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Abstract

Motivation: Stitching microscope images into a mosaic is an essential step in the analysis and visualization of large
biological specimens, particularly human and animal tissues. Recent approaches to highly multiplexed imaging gen-
erate high-plex data from sequential rounds of lower-plex imaging. These multiplexed imaging methods promise to
yield precise molecular single-cell data and information on cellular neighborhoods and tissue architecture.
However, attaining mosaic images with single-cell accuracy requires robust image stitching and image registration
capabilities that are not met by existing methods.

Results: We describe the development and testing of ASHLAR, a Python tool for coordinated stitching and registra-
tion of 103 or more individual multiplexed images to generate accurate whole-slide mosaics. ASHLAR reads image
formats from most commercial microscopes and slide scanners, and we show that it performs better than existing
open-source and commercial software. ASHLAR outputs standard OME-TIFF images that are ready for analysis by
other open-source tools and recently developed image analysis pipelines.

Availability and implementation: ASHLAR is written in Python and is available under the MIT license at https://
github.com/labsyspharm/ashlar. The newly published data underlying this article are available in Sage Synapse at
https://dx.doi.org/10.7303/syn25826362; the availability of other previously published data re-analyzed in this article
is described in Supplementary Table S4. An informational website with user guides and test data is available at
https://labsyspharm.github.io/ashlar/.

Contact: peter_sorger@hms.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multiple approaches have been described for performing 20–60 plex
subcellular resolution microscopy on normal and diseased tissues for
research and diagnostic purposes (Angelo et al., 2014; Gerdes et al.,
2013; Giesen et al., 2014; Goltsev et al., 2018; Lin et al., 2018;
Tsujikawa et al., 2017). These methods make it possible to image
differentiation markers, signaling proteins, cell cycle regulators,
oncogenes and drug targets in a preserved tissue context. The result-
ing data can be processed to determine the molecular and physical
relationships of cells within the tissue to each other, to the local vas-
culature, and to the non-cellular components within connective tis-
sue or basement membranes. Research has shown that spatial
profiling by highly multiplexed microscopy can reveal features of
normal and diseased tissues and their responses to therapy that

cannot be discerned in other ways (Färkkilä et al., 2020; Goltsev
et al., 2018; Launonen et al., 2022; Schürch et al., 2020; Wagner
et al., 2019). For this reason, multiplexed spatial profiling of pro-
teins and mRNA is the cornerstone of large scale atlasing projects
such as the Human Cell Atlas (Regev et al., 2017), NIH HuBMAP
consortium (HuBMAP Consortium, 2019) and NCI Human Tumor
Atlas Network (HTAN) (Rozenblatt-Rosen et al., 2020). Such
atlases promise to fundamentally advance understanding of tissue
development and physiology and improve how diseases are diag-
nosed and individual patients matched to optimal therapies.

Highly multiplexed imaging of proteins in tissues uses antibodies
to detect specific antigens, building on 80 years of experience with
immunohistochemistry in research and diagnostic settings (Wick,
2012). Methods such as MxIF, CyCIF, CODEX, 4i and mIHC use
conventional fluorescence and brightfield microscopes, whereas
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Multiplexed Ion Beam Imaging (MIBI) and Imaging Mass
Cytometry (IMC) vaporize specimens with ion beams or lasers fol-
lowed by atomic mass spectrometry (Angelo et al., 2014; Gerdes
et al., 2013; Giesen et al., 2014; Goltsev et al., 2018; Gut et al.,
2018; Lin et al., 2018; Tsujikawa et al., 2017). Approaches to imag-
ing nucleic acids are based on hybridization (Chen et al., 2015; Lee
et al., 2014) and sequencing (Ståhl et al., 2016). Some methods re-
quire frozen samples, but methods that use Formaldehyde Fixed
Paraffin Embedded specimens—the sample type universally acquired
for diagnostic purposes—can tap into large archives of human bi-
opsy and resection specimens (Burger et al., 2021).

Existing imaging methods differ in resolution, field of view and
number of distinct antigens or genes that can be detected (the assay
‘plex’). Most immunofluorescence methods (e.g. MxIF, CyCIF,
mIHC, CODEX and Immuno-SABER) are cyclic approaches in which
high-plex data are generated by the repeated acquisition of lower-plex
images, each of which has two to six channels of information. Each
channel represents an image acquired with excitation and emission fil-
ters matching one antibody or oligo-coupled fluorophore. As such,
cyclic imaging makes it possible to optimally exploit the optical prop-
erties of fluorescence microscopes while interrogating 60 or more dis-
tinct antigens from a single specimen. Conventional research-grade
fluorescence microscopes can acquire data from up to six different
channels, at resolutions down 0.25mm (laterally) which makes a
detailed analysis of intracellular structures possible. ‘Slide scanners’
are microscopes equipped with rigid slide holders that move in X and
Y and use non-immersion (air) objectives to rapidly move across the
specimen. At resolutions sufficient for subcellular imaging, collecting
data from a whole slide involves acquiring an array of multiple image
‘tiles’ (103 or more for a large specimen of 6 cm2). Thus, each tile is a
multi-wavelength megapixel-scale image that represents a different
lateral (x, y) stage position. The number of wavelengths in each tile,
the number of tiles and the number of imaging ‘cycles’ (each of which
involves the acquisition of a full set of tiles), differs with the micro-
scope and the multiplexing technology. However, it is universally true
that tiles from all cycles must be merged accurately into a single high-
plex ‘mosaic’ image.

High-plex mosaic images represent the key ‘Level 2 or 3’ data
type for all subsequent visualization and quantitative data analysis.
The data level concept was introduced by dbGAP for genomics
(Tryka et al., 2014) and its implementation to tissue imaging is
described in detail in the MITI guidelines (Schapiro et al., 2022a). In
this context, ‘data levels’ denote different degrees of data processing,
with Level 1 corresponding to single, raw image tiles, Level 2 data
to stitched, illumination corrected mosaics and Level 3 to mosaic
images that have also been subjected to manual or automated qual-
ity control to improve interpretability and accuracy.

It is increasingly clear that the greatest challenges in the acquisi-
tion and analysis of high-plex image data lies not in image acquisi-
tion per se, but in the subsequent image processing steps. For
example, even the best microscopes require computational align-
ment of tiles to form a mosaic, since mechanical tolerances and im-
perfect calibration introduce uncertainty into recorded tile
positions. To enable the assembly of a mosaic, tiles are slightly over-
lapped during acquisition so that each pair of adjacent tiles contains
some identical cells. Image features in these cells are then used as ref-
erence points for ‘stitching’ adjacent tiles into a seamless mosaic. In
cyclic imaging (Gerdes et al., 2013; Lin et al., 2018), all tiles from
the second and subsequent cycles must also be aligned to the mosaic
through ‘registration’ of image features across corresponding tiles.
DNA-stained nuclei serve as an excellent image feature for align-
ment since they stain well with a variety of fluorescent dyes, are pre-
sent at suitable density in most tissue types, and have sharp edges
with high contrast. Multiple tools exist for registering image stacks
and stitching image tiles (Chalfoun et al., 2017; Holtkamp and
Goshtasby, 2009; Hörl et al., 2019) and some are available in com-
mon image analysis software such as ImageJ (Schneider et al.,
2012). However, we have found that open-source tools currently
available for stitching and registering whole-slide images are unsatis-
factory when applied to high-plex cyclic images with respect to
speed, reliability and accuracy. Some commercial instruments have

also integrated stitching routines, but we have found that these
methods are only sufficient for visual review and are generally not
accurate enough for quantitative single-cell analysis. Existing tools
also struggle with very large images and generally require substantial
format conversion and file renaming, a non-trivial task when con-
fronted with 100 GB of data contained in 104 megapixel-scale image
tiles (a large 10-cycle whole-slide image).

In this article, we report the development of a new open-source
Python package, ASHLAR (Alignment by Simultaneous Harmoniza-
tion of Layer/Adjacency Registration), for coordinated stitching and
registration of multiplexed, multi-tile images. The package offers both
a command line file-oriented interface and a documented Application
Programming Interface (API) for incorporation into other tools. ASH-
LAR can directly process any image format supported by the widely
used Open Microscopy Environment (OME) BioFormats library (Li
et al., 2016) and it outputs standard OME-TIFF files. We describe
ASHLAR’s design and implementation and compare its performance
to existing tools using high-plex CyCIF images. ASHLAR is available
as a Docker or Singularity container and has been incorporated into
MCMICRO (Schapiro et al., 2022a), the Nextflow-based image proc-
essing pipeline developed by HTAN; as part of MCMICRO, ASHLAR
has been tested with several hundred CyCIF, CODEX and mxIF
images acquired from 12 types of mouse and human tissues at seven
different institutions on five different microscopes and slide scanner
platforms (Supplementary Table S1). ASHLAR is therefore a robust
and practical tool for use with diverse spatial profiling methods.

2 Materials and methods

2.1 Overview of the assembly process for cyclic multi-

tile fluorescence images
ASHLAR operates in three broad phases to convert a multi-cycle
multi-tile (Level 1) dataset into a cohesive (Level 2) mosaic image
(Schapiro et al., 2022b) (Fig. 1): (i) tiles within the first imaging
cycle are stitched; (ii) tiles from the second and subsequent cycles
are registered to corresponding tiles from the first cycle; and (iii) all
tiles from all cycles are merged into a mosaic image. The output of
stitching and registration is a list of new, corrected positions for all
tiles in each cycle. Only in the final mosaic phase is the actual full-
size many-channel mosaic image created. These mosaic images can
be very large and contain information spanning length scales from
<1mm (subcellular structures) to cm in dimension (gross tissue
morphology). In many cases, the boundary of a tissue specimen is ir-
regular, and a significant fraction of the tiles in a rectangular data
collection grid contain few if any cells, posing a challenge for stitch-
ing as well as an opportunity to reduce data collection demands by
creating irregular-shaped tile sets that closely follow the outlines of
the tissue.

To generate an initial estimate of tile positions, ASHLAR uses
data from image tiles (grids of pixels), recorded stage positions and
physical pixel dimensions. ASHLAR leverages the Open Microscopy
Environment Bio-Formats library (Li et al., 2016) to extract the ne-
cessary image data and metadata (stage position and pixel size) dir-
ectly from native image files produced by the great majority of
commercial microscopes, obviating the need for image format con-
version and manual metadata extraction. For microscopes that do
not support BioFormats, ASHLAR accepts a set of TIFF files using a
configurable naming convention along with an explicit specification
of tile overlap and acquisition order. Subsequent stitching and regis-
tration involve aligning one image to another. In stitching, the small
overlapping strips of adjacent tiles are aligned (Fig. 1b), and in regis-
tration, full tiles that cover the same region of the sample but
acquired in different cycles are aligned (Fig. 1c). We performed
stitching and registration only on the reference image channel (typic-
ally Hoechst 33342-stained nuclei) and applied the resulting pos-
itional corrections to all other channels recorded within that cycle.
This is sufficient because the chromatic aberration exhibited by
research-grade wide-field microscopes is not a major contributor to
image inaccuracy at resolutions typically used for tissue imaging
(10–40�magnification, 0.3–0.95 NA air objectives).
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2.2 Image alignment with sub-pixel precision phase

correlation
ASHLAR uses the phase correlation algorithm (Kuglin and Hines,
1975) for image alignment during both stitching and registration
phases. Phase correlation is a fast, parameter-free method that com-
putes the image alignment with maximum cross-correlation, but it is
only suitable for aligning images that are translated relative to each
other in X and Y; it cannot directly align images that differ by rota-
tion, scaling, skew or non-affine transformations. This trade-off is
acceptable for accurate stitching of multi-tile images on the five
microscopes we have tested (see Supplementary Table S2) since the
rigidity of the sample and the construction of modern stages ensures

that almost all of the discrepancy between recorded stage positions
and true positions can be modeled by translation alone. Stage pos-
ition errors encountered between multiple imaging cycles are also
purely translational, as long as the slide is always placed at exactly
the same angle on the stage; this can routinely be achieved with kine-
matic mounts that positively register the slide in a consistent pos-
ition (this is a standard feature of contemporary slide-scanning
microscopes).

ASHLAR uses an enhanced method of phase correlation that
improves the precision of tile alignment. The accuracy of classical
phase correlation is limited to whole pixels. At pixel sizes around
1mm or larger, this represents a substantial error relative to the size
of a single cell. We overcame this limitation by using an improved
phase correlation algorithm (Guizar-Sicairos et al., 2008) that offers
arbitrary sub-pixel precision with minimal extra computation. An
alignment precision of 0.1 pixels produced a discernible improve-
ment in final mosaic quality over whole-pixel alignment, with
diminishing returns beyond that. ASHLAR also enhances phase cor-
relation by pre-filtering input images with the discrete Laplacian op-
erator (or Laplacian of Gaussian operator—LoG—for noisy images)
to eliminate auto-correlation. It has been understood for at least a
century that computing cross-correlation can yield spurious results
with signals that exhibit auto-correlation, but this fact is often over-
looked in practice (Dean and Dunsmuir, 2016; Yule, 1926)—we are
aware of only one open-source image stitching tool, ITKMontage
(Zuki�c et al., 2021), that performs decorrelation. Our work with
ASHLAR shows that decorrelation substantially improves confi-
dence in image tile alignments.

2.3 Image stitching
The stitching procedure begins with the creation of a node-edge ad-
jacency graph in which nodes represent tiles (Fig. 2, Step A1). Edges
are added to the graph to connect overlapping tile pairs, which are
initially identified by consulting recorded stage positions and other
metadata. By reading recorded stage positions directly from
BioFormats metadata, it is straightforward to support samples
imaged with non-rectangular grids and irregular layouts. Figure 3a
shows the overlap in adjacent tiles associated with one edge in the
adjacency graph and reveals that one image is slightly translated
relative to the next—this translation represents the stage positioning
error we are trying to correct. When the overlap region contains
many cell nuclei or other alignment features, phase correlation can
accurately and confidently compute the correct translation between
the images. Phase correlation will always return some value for
translation of any two tiles, even when the overlap region is unin-
formative and contains only incidental signal or background noise
in the registration channel; in these cases, we rely on the recorded
stage positions. Uninformative overlaps in tissue sections are most
commonly encountered when nuclei are scant, such as in fat, con-
nective tissue or regions of necrosis, and in areas in which no tissue
is present, such as along the edge of a specimen, between separate
pieces of tissue or between the circular cores that make up a tissue
microarray (TMA) (a regular grid of 50–200 0.3–1.2 mm pieces of
tissue arrayed on a single microscope slide).

We use normalized cross-correlation (NCC) to score how well
the translation returned by phase correlation aligns images, but the
threshold dividing an effective alignment from a spurious one varies
by dataset. We estimate this threshold by the 99th percentile of
NCC values computed from a permutation test that considers 1000
randomly selected pairs of non-adjacent tiles (Fig. 2a, Step A2); this
corresponds to the unadjusted one-sided empirical P-value threshold
of 0.01. For each tile pair represented by an edge in the adjacency
graph, we crop the images to their mutually overlapping region
based on recorded stage positions and align them using phase correl-
ation as described above. This yields a corrected X, Y shift and
NCC value (Fig. 2, Step A3). For all downstream steps, we use the
negative logarithm of the NCC values, hereafter referred to as ENCC

(NCC error), which provides a more intuitive ‘lower is better’ error
metric and empirically appears to have a more normal distribution.
We use this ENCC threshold and a user-provided translation limit
parameter to determine whether to discard low-quality tile pair

Fig. 1. Schematic of cyclic whole-slide data acquisition, stitching and registration.

(a) One cycle of whole-slide imaging (scanning) is achieved by moving the micro-

scope stage along a controlled path and acquiring multichannel image tiles that

overlap. Further cycles repeat the process after the specimens are re-labeled with

new antibodies or other detection reagents. Note that the left-hand portion of this

panel depicts just a single reference channel (blue) across three cycles for clarity—

actual data contains multiple channels and an arbitrary number of cycles. To inte-

grate information across a wide spatial context at high resolution, it is necessary to

stitch neighboring image tiles within one cycle and also register tiles across different

cycles. (b) The corners of four neighboring tiles (Hoechst 33342-stained channel,

pseudocolored by tile) from one cycle are positioned using the recorded microscope

stage positions (upper panel) and the corrected stitched positions (lower panel).

Arrows indicate two individual cells in the tile overlap regions before and after

stitching. (c) The centers of three Hoechst-channel image tiles (pseudocolored by

cycle) from different cycles are positioned using recorded stage positions (upper

panel) and post-ASHLAR registered positions (lower panel). Arrows indicate one

cell before and after registration (A color version of this figure appears in the online

version of this article.)
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alignments (Fig. 3b). The value of the translation limit is not particu-
larly critical, as physical translation distances for spurious align-
ments tend to be fairly extreme (note that the Y-axis in Fig. 3b is on
a log scale). When a low-quality alignment is discarded, we delete
the corresponding edge from the adjacency graph (Fig. 2, Step A3
and Fig. 3c). At this point, there are almost always more remaining
pairwise alignments than tiles, leading to an overconstrained system.
We solve this by constructing a minimum spanning tree with the
ENCC values as the edge weights and retaining only the alignments
corresponding to edges in this tree (Fig. 2, Step A4). This allows us
to discard extraneous alignments so the position of every tile is un-
ambiguous. Since the edge deletion process in Step A3 could split
the graph into multiple disconnected pieces, we perform the span-
ning tree procedure independently for each piece.

With this spanning tree, it is straightforward to obtain final cor-
rected positions by walking along the edges from tile to tile (starting
at the root) and adding up each pairwise alignment along the way
(Fig. 3d). Even though individual pairwise tile alignments correct pri-
marily for local uncorrelated stage position error, taken collectively
they also characterize systematic errors such as miscalibrated pixel
size or Z-axis camera rotation. To quantify these types of errors, we
perform multiple linear regression of the corrected tile positions after
stitching (dependent variable) against the original tile positions
recorded by the microscope (independent variable) to generate a single
affine transformation. This affine transformation is then used to ad-
just the relative positions of tiles with adjacency graphs that were split
into multiple pieces (from Step A3) to counteract systematic stage pos-
ition error and improve accuracy (Fig. 2, Step A5). At the end of Steps

A1 to A5 (Fig. 2a), optimized global positions have been determined
for all tiles in the first cycle and the stitching is complete.

2.4 Image registration
The procedure for registering subsequent cycles against the first
cycle uses many of the same tools as stitching, although the goal is
aligning whole tiles across data acquisition cycles rather than align-
ing adjacent tiles edge-to-edge within a single cycle (Fig. 2b). First,
we establish a correspondence between each tile in the target cycle
(the one to be registered) and the nearest tile in the first cycle by
comparing recorded stage positions (Fig. 2b, Step B1). Identifying
these tile correspondences is trivial when recorded stage positions
are consistent from run to run, and the geometry of the image acqui-
sition grids is identical. However, a significant shift in stage posi-
tions can occur between cycles with microscopes that lack a physical
‘homing’ procedure to zero stage position encoders at start-up.
Shifts also arise where the planned tile grid is significantly displaced
or rearranged between runs. To account for this shift when compar-
ing tile positions, we down-sample the data by a factor of 20 and as-
semble low-resolution ‘thumbnail’ mosaic images for each cycle
using the recorded stage positions. We then align the thumbnails

Fig. 2. ASHLAR phases for aligning whole-slide scans. (a) Steps for stitching tiles

within one cycle. (b) Steps for registering tiles across cycles. (c) Seamless mosaic gen-

eration enables whole-slide visualization and flexible re-tiling for downstream paral-

lel processing. Blue-colored graphic components in each step depict the key

elements or processes of that step. See text for details (A color version of this figure

appears in the online version of this article.)

Fig. 3. Visualizing stitching steps using a whole-slide scan from a colon specimen.

All images and data in this figure derive from analysis of a large multi-tile image of

human colon (see text for details). (a) Alignment of one pair of neighboring tiles

from an image of human colon. Images of Hoechst 33342-stained nuclei in left and

right tiles are pseudocolored in red and cyan, respectively. The red and cyan images

are overlaid before and after stitching to demonstrate the effect at the single-cell

level. For context, in the remaining panels the location of this tile pair is denoted

with a yellow X. (b) Alignment shift distance versus ENCC for all neighboring pairs,

with ENCC threshold and user-provided translation limit indicated. The null distri-

bution generated by the permutation test (red) is overlaid on the ENCC marginal dis-

tribution. Note that while the ENCC threshold is computed as the 99th percentile of

the null distribution NCC values, it appears at the left end of the null distribution in

this figure due to transformation of NCC to ENCC by taking the negative logarithm

(see text). (c) Adjacency graph with edges colored by ENCC overlaid on the Hoechst

image. Edges corresponding to discarded alignments (ENCC or shift distance above

the thresholds) are hidden. Hidden edges correlate with regions containing scant or

no tissue. (d) Minimum spanning tree with edges colored by alignment shift distance

(A color version of this figure appears in the online version of this article.)
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using phase correlation with sub-pixel precision to obtain a coarse
alignment between the first and target cycles. Working with low-
resolution images in this step saves compute time and memory while
providing sufficient precision to accurately recover inter-cycle tile
correspondences. Next, each corresponding tile pair is cropped to
mutually overlapping regions and aligned using phase correlation
(Step B3). The resulting alignments are then filtered using the user-
specified translation limit. Note that we do not currently use a per-
mutation test and ENCC threshold in the registration phase (Step B2)
as the translation limit alone has been sufficient for all images proc-
essed to date. For alignments that pass the filter, the target-cycle tiles
are positioned by adding the alignment translations to the corrected
positions of the corresponding tiles from the first cycle (Step B4).
The remaining tiles (generally those with sparse or no tissue, or
where the tissue was damaged significantly during inter-cycle sample
handling) are positioned using the affine transformation computed
in the stitching phase, assuming that the same microscope and cali-
bration conditions were used for both cycles (Step B5). The registra-
tion steps described above are then applied to all other cycles,
establishing corrected global positions for all remaining tiles.
Importantly, our method registers each cycle of tiles against the first
cycle (rather than consecutively against each preceding cycle) be-
cause each successive alignment step incurs additional error.

2.5 Mosaic image generation
The result of the stitching and registration phases is a corrected glo-
bal position for every image tile (Fig. 4). To generate the final output
image mosaic, we create an empty image large enough to encompass
all corrected tile positions and copy each tile into it at the appropri-
ate coordinates. Since each pairwise image registration is computed
to a precision of 0.1 pixels as described above, the sum of these
shifts for a given tile generally yields non-integer values for the final
coordinates. ASHLAR defaults to applying sub-pixel translations on
the tile images to account for this, but some users may prefer to
round the final positions to the nearest pixel instead. Where neigh-
boring image tiles overlap in the mosaic, they are combined with lin-
ear blending or one of several other user-selectable blending
functions. The final many-channel image is then written out as a
standard OME-TIFF file containing a multi-resolution image pyra-
mid to support efficient visualization.

2.6 Implementation
ASHLAR is implemented in Python 3 and utilizes many numerical
and image processing routines from the numpy, scipy, scikit-image,
scikit-learn and networkx packages. The pyjnius Python-to-Java con-
nector provides access to the Java BioFormats library for reading mi-
croscopy image files. The user interface is mainly via command-line
script, but the underlying Python modules may also be used directly.

3 Results

3.1 Evaluation of stitching accuracy
We identified MIST (Chalfoun et al., 2017) as the current state-of-
the-art public-domain tool for stitching large, tiled microscopy
images. We used the evaluation framework described by Chalfoun
et al. to compare the accuracy of stitching by ASHLAR and MIST
using that manuscript’s most challenging dataset: a plate of widely-
spaced GFP-labeled stem cell colonies that were grown for 2 days
and imaged with 10% tile overlap. The Chalfoun et al. dataset con-
tains two image sets acquired via separate mechanisms: (i) images
acquired with ‘traditional’ overlapping tiles and (ii) ground-truth
images—with each colony centered and wholly contained in a single
image field—acquired with a closed-loop microscope stage control
algorithm. The Chalfoun et al. evaluation framework assesses the
accuracy of a stitching algorithm by applying the algorithm to the
overlapping tile set, segmenting the stitched output mosaic into colo-
nies, and finally comparing each colony’s area and position to the
ground truth data. Four metrics are reported: False negative count
(FN), false positive count (FP), per-colony size error (Serr) and per-
colony position distance error (Derr) (see Chalfoun et al. for full
details). MIST and ASHLAR yielded the same false negative and
false positive counts (FN¼47, FP¼4), the size error distributions
were nearly the same and had indistinguishable medians (median
Serr ¼ 0.0474%), and the distance error distributions were also simi-
lar with a difference between medians that was not statistically sig-
nificant (MIST median Derr ¼ 10.8 pixels, ASHLAR median Derr ¼
11.5 pixels, Mood’s median test P-value¼0.32) (Fig. 5a). We con-
clude that MIST and ASHLAR have similar stitching accuracy when
applied to a previously described test set involving cells grown
in vitro.

3.2 Benchmark dataset for evaluating registration

accuracy
As a first test of ASHLAR and MIST on high-plex, whole-slide tissue
data, we acquired a �24 mm�14 mm�5mm thick section of a
human normal colon sample from the Cooperative Human Tumor
Network (https://www.chtn.org/). This sample was subjected to 9-
cycle t-CyCIF (Lin et al., 2018) to generate a subcellular-resolution
28-plex image. Cell nuclei were stained with Hoechst 33342 in every
cycle, providing reference features for image alignment. Imaging
was performed on a RareCyte CyteFinder II HT Instrument with a
20X 0.75 numerical aperture (NA) objective and four excitation and
emission filter pairs having peak and full-width at half-maximum

Fig. 4. ASHLAR mosaic results. All images and data in this figure derive from ana-

lysis of the multi-tile image of human colon shown in Figure 3. (a) Pseudocolor

image showing five channels from a 28-plex (9-cycle) t-CyCIF image of a normal

human colon section acquired using the antibodies described in Supplementary

Table S3. Tiles, denoted by the white grid, overlapped by �31 pixels (20mm) Inset:

Hematoxylin and eosin (H&E) staining of an adjacent section of the same specimen.

(b) Higher magnification view of the area surrounding a single tile showing seven

channels from four different cycles to highlight stitching and registration accuracy.

Insets 1–4 depict regions of the tile overlap areas at full resolution (note that the

antibodies shown in panels a and b differ to make structures relevant to different

spatial scales more apparent)
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bandpass wavelengths (in nm) of: 395/25–438/26, 485/25–522/20,
555/20–590/20 and 651/10–692/40, respectively. 2�2 pixel bin-
ning was used during acquisition yielding a four-channel tile with
dimensions of 1280�1080 pixels and a pixel size of 0.65mm per
pixel. To image the entire specimen, a grid of 609 (29�21) tiles was
used and each tile overlapped by �31 pixels (20mm or 2–3%) in
both directions. Each cycle yielded one OME BioFormats-
compatible RCPNL file containing 16-bit imaging data from all 609
tiles, �7 GB in size. The entire 9-cycle dataset comprises 5481 image
tiles and is 61 GB in size. The experimental protocol is documented
on protocols.io (https://dx.doi.org/10.17504/protocols.io.bjiukkew)
and antibodies used are listed in Supplementary Table S3. The pri-
mary unstitched image data are freely available for download from
Synapse at https://dx.doi.org/10.7303/syn25826362. We ran both
MIST and ASHLAR on this colon dataset, yielding mosaic images
�36 000�22 000 pixels in dimension. Figure 4a shows the resulting
image mosaic following stitching and registration with ASHLAR;
the quality of the alignment is highlighted at four regions of tile-tile

overlap in Figure 4b. We then used the Hoechst reference channel
mosaic images from the first two cycles to evaluate whether the
stitched and registered output from MIST and ASHLAR was aligned
accurately enough for single-cell level quantitative analysis.

3.3 Image registration of independently stitched

mosaics
Whereas ASHLAR performs stitching and registration in a coordi-
nated process, it was necessary to globally register the MIST output
mosaics before evaluating local registration accuracy. We first
downsampled the MIST mosaic images by 10� to obtain a manage-
able image size and then aligned them with subpixel-precision phase
correlation (phase correlation on the full-size images required a
computer with more RAM than was readily available to us). We
performed the same process on the ASHLAR mosaics to verify that
their global registration was already optimal.

3.4 Optical flow computation and evaluation of

registration accuracy and robustness
We used dense optical flow fields to quantify and visualize local
registration errors in the Hoechst reference channel. Because we
could not find any general-purpose dense optical flow implementa-
tions capable of processing gigapixel-scale images on a reasonable
workstation computer, we implemented our own approximate
method suitable for small-magnitude flow fields using a block-based
approach which is memory-efficient and highly parallelizable. The
two images to be compared are broken down into non-overlapping
blocks of 200�200 pixels and the relative shift between each corre-
sponding pair of blocks is computed using phase correlation. Any
minor rotation, scaling, or shear between the full input images is
then accounted for through a compensating affine transformation
computed via multiple linear regression on the full set of per-block
shift vectors. This phase correlation and transformation procedure
yields a 200�-downsampled ‘block-dense’ flow vector field that
characterizes the local registration error. It is important to note that
there is no separate ground truth data in this method—it only meas-
ures the consistency of a stitching/registration algorithm against it-
self. Having previously established that Ashlar and MIST have
equivalent stitching accuracy, we felt this approach was reasonable.

We defined the local registration error as the magnitude of the
flow vector field at each point. The median error was 1.94mm for
the MIST mosaics (�3 pixels) and 0.119mm (�0.2 pixels) for the
corresponding ASHLAR mosaics (Fig. 5b). At a magnification suffi-
cient to see individual cells, the error generated by MIST was readily
apparent (Fig. 5c). Visualizing the full vector field on top of the ref-
erence channel images (Fig. 5d) showed that the field direction was
often consistent across large regions but could change dramatically
at tile boundaries. This most likely arises because small local stitch-
ing differences propagate across the mosaic in a manner that is
uncorrelated between cycles, leading to inter-cycle shifts that cannot
be corrected by any rigid adjustment of the entire mosaic. It is im-
portant to note that this is not a weakness of MIST per se, but rather
a consequence of applying a tool designed for stitching alone to the
combined process of stitching and registration, a use case for which
MIST was not designed. With the ASHLAR-generated mosaic, vec-
tor field visualizations confirmed a much lower level of registration
error (Fig. 5e and f). Close inspection of the few regions with high
error showed that they corresponded to parts of the tissue in which
cells had become physically distorted or detached from the slide as a
consequence of the cyclic staining procedure. Thus, the remaining
errors are not a result of errors in registration and stitching but ra-
ther extrinsic processes that must be identified and accounted for by
downstream error-checking procedures.

To demonstrate ASHLAR’s robustness and versatility with dif-
ferent image types, we compared its registration accuracy against
MIST on four further datasets encompassing two cyclic imaging
techniques, three vendors’ microscopes, and two new tissue types
plus a TMA that itself spans a multitude of tissue types and disease
states. We also evaluated one additional open-source stitching algo-
rithm, BigStitcher (Hörl et al., 2019), on some of these datasets. The

Fig. 5. Performance comparison of ASHLAR and MIST software. (a) Stitching error

metric distributions (kernel density estimate) for MIST and ASHLAR computed

according to the stitching evaluation framework of Chalfoun et al. (2017). Dotted

lines indicate median values; neither difference in medians was statistically signifi-

cant. (b–f) Images and data derive from analysis of the multi-tile image of human

colon shown in Figures 3 and 4. (b) Local registration error distance distributions

for MIST and ASHLAR mosaic images of two t-CyCIF cycles of a human colon sec-

tion. Distances at the upper end in this plot as well as in panels d and f were clipped

to the 90th percentile of the MIST error values (�4 mm) to highlight the relevant

data. (c) Full-resolution view of four regions from the MIST mosaics demonstrating

local registration error in different directions. The Hoechst images of nuclei from

cycles 1 and 2 are pseudocolored red and cyan, respectively, to visualize the effect of

registration error at the single-cell level. The MIST median error of �2 mm is around

one-quarter of the diameter of the average cell nucleus, a shift that is clearly visible

at full resolution. (d) Heatmap of MIST local registration error direction (hue) and

magnitude (intensity) at 200-pixel resolution overlaid on the Hoechst image

(brighter colors indicate larger errors). Characteristic tile-sized scale of heatmap fea-

tures suggests inconsistent stitching. Yellow X marks indicate locations highlighted

in panel c. (e) The same regions as in panel c, but taken from ASHLAR mosaics. An

identical pseudocoloring scheme is used; the red and cyan images, now more accur-

ately registered, combine to appear nearly white. The ASHLAR median registration

error of �0.1 mm is �1% of the diameter of a nucleus. (f) Heatmap of Ashlar local

registration error using the same intensity and hue scale as in panel d showing over-

all lower error and no apparent tile-scale features. Remaining small-scale errors rep-

resent damaged tissue that could not be registered (A color version of this figure

appears in the online version of this article.)
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datasets are described in Supplementary Table S4 and the evaluation
results are shown in Supplementary Figures S1–S5. Overall,
ASHLAR compared favorably to MIST and BigStitcher on all data-
sets with respect to registration of cyclic datasets.

3.5 Evaluation of commercial stitching algorithms
Slide scanning microscopes include stitching algorithms as part of
their data acquisition and analysis software. These algorithms use
proprietary file types and in most cases, they erase the original image
tiles or strips after generating the final stitched output image. Thus,
the detailed evaluation of their performance is not straightforward,
but it is possible to evaluate their stitching consistency by using our
optical flow method to examine two re-scans of the same specimen.
We performed such an analysis using a human colorectal adenocar-
cinoma specimen retrieved from the archives of the Department of
Pathology at Brigham and Women’s Hospital with Institutional
Review Board (IRB) approval as part of a discarded/excess tissue
protocol. The specimen was stained with H&E and scanned in
brightfield mode at the Brigham and Women’s Hospital Pathology
Core Facility using three different slide scanning microscopes: a
Leica Aperio GT450, Leica Aperio VERSA and Hamamatsu
NanoZoomer 2.0-HT. We also imaged the adenocarcinoma

specimen in brightfield mode using a GE INCell 6000 microscope to
produce tiles suitable for processing with ASHLAR. The specimen
was imaged twice on each instrument to emulate a cyclic imaging
workflow. Pre-stitched mosaic image pairs generated by the three
scanners and the ASHLAR-stitched mosaic pair assembled from the
INCell 6000 tiles were subjected to the registration accuracy evalu-
ation described above. The results, shown in Figure 6, demonstrate
that all of the tested systems exhibit worse stitching consistency than
ASHLAR. Inspection of the underlying images reveals obvious
stitching errors that would confound single-cell level analysis. We
also observed that the error field images also contained ‘signatures’
of each instrument’s internal design, such as line sensor vs. area sen-
sor and sensor size and orientation. Thus, commercial algorithms
included with existing slide scanners do not appear to fully correct
for intrinsic limitations of the instrumentation. Finally, we evaluated
the registration accuracy of the stitching feature in Zeiss’s Zen soft-
ware which was recently used to generate a publicly available
50-plex rat brain dataset (Maric et al., 2021) based on cyclic fluores-
cence imaging on a Zeiss Axio Imager Z2 microscope. We compared
the DNA channel images from two imaging cycles from this dataset
with our evaluation framework and found conspicuous errors here
as well (Supplementary Fig. S6). Thus, while commercial algorithms
may stitch well enough for visual review and gross structural ana-
lysis, they have weaknesses that are very likely to impact single-cell
quantification—especially with cyclic imaging methods.

3.6 Runtime and memory usage
The runtime and RAM usage for the stitching and registration
phases of ASHLAR are each comparable to that of MIST stitching
running on a single CPU core. On the first two cycles of the human
colon dataset, ASHLAR required 306 s (149 s to stitch cycle 1 and
157 s to register cycle 2) and 2.1 GB RAM. MIST-FFTW required
228 s (114 s per cycle) and 2.5 GB RAM to compute corrected tile
positions. If we include the 30 s per cycle required to convert the
datasets from the microscope vendor’s native file format into
MIST’s required single-TIFF format (ASHLAR requires no such con-
version step) the total for MIST is 288 s. MIST does execute more
quickly when allowed to use multiple CPU cores or a GPU; we have
not enabled parallel processing in ASHLAR but expect a similar in-
crease in speed. ASHLAR’s runtime per imaging cycle varies linearly
with the total number of pixels in all tiles of the reference channel
(Supplementary Fig. S7). All measurements were taken on a
3.5 GHz Intel Xeon E5-1620 v3 CPU with 32 GB of RAM and an
SK Hynix SH920 512 GB SSD running Ubuntu Linux 20.04.
Software versions were as follows: ASHLAR 1.14.0, MIST 2.0.7,
Python 3.8.10 and OpenJDK 1.8.0.

4 Discussion

To date, ASHLAR has been used to stitch several hundred whole-
slide images collected using diverse acquisition technologies and
instruments (Supplementary Table S1). ASHLAR, therefore, pro-
vides a robust and efficient way to generate large, multi-channel,
mosaic images of tissues and other biological specimens by assem-
bling individual megapixel image tiles collected at multiple wave-
lengths over multiple imaging cycles. The key innovation for image
quality is joint optimization of stitching and registration as opposed
to stitching individual cycles independently and then attempting to
register mosaic images against each other. Joint optimization
becomes increasingly important as the size of the specimen increases.
Coupling ASHLAR with tile-based image acquisition and cyclic data
collection makes it possible to optimally balance the resolution, size
and plex of a tissue image for reliable analysis of spatial features on
a wide variety of scales. Although many recent highly multiplexed
studies have relied on small fields of view and TMAs, whole-slide
imaging is emerging not only as a diagnostic necessity (Center for
Devices and Radiological Health, 2015) but also as a key require-
ment for basic research into the spatial organization of tissue and
tumor microenvironments (Lin et al., 2021). ASHLAR is optimized
for these data acquisition requirements and is more rapid and

Fig. 6. Comparison of registration accuracy between ASHLAR and software

included with various commercial slide scanners. All images and data in this figure

derive from a single section of a human colorectal adenocarcinoma biopsy (see text

for details). (a) Local registration error distance distributions for technical replicate

slide scans on three dedicated slide scanning microscopes as well as an ASHLAR

mosaic from a research-grade microscope. All scans used the same H&E-stained

section of a human colon adenocarcinoma biopsy to allow direct comparison of

results. Distances in this panel as well as panels (c–f) were clipped to 1.5 mm at the

upper end to highlight the relevant data. (b) H&E staining of the sample used for

this analysis. (c) Heatmap of ASHLAR local registration error direction (hue) and

magnitude (intensity) at 200-pixel resolution overlaid on the blue channel of the

brightfield image, inverted (bright becomes dark and vice versa). (d–f) Heatmap of

the three slide scanners’ local registration error, as in panel (c). Engineering details

of the different instruments are readily apparent in the error field patterns
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accurate than existing open-source methods we have tested as well
as commercial software available with many slide scanners.
ASHLAR reads and writes files in the OME-TIFF standard and can
process images from almost all commercial microscopes using the
OME Bio-Formats library (Li et al., 2016). This greatly streamlines
the stitching and registration process since little manual intervention
is required. Once an optimized whole-slide image mosaic has been
generated, it is often convenient to visualize or analyze limited
regions of the image. ASHLAR, therefore, supports re-tiling using
adjustable block sizes and overlaps while retaining subpixel registra-
tion and without losing any information along the original tile seams
(Fig. 2c). This block-based processing is critical for downstream
image processing such as single-cell quantification and pixel-level
machine learning, as few methods can process gigapixel-scale images
in a single pass.

ASHLAR was designed as a general-purpose algorithm compat-
ible with a wide variety of microscopes and image acquisition tech-
nologies. To establish that ASHLAR meets these requirements, we
incorporated it into MCMICRO (Schapiro et al., 2022a), a data
processing pipeline leveraging either Docker or Singularity containers
(Kurtzer et al., 2017; Merkel, 2014) and implemented it in the work-
flow systems Nextflow (Di Tommaso et al., 2017) and Galaxy
(Afgan et al., 2018). MCMICRO makes it possible to process high-
plex tissue images of raw data into a table of computed single-cell
features; stitching and registration by ASHLAR is an essential early
step in the MCMICRO pipeline. Via MCMICRO, ASHLAR has
been made available to multiple research teams in the NCI HTAN
consortium (Rozenblatt-Rosen et al., 2020) and, to date, has been
used successfully in 17 published manuscripts and three posted pre-
prints by investigators at seven different institutions. These papers en-
compass a total of �240 whole-slide images and 11 TMAs that have
been successfully stitched using data obtained with three data acqui-
sition methods [CyCIF, CODEX and mIHC (Gerdes et al., 2013;
Goltsev et al., 2018; Lin et al., 2018; Tsujikawa et al., 2017)] and on
five different types of microscopes (Supplementary Table S1). This
experience demonstrates that ASHLAR operates as designed with
most image data, but some edge cases may require tuning the algo-
rithm’s parameters. This is most commonly encountered when tile
overlaps are too small or the tissue has suffered grievous damage dur-
ing processing. The online documentation for ASHLAR (available at
https://labsyspharm.github.io/ashlar/) discusses these and related
issues in greater detail. ASHLAR is available under the permissive
MIT open-source software license, making it possible for commercial
companies to modify and package it with their instruments.

ASHLAR is effective not only with conventional rectangular
image acquisition grids but also with images involving multiple non-
overlapping regions of interest and tiles that do not form a rectangu-
lar grid. The ability to manage irregular and disconnected specimens
has emerged as a key requirement in the broader application of tis-
sue imaging. By instructing a microscope to avoid imaging empty
space lying outside of the margins of the tissue, imaging time and
file size can be reduced, often by a factor of two or more (a signifi-
cant advantage as datasets approach terabyte scale). We have suc-
cessfully used ASHLAR to assemble images of TMAs, in which 0.3–
1 mm diameter ‘cores’ from multiple tissue specimens are positioned
in a regular array on a glass slide, making it possible to analyze over
100 specimens in parallel. This represents a potentially challenging
stitching problem since much of the slide is devoid of sample, and in-
dividual cores are often divided among multiple fields. Core biopsies
and fine needle aspirations are other samples in which the collection
of non-rectangular images is highly advantageous. Such biopsies are
typically long and thin (0.3�10–20 mm) and rarely aligned along
the axis of the slide, making it necessary to collect tiles on a diag-
onal. The ability of ASHLAR to reject spurious alignments using a
permutation test followed by pruning of adjacency graphs make the
algorithm robust to regions of the images such as these that contain
little if any data in the registration channel.

Much of the recent discussion about multiplexed tissue imaging
has focused on the importance of the number of channels (assay
plex) (Baharlou et al., 2019), since more channels allow more pro-
teins or genes to be assayed and yield more detailed molecular

insights. However, two other considerations are at least as import-
ant: image resolution and field of view (speed also matters for high-
volume applications). In the case of fluorescent imaging of a single
tile, resolution and field of view are functions of the optics, primar-
ily the numerical aperture of the objective lens, the properties of the
transfer optics and the number of camera pixels—which together
specify pixel size (Ghiran, 2011). For large whole-slide images
assembled from many tiles, the accuracy of image stitching and
registration also becomes critical. ASHLAR directly addresses this
requirement. In most applications, it is also combined with other
software to optimize the quality of image mosaics. Prior to stitching
and registering tiles using ASHLAR we perform illumination correc-
tion using BaSiC (Peng et al., 2017), which exploits low-rank and
sparse decomposition to correct for uneven shading and background
variation in microscope images. This is essential because the illumin-
ation of each tile is typically brightest at the center of the field (along
the optical axis) and dimmer at the edges.

4.1 Limitations
We have found that the spanning tree approach used to combine in-
dividual pairwise tile alignments is broadly effective. However, one
recurrent weakness observed with large specimens is that tiles at the
margin of the tissue that are adjacent in physical space are often
found to lie far apart in the adjacency graph. When corrected posi-
tions are determined, uncorrelated error accumulates as pairwise
shifts are added up along the edges in the spanning tree. The result-
ing stitching error is rarely noticeable by eye in the resultant mosaic
image, but we have identified this as an area for future improvement
of the algorithm.

To achieve reasonable processing speed, ASHLAR makes some
compromises with respect to the factors it accounts for during stitch-
ing and registration. For example, ASHLAR currently performs only
rectilinear correction of tile position and assumes tiles have the same
magnification. When images from different microscopes must be
combined it is usually necessary to account for changes in camera
angle due to the rotation of individual cameras and their microscope
stages relative to each other. Scaling is also frequently different
across instruments, even when the same objective is used, due to dif-
ferences in transfer optics and sensor configurations. We have never
encountered the need to assemble an image from multiple micro-
scopes (partly because many other batch effects are introduced) but
corrections for image rotation and scaling can be performed through
minor additions to the alignment procedure (Gonzalez, 2011); we
will add these features to ASHLAR as the need arises, most likely
arising from a requirement to combine multiple different imaging
modalities.
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