approach. Cancer Res. 27, 209–220.

27. Levine, J.H., Simonds, E.F., Bendall, S.C., Davis, K.L., Amir, E.a.D., Tad-

mor, M.D., Litvin, O., Fienberg, H.G., Jager, A., Zunder, E.R., et al.

(2015). Data-driven phenotypic dissection of AML reveals progenitor-like

cells that correlate with prognosis. Cell 162, 184–197. https://doi.org/10.

1016/j.cell.2015.05.047.

28. Aran, D., Camarda, R., Odegaard, J., Paik, H., Oskotsky, B., Krings, G.,

Goga, A., Sirota, M., and Butte, A.J. (2017). Comprehensive analysis of

normal adjacent to tumor transcriptomes. Nat. Commun. 8, 1077.

https://doi.org/10.1038/s41467-017-01027-z.

29. Behrens, J., Mareel, M.M., Van Roy, F.M., and Birchmeier, W. (1989). Dis-

secting tumor cell invasion: epithelial cells acquire invasive properties after

the loss of uvomorulin-mediated cell-cell adhesion. J. Cell Biol. 108, 2435–

2447. https://doi.org/10.1083/jcb.108.6.2435.

30. Li, B., Severson, E., Pignon, J.C., Zhao, H., Li, T., Novak, J., Jiang, P.,

Shen, H., Aster, J.C., Rodig, S., et al. (2016). Comprehensive analyses

of tumor immunity: implications for cancer immunotherapy. Genome

Biol. 17, 174. https://doi.org/10.1186/s13059-016-1028-7.

31. Rosenthal, R., Cadieux, E.L., Salgado, R., Bakir, M.A., Moore, D.A., Hiley,

C.T., Lund, T., Tani�c, M., Reading, J.L., Joshi, K., et al. (2019). Neoantigen-

directed immune escape in lung cancer evolution. Nature 567, 479–485.

https://doi.org/10.1038/s41586-019-1032-7.

32. Danaher, P., Warren, S., Dennis, L., D’Amico, L., White, A., Disis, M.L.,

Geller, M.A., Odunsi, K., Beechem, J., and Fling, S.P. (2017). Gene expres-

sion markers of tumor infiltrating leukocytes. J. Immunother. Cancer 5, 18.

https://doi.org/10.1186/s40425-017-0215-8.

33. Davoli, T., Uno, H., Wooten, E.C., and Elledge, S.J. (2017). Tumor aneu-

ploidy correlates with markers of immune evasion and with reduced

response to immunotherapy. Science 355, eaaf8399. https://doi.org/10.

1126/science.aaf8399.

34. Kim, S.K., Jang, S.D., Kim, H., Chung, S., Park, J.K., and Kuh, H.J. (2020).

Phenotypic heterogeneity and plasticity of cancer cell migration in a

pancreatic tumor three-dimensional culture model. Cancers 12, E1305.

https://doi.org/10.3390/cancers12051305.

http://refhub.elsevier.com/S2666-979X(22)00107-0/sref5
http://refhub.elsevier.com/S2666-979X(22)00107-0/sref5
http://refhub.elsevier.com/S2666-979X(22)00107-0/sref6
http://refhub.elsevier.com/S2666-979X(22)00107-0/sref6
http://refhub.elsevier.com/S2666-979X(22)00107-0/sref6
http://refhub.elsevier.com/S2666-979X(22)00107-0/sref6
http://refhub.elsevier.com/S2666-979X(22)00107-0/sref6
https://doi.org/10.1158/0008-5472.CAN-06-1951
https://doi.org/10.1158/0008-5472.CAN-06-1951
https://doi.org/10.1038/nm.3984
https://doi.org/10.1016/j.cell.2013.01.019
https://doi.org/10.1016/j.cell.2013.01.019
https://doi.org/10.18632/oncotarget.7067
https://doi.org/10.1126/science.1253462
https://doi.org/10.1126/science.1253462
https://doi.org/10.1038/ng.3838
https://doi.org/10.1056/NEJMoa1113205
https://doi.org/10.1056/NEJMoa1113205
https://doi.org/10.1101/gr.180612.114
https://doi.org/10.1016/j.cell.2018.03.043
https://doi.org/10.1016/j.cell.2018.08.039
https://doi.org/10.1016/j.cell.2018.08.039
https://doi.org/10.1016/j.cell.2019.03.005
https://doi.org/10.1016/j.cell.2019.03.005
https://doi.org/10.1038/s41586-019-1876-x
https://doi.org/10.1126/science.aar4060
https://doi.org/10.1126/science.aar4060
https://doi.org/10.1016/j.humpath.2013.10.011
https://doi.org/10.1016/j.humpath.2013.10.011
https://doi.org/10.1371/journal.pone.0173589
https://doi.org/10.1371/journal.pone.0173589
https://doi.org/10.1172/JCI40724
https://doi.org/10.1172/JCI40724
https://doi.org/10.1016/j.ccell.2018.10.014
https://doi.org/10.1126/science.aav9776
https://doi.org/10.1016/j.celrep.2019.08.077
http://refhub.elsevier.com/S2666-979X(22)00107-0/sref26
http://refhub.elsevier.com/S2666-979X(22)00107-0/sref26
https://doi.org/10.1016/j.cell.2015.05.047
https://doi.org/10.1016/j.cell.2015.05.047
https://doi.org/10.1038/s41467-017-01027-z
https://doi.org/10.1083/jcb.108.6.2435
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1038/s41586-019-1032-7
https://doi.org/10.1186/s40425-017-0215-8
https://doi.org/10.1126/science.aaf8399
https://doi.org/10.1126/science.aaf8399
https://doi.org/10.3390/cancers12051305


Article
ll

OPEN ACCESS
35. Turajlic, S., Sottoriva, A., Graham, T., and Swanton, C. (2019). Resolving

genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416. https://

doi.org/10.1038/s41576-019-0114-6.

36. Reiter, J.G., Baretti, M., Gerold, J.M., Makohon-Moore, A.P., Daud, A.,

Iacobuzio-Donahue, C.A., Azad, N.S., Kinzler, K.W., Nowak, M.A., and

Vogelstein, B. (2019). An analysis of genetic heterogeneity in untreated

cancers. Nat. Rev. Cancer 19, 639–650. https://doi.org/10.1038/s41568-

019-0185-x.

37. Hinohara, K., and Polyak, K. (2019). Intratumoral heterogeneity: more than

just mutations. Trends Cell Biol. 29, 569–579. https://doi.org/10.1016/j.

tcb.2019.03.003.

38. Lawson, D.A., Kessenbrock, K., Davis, R.T., Pervolarakis, N., andWerb, Z.

(2018). Tumour heterogeneity andmetastasis at single-cell resolution. Nat.

Cell Biol. 20, 1349–1360. https://doi.org/10.1038/s41556-018-0236-7.

39. Ludwig, J.A., and Weinstein, J.N. (2005). Biomarkers in cancer staging,

prognosis and treatment selection. Nat. Rev. Cancer 5, 845–856.

https://doi.org/10.1038/nrc1739.

40. Nicolini, A., Ferrari, P., and Duffy, M.J. (2018). Prognostic and predictive

biomarkers in breast cancer: past, present and future. Semin. Cancer

Biol. 52, 56–73. https://doi.org/10.1016/j.semcancer.2017.08.010.

41. Havel, J.J., Chowell, D., and Chan, T.A. (2019). The evolving landscape of

biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19,

133–150. https://doi.org/10.1038/s41568-019-0116-x.

42. Ketterlinus, R., Hsieh, S.Y., Teng, S.H., Lee, H., and Pusch, W. (2005).

Fishing for biomarkers: analyzing mass spectrometry data with the new

ClinProTools software. Biotechniques 38, 37–40.

43. Scrucca, L., Fop, M., Murphy, T.B., and Raftery, A.E. (2016). mclust 5:

clustering, classification and density estimation using Gaussian finite

mixture models. R J. 8, 289–317.

44. Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-

cell gene expression data analysis. Genome Biol. 19, 15. https://doi.org/

10.1186/s13059-017-1382-0.

45. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment

with Bowtie 2. Nat. Methods 9, 357–359. https://doi.org/10.1038/nmeth.

1923.

46. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth,

G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing

Subgroup (2009). The sequence alignment/map format and SAMtools.

Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/

btp352.

47. Venkatraman, E.S., and Olshen, A.B. (2007). A faster circular binary seg-

mentation algorithm for the analysis of array CGH data. Bioinformatics

23, 657–663. https://doi.org/10.1093/bioinformatics/btl646.

48. Yu, G. (2020). Using ggtree to visualize data on tree-like structures. Curr.

Protoc. Bioinformatics 69, e96. https://doi.org/10.1002/cpbi.96.

49. Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal pat-

terns and correlations in multidimensional genomic data. Bioinformatics

32, 2847–2849. https://doi.org/10.1093/bioinformatics/btw313.

50. Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal

probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527.

https://doi.org/10.1038/nbt.3519.
51. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L.,

Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S.,

and Mesirov, J.P. (2005). Gene set enrichment analysis: a knowledge-

based approach for interpreting genome-wide expression profiles. Proc.

Natl. Acad. Sci. USA 102, 15545–15550. https://doi.org/10.1073/pnas.

0506580102.
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Immunofluorescence) full-resolution images and data derived from image data (e.g., segmentationmasks) and all single-cell intensity
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data are publicly available as of the date of publication via the Harvard Tissue Atlas Portal (https://www.tissue-atlas.org/

atlas-datasets/wu-temko-maliga-2022/). Note that individual files are �100 GB in size, so an AWS S3–compatible download tool

should be used. Processed CyCIF data have been deposited at figshare (https://figshare.com/projects/CyCIF_in_LUAD/74037)

and are publicly available as of the date of publication. Additional processed data required to run the original code have been depos-

ited at (https://figshare.com/projects/LUAD_Bundled_Data/140567) and are publicly available as of the date of publication.

All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient cohorts
A waiver of authorization was obtained from the Memorial Sloan Kettering Cancer Center Institutional Review Board (IRB) with all

relevant ethical regulations affirmed to perform this retrospective study. Sample collection was conducted by the Director’s Chal-

lenge (DC) project, a consortium of four institutions: University of Michigan Cancer Center (UM), H. Lee Moffitt Cancer Center

(HLM), Memorial Sloan Kettering Cancer Center (MSKCC), and the Dana-Farber Cancer Institute (DFCI). Patients have given explicit

consent for the molecular profiling and data sharing for cancer research purposes. In this study, we utilized 147 previously untreated

surgically resected primary lung adenocarcinoma specimens collected at MSKCC: 95 in the discovery cohort and 52 in the validation

cohort. Data including demographic and clinical characteristics for these 147 patients were extracted from the prospectively main-

tained Memorial Hospital Thoracic Service database. The average patient age was 66.9 years old (66.6 in the discovery cohort and

67.5 in the validation cohort). And 66.0% of patients were female (71.6% in the discovery cohort and 55.8% in the validation cohort).

Clinical data for the discovery cohort are included in Table S1, and clinical data for the validation cohort are included in Table S4.

METHOD DETAILS

MALDI analysis of the discovery cohort
Materials

All solvents were purchased from Fischer Scientific (Pittsburgh, PA) and used as supplied. Sinapinic acid was obtained from Protea

Biosciences, Inc. (Morgantown, WV). Indium-tin oxide coated glass slides were purchased from Delta Technologies (Loveland, CO).

Tissue sectioning

Human lung biopsies were sectioned at 12 mm thickness using a Thermo Scientific CryoStar NX70 cryostat. Two sections were

collected from each sample, one on an indium-tin oxide (ITO) coated glass slide for MALDI analysis and one on standard microscopy

slide for hematoxylin and eosin (H&E) staining. The sections for MALDI analysis were dried in a desiccator for 30 min before being

washed/fixed to remove lipids and salts and to enhance protein signal as follows: 70% ethanol for 30 s, 100% ethanol for 30 s, Car-

noy’s fluid (60% ethanol, 30% chloroform, 10% glacial acetic acid) for 2 min, 100% ethanol for 30 s, water for 30 s, 100% ethanol for

30 s. After washing, the sections were allowed to dry in a desiccator overnight.

Microscopy

H&E stained sections were digitized using an Olympus VS-120microscope (Center Valley, PA) at 203magnification and uploaded to

the online viewing portal, ProteaScope (Protea Biosciences, Morgantown, WV). Histology images were reviewed by a pulmonary

pathologist (A. M.) and regions of interest (ROIs, diameter of 200 mm) were annotated on each digital image in a consistent manner.

All histologies were selected based on the H&E stains at random in an unbiased manner; the number of regional samples was deter-

mined by the area of the corresponding histological regions. Approximately, 40 annotations per tumor growth pattern per sample

were placed on the digital images. Growth patterns included micropapillary, lepidic, solid, papillary, acinar, cribriform, complex

gland, normal alveolar, and bronchial epithelium. Annotated images were downloaded and merged with images of the serial

unstained sections using Adobe PhotoShop (Adobe Systems, San Jose, CA) to allow for determination of locations of interest on

the unstained sections.

Matrix application

Sections were coated with a solution of 10 mg/mL of sinapinic acid in 90% acetonitrile, 0.1% trifluoroacetic acid using a SunCollect

Robotic Reagent Sprayer (SunChrom, Bremen, Germany). A total of 30 passes were applied with a flow rate of 10 mL/min for the first

two passes followed by a flow rate of 30 mL/min for all remaining passes. A track spacing of 2.5 mm was used with a track speed of

1200 mm/min. A 25 s drying time was allowed between subsequent passes to minimize over-wetting and delocalization. The matrix

on the slide was recrystallized in situ to increase protein extraction from the tissue sections by securing the slide to the lid of a glass

Petri dish. A solution of 1 mL of 22% acetic acid in water was applied to 503 50 mm piece of WypAll in the bottom of the Petri dish.

The dish was sealed with Petri Seal (Fisher Scientific) and placed in an 85 �C oven for 3.5 min.

Mass spectrometry

Mass spectrometry data were collected using a Bruker ultrafleXtreme MALDI TOF/TOF mass spectrometer (Bruker Daltonics, Bill-

erica, MA) operated in linear positive ion mode. Voltage and delayed extraction parameters were optimized for mass resolution at

12 kDa. The composite image from PhotoShop was used to align the plate in the instrument and guide the data acquisition from
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only the annotated locations on the slides. At each location, a single spectrum was acquired as a sum of 500 laser shots in 50 shot

increments. The laser position within the 200 mm area was rastered after each 50 shots.

Peak identification and integration

Data were loaded into ClinProTools 3.042 (Bruker) and spectra were preprocessed including baseline correction and alignment. Peak

boundaries were identified manually and the area under each peak integrated to represent the expression level of the corresponding

protein. Proteins were annotated by using the MS imaging database (https://ms-imaging.org/wp/msi-mass-list/). A total of 525

proteins for each individual spectrum were profiled and log2 transformed after which a pseudo signal of one was added. The

ComBat algorithm52_ENREF_43 was used to remove systematic biases introduced by different batches to generate the processed

expression matrix for further analyses. All 525 protein expression levels were used for the downstream analyses if not otherwise spec-

ified.Of the 525 protein peaks, 24 could be identified as knownproteins according to theMS imaging database (https://ms-imaging.org/

wp/msi-mass-list/),which areACBP, albumin (double charge), alpha-DEFA1, alpha-DEFA2, alpha-DEFA3, calcyclin, calgizzarin, calgra-

nulin A, calpactin, COX2, HBA1, HBB, histone H2A, histone H2B, histone H3, histone H4, histone H4 (acetylated), MIF, TMSB10,

TMSB10 (truncated), TMSB4X, TMSB4X (truncated), ubiquitin, ubiquitin-GG.

Distance matrix-based principal component analysis (PCA)
We calculated the Euclidean distancematrix from the processed expression matrix. The Euclidean distance matrix was then used as

the input for principal component analysis. The top two principal components were plotted in 2-dimensional space and labeled as

normal samples, histological tumor subtypes, or stem cells. PCA was performed on all samples.

t-distributed stochastic neighbor embedding (t-SNE)
t-SNEwas performed on individual patient samples with the processed expression matrix as input. Rtsne in R was used for this anal-

ysis with the parameter perplexity = 10 (https://cran.r-project.org/web/packages/Rtsne/index.html).

Clustering analysis
Clustering analysis was performed using PhenoGraph27 with k = 3 for regional samples per tumor.

MALDI analysis of the validation cohort
Tissue sectioning

Tissues stored at �80�C were placed inside the cryostat. The temperature of the cryostat was maintained between �20 and �30�C
and 12mm tissue sections were obtained for each sample. Tissue sections were placed on ITO slides for MALDI-imaging and Super-

frost slides for H&E staining. Serial adjacent sections from the MALDI slides were prepared for H&E staining. Tissue sections on ITO

slides were placed in a desiccator for 15 min before being washed/fixed to remove lipids and salts and to enhance protein signal as

follows: 70%ethanol for 30 s, 100%ethanol for 30 s, Carnoy’s fluid (60%ethanol, 30%chloroform, 10%glacial acetic acid) for 2min,

100% ethanol for 30 s, water for 30 s, 100% ethanol for 30 s. Subsequently the slides were placed in a desiccator for 30 min to com-

plete drying.

MALDI matrix deposition and recrystallization

Sections were coated with a solution of 10 mg/mL of sinapinic acid in 90% acetonitrile and 0.1% trifluoroacetic acid using a

SunCollect Robotic Reagent Sprayer (SunChrom, Bremen, Germany). A total of 30 passes were applied with a flow rate of 10 mL/

min for the first two passes followed by a flow rate of 30 mL/min for all remaining passes. A track spacing of 2.5 mm was set up

with a track speed of 1200 mm/min. A 25 s drying time was allowed between subsequent passes to minimize over-wetting and delo-

calization. Thematrix on the slidewas recrystallized in situ to increase protein extraction from the tissue sections by securing the slide

to the lid of a glass Petri dish. A solution of 1 mL of 22% acetic acid in water was applied to each 503 50 mm piece of WypAll on the

bottom of the Petri dish. The dish was then sealed and placed in an 85�C oven for 3.5 min.

H&E staining

Hematoxylin and Eosin (H&E) staining was performed on adjacent sections to the imaged ones since HE staining allows for the visu-

alization of different histological regions. Histology images were reviewed by a pulmonary pathologist (A. M.) and areas of interest

(200 mm) were annotated on each digital image.

Mass spectrometry analysis

MALDI-TOF acquisition was performed by using the following global parameters: Mode: linear mode; Ionization: positive ion mode;

Range: 2.7–15kDa; Laser frequency:1000–2000 Hz; Calibration mode: 2; Spatial resolution: 200 mm for entire tissue sections.

Peak identification and integration

The same baseline correction and alignment procedure used in discovery cohort was performed on data from the validation cohort. A

total of 464 proteins for each individual spectrum were profiled and a Z-score transformation was performed against the matrix to

remove unspecific signal.

Proteomic intra-tumor heterogeneity (ITH)
To estimate the degree of intra-tumor heterogeneity across regional tumor samples within patients, we used a metric called scaled

mean pairwise distance (sMPD). To this end, we first calculated themolecular distance of each sample pair using the protein profile of
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each regional spectrum in a tumor. The mean pairwise distance (MPD) was then quantified using mean intra-tumor pairwise dis-

tances; this calculation was followed by a normalization to scale the metric to a number between 0 and 1. Specifically, the pairwise

distances were calculated as Euclidean distances between any possible pairs of samples within a tumor. If there are n tumor samples

measured within one patient, xi is the Euclidean distance of one pair of samples, and there are m = nðn � 1Þ=2 non-redundant pair-

wise Euclidean distances, then the MPD is given by:

MPD = meanðxiÞ; i = 1;2;.;m

The score was then scaled to range from 0 to 1 to facilitate further comparison and application; this metric is termed scaled MPD,

sMPD. For the visualization of survival results, patients were stratified into two ITH groups (low and high) using the median sMPD

score across patients as cutoff.

Simulation study for proteomic ITH measurements
When subclonal information is available, the extent of ITH is usually quantified using metrics such as the Shannon and Simpson

indices.22 To test the performance of the sMPD of capturing the extent of ITH, we embarked on a simulation study by generating

a dataset with known subclonal information. Specifically, an expression matrix of m = 500 genes and n = 1000 samples equally

distributed across k = 10 subcloneswere simulated as follows. The expression value of gene i (=1, 2,., n) across samples was drawn

from aGaussian distributionN (mi, si
2). The mi of different genes were randomly sampled from another Gaussian distributionN (mt, st

2).

The mt and st were determined from the MALDI matrix of the discovery cohort. The relationship between si and miwas also estimated

from the MALDI matrix of the discovery cohort. For 2% of genes, the expected mean expression value as determined above of sam-

ples from each subclone was multiplied by a fold change (F = 5, 2, 1.5, 1.2) to represent distinct subclonal expression patterns. To

simulate different scenarios of heterogeneity of subclones, we generated all possible compositions/matrices (Dsce) of ns = 30 samples

belonging to s =1, ., k subclones from D. This approach is equivalent to investigating all possible ways to place ns objects into s

groups. For these Dsce matrices, we then determined the Shannon and Simpson indices based on the known subclonal information

– these values were then used as true ITH measurements (the ‘‘ground truth’’). Subsequently, the sMPD was calculated for each of

the Dsce matrices and was compared to the ground truth. The prediction performance of the sMPD was evaluated using a Receiver

operating characteristic (ROC) curve and the area under the ROC curve (AUC). Several scenarios of heterogeneity of subclones are

shown in Figure S2D.

Proteomic intra-tumor geographic diversification (GD)
One advantage of the MALDI approach is its ability to obtain molecular information (i.e. protein expression levels) and geographic

information (i.e. spatial locations of samples) simultaneously, allowing us to propose a model for evaluating the extent of intra-tumor

geographic diversification (GD) of samples. Within this model, tumor cells can have two possible GD patterns: clustered and random.

To distinguish between these two patterns, we calculated the Mantel correlation26 (also known as spatial correlation) between the

molecular distance matrix and the geographic distance matrix. The molecular distance matrix was calculated using the Euclidean

metric based on all protein features, while the geographic distancematrix was calculated using the Euclideanmetric based on spatial

information (i.e. based on x and y locations). Specifically, if there are n tumor samples measured within one patient, mij is the

Euclidean distance of spectrum i and j in terms of protein expression levels, gij is the Euclidean distance of spectrum i and j in terms

of spatial locations, and M is all mij, G is all gij, then the Mantel correlation is given by:

rm =

Pn
i = 1

Pn
j = 1ðmij � MÞ3 �

gij � G
�

varðMÞ1=2 3 varðGÞ1=2

Since the distances in M/G are not independent from each other (i.e., changing the physical location of one sample would change

the geographic distances from that sample to all others), a significance test of the Mantel correlation cannot be accomplished by

using a simple correlation test of paired samples. However, the significance level of the Mantel correlation can be obtained by using

a permutation test. To that end, the null hypothesis was obtained by permuting the rows and corresponding columns of one of the two

matrices. The Mantel p-value (pm) was then obtained by comparing the Mantel correlation r (rm) to the null distribution generated by

permutation using a two-sided test. We then used the pm to quantify GD and stratified patients into clustered (low pm) and random

(high pm) patterns. We hypothesized that if tumors developed in a more regulated fashion (referring to a clustered GD pattern), sam-

ples localized closer together in space would havemolecular profiles similar in protein expression levels, while tumor samples farther

from each other would have molecular profiles more dissimilar in expression levels. For more aggressive tumors (referring to random

GD patterns), we hypothesized that this concordance would not exist because of dysregulated growth. Several scenarios of GD pat-

terns are shown in Figure S3A.

Survival analysis
Overall survival was calculated from the date of surgery to the time of death from any cause or to the time of last follow-up, at which

point the data were censored. Progression-free survival was calculated from the date of surgery to the time of death, to the time of

disease progression, or to the time of last follow-up, at which point the data were censored. We focused on progression-free survival
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in the validation cohort because of the low number of deaths. Survival analyses were conducted using the ‘survival’ R package

(https://CRAN.R-project.org/package=survival). Kaplan-Meier plots were made using the ‘survminer’ R package (https://cran.

r-project.org/package=survminer).

Down-sampling analysis of proteomic ITH and GD measurements
To investigate the robustness of our ITH and GDmeasurements to sample size, all tumors in the discovery cohort with more than 10

ROIs profiled by MALDI were downsampled to multiples of 5. Each downsampling was performed 100 times and the median mea-

surements were compared to the original measurements obtained from the full dataset.

RNAseq analysis
To study the transcriptomal programs associated with different GD patterns, we performed RNA-sequencing on 53 of 95 tumors in

the discovery cohort. Total RNA underwent ribosomal depletion and Truseq library preparation according to instructions provided by

Illumina (TruSeqVRStranded Total RNA LT, cat#RS-122-2202) with six PCR cycles. Sampleswere barcoded and run on aHiseq 2500

in a 50 bp/50 bp paired-end run, using the TruSeq SBS Kit v3 (Illumina). Gene expression of mRNA was quantified by kallisto.50

Expression levels were reported as Transcripts Per Million (TPM). The transcriptional programs were compared between top 10 tu-

mors of clustered GD and top 10 tumors of random GD. Gene set enrichment analysis was carried out using the GSEA java software

with Gene Ontology terms.51 Inference of the proportion of various immune cell types (B cells, CD4+ T cells, CD45, CD8 T cells, Cyto-

toxic cells, DC, Exhausted CD8, Macrophages, Mast cells, Neutrophils, NK CD56dim cells, NK cells, T cells, Th1 cells, Treg and total

TILs) was performed using Danaher signatures.32 Note that these signatures do not includemarker genes for CD4+ T cells, the Davoli

et al.33 CD4+ T cell estimates were used instead. T cell receptor and B cell receptor repertoire characterization was carried out using

the RNA-seq Immune Analysis (RIMA) pipeline (https://kateyliu.github.io/RIMA/index.html).

Cyclic immunofluorescence (CyCIF)
Here, we performedmultiplexed tissue imaging by CyCIF using antibodies against KERATIN, CD45, PCNA, CD8A, CD3D, CD4, KI67,

PD1, CD163, CD11C, FOXP3, CD20, VIM, CK7, GZMB, CMA1, CD31, and S100A11 (https://www.cycif.org/antibodies/) on 12 tu-

mors from the discovery cohort. Antigen recovery and staining of formalin-fixed, paraffin embedded (FFPE) 5 mm tissue sections

were performed (Table S8), as described.53 Image datasets in the OME-TIFF format were segmented using a modified protocol

based on Saka et al.54 Briefly, a convolutional network model with UNet architecture was trained to recognize three classes: back-

ground, nuclei contours, and nuclei foreground. Using this model (https://github.com/HMS-IDAC/UnMicst), probability maps of the

nuclei foreground and contours were generated for each dataset and were segmented using a marker-controlled watershed seg-

mentation pipeline (https://github.com/HMS-IDAC/S3segmenter). False positives were filtered based on nuclei diameter and

masked out with a channel thresholded using Otsu’s method55; this channel represented overall tissue autofluorescence. Finally, la-

bel masks, in which each cell is represented by pixels and index numbers, were saved as tiff images and were used for downstream

analysis. The histology topography cytometry analysis toolbox histoCAT56 was used to extract mean fluorescence intensity mea-

surements of each antibody using the single cell segmentation masks. Those features were log-transformed followed by Z transfor-

mation to make sure the signals/expression levels of each protein across single cells have a mean of 0 and a standard deviation of 1

for further downstream analysis. Morphological features like centroid position, circularity and cell area were extracted for each single

cell. Cells lost during the course of CyCIF imaging had background staining for DNA in the final cycle of imaging and removed from the

downstream analysis. Feature details on CyCIF can be found at https://www.cycif.org/. Histological regions were annotated as

described above for MALDI data.

Cell type identification in CyCIF data
Epithelial cells and immune cells were identified by gating intensity distributions of KERATIN and CD45 protein levels (Figure S10B).

Major immune cell types were identified using a consensus clustering method (see below) based on the lineage-specific markers

CD45, CD8A, CD3D, CD4, CD163, FOXP3, CD20, CMA1, GZMB, PD1, and CD11C. Other minor subpopulations were identified by

gating intensity distributions of specific cell type markers (VIM, CD31, PCNA, CD11C, GZMB, and PD1; Figure S10H). Specifically,

endothelial cells were identified among non-immune, non-epithelial cells using a Gaussian mixture model fit to the distribution of

CD31 expression among these cells, implemented using the R package mclust.43 Using the threshold derived from the mixture model

cells with CD31 expression greater than 0.96were classified as endothelial. Remaining non-immune, non-epithelial cells were classified

asmesenchymal if they had VIM expression levels larger than 2 to capture the non-background signals (2 standard deviations from the

mean). Tumor cells were KERATIN + cells and had PCNA expression levels larger than 0 (mean signal across single cells). To classify

CD4+ and CD8+ T cells into cytotoxic and exhausted subsets, Gaussian mixture models were fit to the distributions of GZMB and PD1

across single cells. Using the thresholds derived from these models, CD4+ and CD8+ T cells were classified as cytotoxic if they had

GZMB expression greater than 1.26, and remaining CD4+ and CD8+ T cells were classified as exhausted if they had PD1 expression

levels greater than 0.86. CD4+ and CD8+ T cells not classified as cytotoxic or exhausted were designated as other CD4+ T cells and

other CD8+ T cells, respectively. Similarly, a Gaussianmixture model was fit to the distribution of CD11C expression across single cells.

Using the threshold derived from this model, macrophages were classified as activated macrophages if they had expression of CD11C
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greater than 0.53, and otherwise were classified as othermacrophages. Finally, gating intensities for a subset of lineagemarkers (CD31,

PD1, GZMB, CD11C, CD163) was confirmed by visual inspection of 20 representative fields in the primary CyCIF data.

Consensus clustering of immune cells in CyCIF data
All immune cells were randomly divided into 10 groups of �600,000 cells each. Single cells in each group were clustered using the

Louvain algorithm27,57 in the Scanpy Python package44 with default parameters. The clustering was performed on the lineage-spe-

cific markers CD45, CD8A, CD3D, CD4, CD163, FOXP3, CD20, CMA1, GZMB, PD1, and CD11C. The clusters with the highest

average expression among CD8A, CD4, FOXP3, CMA1, CD163, and CD20 were assigned to mast cells, CD8+ T cells, CD4+

T cells, Tregs, mast cells, macrophages and B cells, respectively. Figure S10E lists all conditions required for cell type assignment

in this algorithm. Cell clusters that do not meet the conditions listed in the table were assigned to unidentified immune cells (UIC). An

example of cell type assignment is provided in Figure S10F. For robustness, we repeated this process 10 times to obtain 10 cell type

assignments for each single cell. Each single cell was then assigned to the cell typewith the largest number of votes, while single cells

with a vote tie were assigned to UIC. A consensus score was then generated as the percentage of times a specific cell was assigned

to its final cell type (Figure S10G). To obtain cell type assignments of more single cells, we used the greedy cutoff of a consensus

score R0.3, but the distribution is relatively stable from 0.3–0.7. The fact that the proportion of cells assigned to each specific im-

mune cell type increases with the consensus score indicates a general agreement among repeated processes. Our method is scal-

able to the analysis of an even larger number of single cells by subdividing the entire set into groups of cells.

Low dimensional visualization of single cell CyCIF data
To visualize epithelial and immune cells, t-SNE was performed on representative samples of 5% of identified cells (484,854 single

cells) on all proteins except S100A11 (Figure 3C upper panel; for marker expression see Figure S10C). To visualize different immune

cell types, t-SNE was also performed on representative samples of 5% of identified immune cells (202,215 single cells) based on the

immune markers CD45, CD8A, CD3D, CD4, CD163, FOXP3, CD20, CMA1, GZMB, PD1, and CD11C (Figure 3C lower panel; for

marker expression see Figure S10D). The scanpy Python package44 was used to perform t-SNE analyses.

Immune infiltrating patterns in CyCIF data
The whole image of each tumor was split into 3003 300 mm sliding regions with 150 mm overlaps in both the x and y directions. Im-

mune cells in sliding regions were analyzed; their distribution represents how uniformly immune cells are localized across the entire

tumor. Sliding regions with fewer than 20 annotated cells were excluded from the analysis to remove blank or low-quality regions.

Tumor interaction landscape in CyCIF data
An immune cell was considered to be in a tumor-immune interacting environment if there was a tumor cell located within a 30 mm-

radius circular region around it, and was termed a tumor-interacting immune cell. A tumor cell was considered to be in a tumor-im-

mune interacting environment if there was an immune cell located within a 30 mm-radius circular region around it and was termed an

immune-interacting tumor cell. We used the percentage of tumor-interacting immune cells among all immune cells and the immune-

interacting tumor cells among all tumor cells to represent features of the tumor-immune landscape across tumor specimens. Endo-

thelial cells, mesenchymal cells and specific immune cell subsets (mast cells, B cells, T cells, CD4+ T cells, cytotoxic CD4+ T cells,

exhausted CD4+ T cells, other CD4+ T cells, CD8+ T cells, cytotoxic CD8+ T cells, exhausted CD8+ T cells, other CD8+ T cells, Tregs,

macrophages, activated macrophages, and other macrophages) were analyzed in the same way as for total immune cells to obtain

the tumor-immune interactions between tumor cells and specific cell populations.

Quantification of intra-tumor spatial heterogeneity in CyCIF data
The percentage of total infiltrating immune cells, mast cells, B cells, T cells, CD4+ T cells, cytotoxic CD4+ T cells, exhausted CD4+

T cells, other CD4+ T cells, CD8+ T cells, cytotoxic CD8+ T cells, exhausted CD8+ T cells, other CD8+ T cells, Tregs, macrophages,

activated macrophages, and other macrophages and the number of cells in different histological regions were used as feature input

to calculate ITH and GD in the same manner as when using MALDI data.

Multi-region single cell copy number sequencing
Tumorsweremacrodissected into 6–8 regions and nuclear suspensionswere prepared from frozen tissue using aDAPI-NST lysis buffer

(800 mL of NST (146 mM NaCl, 10 mM Tris base at pH 7.8, 1 mM CaCl2, 21 mMMgCl2, 0.05% BSA, 0.2% Nonidet P-40)), 200 mL of

106 mM MgCl2, 10 mg of DAPI). The nuclear suspensions were filtered through a 35 mm mesh. Single nuclei were flow sorted (BD

FACSMelody) into individual wells of 384-well plates from the aneuploidy peak. After sorting single nuclei, direct tagmentation chemistry

was performed following theDirect Library Preparation (DLP) protocol previously described.58 To calculate single-cell copy number pro-

files we demultiplexed sequencing data from each cell into FASTQ files, allowing 1 mismatch of the 8 bp barcode. FASTQ files were

aligned to hg19 (NCBI Build 37) using bowtie2 (2.1.0)45 and converted fromSAM to BAM files with SAMtools (0.1.16).46 PCR duplicates

were removed based on start and end positions. Copy number profiles were calculated at 220kb resolution using the variable binning

method.59 Single cells with <10 median reads/bin were excluded for downstream copy number analysis. GC normalized read counts

were binned into bins of variable size, averaging 220kb, followed by segmentationwith the circular binary segmentation (alpha = 0.0001
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and undo.prune = 0.05) method from the R Bioconductor DNACopy package.47 The log2 copy number ratio were calculated and used

for subsequent analysis. We filtered out noisy single cells with mean 5-nearest neighbor correlation less than 0.8. The mean 5-nearest

neighbor correlation is calculated as the average of the Pearson correlation coefficients between any single cell and its 5-nearest neigh-

bors. This step removed single cells with poor whole-genome amplification from the subsequent data analysis.

Clustering analysis of multi-region single cell copy number data
Single cell copy number profiles (log2 copy number ratio) were analyzed using the Scanpy Python package44 to obtain Uni-form

Mani-fold Approximation and Projection (UMAP) and clustering results. UMAPwas performed using default parameters.60 Clustering

analysis of single cells was performed using the Louvain algorithm (resolution = 0.5)27,57. Different clusters of single cells were consid-

ered to be different subclones in the analysis.

Quantification of genomic ITH from multi-region single cell copy number data
We used two metrics to quantify the extent of genomic ITH based on single cell DNA copy number data: (i) The scaled mean cell-to-

cell distance (sMCD), which was calculated in the same way as sMPD by replacing MALDI data from regional samples with copy

number data from single cells. A similar metric has previously been used to quantify ITH using single cell RNA-seq data in breast

cancer.23 (ii) The proportion of subclonal copy number aberrations (CNAs), which was calculated as the proportion of genomic

regions with subclonal CNAs. Specifically, genomic regions with a copy number ratio larger than 0.3 and lower than�0.3 were iden-

tified as gains versus losses in DNA copy number, respectively. CNAs present in at least 95% of cells in individual tumors were iden-

tified as clonal; CNAs present in 5–95% of cells are called subclonal; and CNAs present in less than 5% of cells are treated as noise.

We determined the proportion of genomic regions with clonal, subclonal and no CNAs and used the subclonal CNA proportion to

represent the level of ITH in each patient. A similar metric has previously been used to quantify ITH using bulk DNA copy number

data in NSCLC.3

Quantification of genomic GD from multi-region single cell copy number data
To quantify the extent of genomic GD in our single cell dataset, we identified the k nearest neighbors of each cell and formed k pairs of

cells; this procedure was repeated for all n cells in each tumor to obtain kn pairs of cells. The genomic GD of a sample was then quan-

tified by the proportion of the # of pairs of cells whose two cells are located in the same region of the tumor among all pairs of cells.

This metric represents a measure of how different types of tumor cells were spatially distributed within a tumor in patterns that range

fromclustered to randomly distributed. The parameter kwas chosen to be 10 in themain analysis, but different values of kwere tested

showing a minimal effect on the final score (Figures S19D and S19E).

CNAs in cancer genes in lung adenocarcinoma
We obtained cancer genes in lung adenocarcinoma from two databases: the Cancer Gene Census (https://cancer.sanger.ac.uk/

census) and the TCGA pan-cancer analysis.61 The genes present in both lists were used as a curated cancer gene list in this study.

Gene CNAs were quantified by the average copy number of genomic regions they span, with log2 copy number ratios larger than 0.3

and lower than �0.3 identified as gains and losses, respectively. Gene regions in any sample with less than 5 bin counts were

removed from the analysis to obtain high confidence data of CNAs.

Phylogenetic analysis of single cell copy number data
Phylogenetic analysis was performed using a previously described method.62 The "fastme.bal" function in ape R package63 was

used to construct the minimum balanced evolution trees from distance matrices built from the segment log2 copy number ratios.

The phylogenetic trees were rooted using a pseudo-diploid sample with zero log2 copy number ratios across all segments. The

ggtree R package48 was used to visualize the phylogenetic trees of single cell copy number data.

Heatmap vizualizations
Heatmaps were produced using the ComplexHeatmap R package.49

QUANTIFICATION AND STATISTICAL ANALYSIS

All data were analyzed using R version 3.4 (http://www.R-project.org/) if not specifically described. The software packages and

custom code used in this study are described in the method details section and the key resources table. The statistical details of

experiments are described in themethod details and results sections, and the figures and figure legends. Unless otherwise specified,

results were considered significant if the corresponding p-value or Q-value was less than 0.05.
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