
Article
Design principles to assem
ble drug combinations for
effective tuberculosis therapy using interpretable
pairwise drug response measurements
Graphical abstract
Highlights
d Evaluate the large drug combination space for potential

tuberculosis treatments

d In vitro 2-drug combination measurements predict 3–4 drug

treatment outcomes in vivo

d Strongly synergistic, antagonistic, or potent drug pairs drive

treatment outcome

d Simple rules articulate drug combination design principles for

tuberculosis
Larkins-Ford et al., 2022, Cell Reports Medicine 3, 100737
September 20, 2022 ª 2022 The Author(s).
https://doi.org/10.1016/j.xcrm.2022.100737
Authors

Jonah Larkins-Ford, Yonatan N. Degefu,

Nhi Van, Artem Sokolov, Bree B. Aldridge

Correspondence
bree.aldridge@tufts.edu

In brief

Larkins-Ford et al. describe an efficient

and interpretable method to evaluate

drug combinations early in drug regimen

design for tuberculosis. Using units of

pairwise drug combination

measurements in vitro, they predict

multidrug treatment outcomes in vivo and

describe what properties of pairwise

building blocks are required for effective

multidrug therapies.
ll

mailto:bree.aldridge@tufts.edu
https://doi.org/10.1016/j.xcrm.2022.100737
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2022.100737&domain=pdf


OPEN ACCESS

ll
Article

Design principles to assemble drug combinations
for effective tuberculosis therapy using
interpretable pairwise drug response measurements
Jonah Larkins-Ford,1,2,3,4,6,8 Yonatan N. Degefu,1,2,4,7,8 Nhi Van,1,2 Artem Sokolov,4 and Bree B. Aldridge1,2,3,4,5,9,*
1Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
2Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA
3Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
4Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
5Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
6Present address: MarvelBiome, Inc., Woburn, MA 01801, USA
7Present address: Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
8These authors contributed equally
9Lead contact

*Correspondence: bree.aldridge@tufts.edu

https://doi.org/10.1016/j.xcrm.2022.100737
SUMMARY
A challenge in tuberculosis treatment regimen design is the necessity to combine three ormore antibiotics.We
narrow the prohibitively large search space by breaking down high-order drug combinations into drug pair
units. Using pairwise in vitromeasurements, we train machine learning models to predict higher-order combi-
nation treatment outcomes in the relapsingBALB/cmousemodel. Classifiers performwell andpredictmany of
the>500possiblecombinationsamong12antibiotics tobe improvedoverbedaquiline+pretomanid+ linezolid,
a treatment-shortening regimencomparedwith the standard of care inmice.We reformulate classifiers as sim-
ple rulesets to reveal guiding principles of constructing combination therapies for both preclinical and clinical
outcomes. One example ruleset combines a drug pair that is synergistic in a dormancymodel with a pair that is
potent in a cholesterol-rich growth environment. These rulesets are predictive, intuitive, and practical, thus
enabling rational construction of drug combinations.
INTRODUCTION

Tuberculosis (TB) remains an important global health concern,

with more than 10 million people falling ill and about 1.4 million

dying in 2019.1Multiple drugs are used to treat TB because com-

bination therapy shortens treatment duration, reduces disease

relapse, and lowers the rate of drug resistance development

compared with monotherapy.2 The standard of care (SOC) for

treatment was developed almost 40 years ago and consists

of four drugs (isoniazid [H], rifampicin [R], pyrazinamide [Z],

ethambutol [E] [HRZE]) given for 2 months followed by two drugs

(H and R; HR) given for another 4–7 months.2 New multidrug

therapies are needed to improve outcomes and should include

drugs that shorten treatment, increase efficacy, or both.

Efforts to develop new antibiotics and combination thera-

pies for TB have been highly productive (https://www.

newtbdrugs.org),3 but the large combination space cannot

be surveyed clinically. Improved drug combinations may be

in this space, as a recent clinical study identified a four-drug

combination that shortened treatment by 2 months by

substituting two drugs (H and R) from the SOC with moxiflox-

acin (M) and rifapentine (P).4 Furthermore, the combination
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consisting of bedaquiline (B), pretomanid (Pa), and linezolid

(L) (BPaL) has become an example for attainable treatment

improvement because it shortened treatment of multidrug-

resistant TB (MDR-TB) from over 2 years to 6 months with

increased efficacy from <50% to >90% cure.5 Reciprocal

methods to clinical studies are needed to design combination

therapies rapidly and systematically.

Preclinical animal studies are primary tools to identify drug

combinations for clinical evaluation. The BALB/c relapsing

mouse model (RMM) identified BPaL as a highly effective

combination that showed faster and more effective cure

for treating drug-sensitive Mycobacterium tuberculosis than

the three-drug mouse SOC (HRZ),6 highlighting the utility of

the RMM to identify treatment-shortening combinations for

drug-sensitive or drug-resistant M. tuberculosis. However,

the number of combinations that can be tested in mouse

studies is limited, and methods that prioritize drug combina-

tions for preclinical testing are needed. We recently demon-

strated that in vitro drug measurements in suites of multiple

growth conditions were predictive of treatment improvement

over the SOC in the RMM,7 suggesting a path forward to

prioritize drug combinations.
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Figure 1. Data structure to organize in vitro drug-pair data underlying higher-order drug combinations

(A) Summary of combinatorial explosion going from single drugs to three- and four-drug combinations for 10 and 20 drugs.

(B) Diagram of drug combination dose-response curve, highlighting four (Einf, log2FIC90, log2FIC50, AUC25) of the five metrics calculated. GRinf is not diagramed

because a separate dose-response curve is used.12 Below each metric is an arrow that points to whether low (down arrow) or high (up arrow) metric values are

potent or synergistic.

(C)Diagramof data structure used in the study.CombinationABC is composedof threedrugpairs: AB, AC, andBC.Metrics fromeachpairwisedose-response curve

arecollatedandsummarizedbycalculating theminimum,maximum,andmean for eachmetric (green) for everymeasuredgrowthcondition. Thesummarymetrics for

a combination in an in vitro condition (orange) are compiled and concatenated with the metrics for all in vitro conditions (purple) to constitute all the pairwise data

underlying a high-order combination. The totality of data from all combinations (gray) at two time points in seven growth conditions and five metrics comprise this

in vitro dataset.
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One approach to efficiently search the drug combination

space is to utilize drug-pair data instead of empirical measure-

ment of three- and four-way combinations (Figure 1A). For

example, there are almost 6,000 three- and four-drug combi-

nations among 20 drugs but only 190 drug pairs; therefore,

a method based on pairwise measurements would improve

efficiency by �30-fold. The in vitro behavior of high-order

drug combinations (three or more drugs) can be predicted

from the underlying low-order combinations,8–11 indicating

that information important for understanding high-order activ-

ity is contained in drug-pair measurements. These methods

were developed to investigate drug interactions, which

describe how drugs in combination interact to produce effects

that are greater than, less than, or as good as the effects of

individual drugs (synergy, antagonism, and additivity, respec-

tively). The success in mapping pairwise to high-order drug in-

teractions in vitro suggests the possibility to predict outcomes

of multidrug therapies in vivo based on the properties of un-

derlying drug pairs.
2 Cell Reports Medicine 3, 100737, September 20, 2022
Our goal is to fill a gap in the drug combination development

pipeline by evaluating the vast number of candidate combinations

early in drug regimendesign.We aim to prioritize combinations for

resource-intensive in vivo studies and dose optimization (Fig-

ure S1). Our study design is motivated by (1) the predictive signal

of in vitrodrugcombinationmeasurements in theRMM,and (2) the

ability to predict high-order drug interactions fromunderlying pair-

wise interactions. Using systematic pairwise drug response data,

we developed machine learning (ML) models that accurately pre-

dict RMM and clinical outcomes of high-order combinations,

creating a scalable and resource-sparing method to design com-

bination therapies. We found that pairwise in vitro data carry a

strong predictive signal, and that building blocks of drug pairs

form the basis of interpretable rulesets for constructing effective

high-order combinations. Furthermore, the combination design

principles translated from the RMM to clinical outcomes. Our

framework simultaneously creates accurate predictions of combi-

nation therapy outcomes in preclinical models and interpretable

rules to construct optimized combinations.
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RESULTS

Organizing high-order drug combinations by
summarizing pairwise drug combination data
We hypothesized that we could predict high-order drug combi-

nation RMM treatment outcomes using in vitro pairwise

drug combination measurements because pairwise drug inter-

action data are predictive of high-order drug interactions in

M. tuberculosis, Escherichia coli, and cancer cells.8–10,13 In addi-

tion, we previously showed that in vitro drug combination

response data are predictive of RMM treatment outcomes.7

To test this hypothesis, we designed a data structure to organize

pairwise in vitro drug combinationmeasurements across a range

of drug-pair potencies and drug interactions for each high-order

drug combination under consideration (Figure 1).

We used pairwise drug combination response data from a

large-scale study that contains in vitro measurement of two-

and three-drug combinations among 10 commonly used anti-

TB drugs.7 We expanded this 10-drug set (B, clofazimine, E, H,

L, M, Pa, Z, P, R) with pairwise measurement to include SQ109

and sutezolid, for a total of 12 drugs (Table 1). A portion of the

SQ109 pairwise data was described previously,14 while its

remainder and all the sutezolid data are new to this study. An

equipotentmixture of each drugwasmeasured atmultiple doses

to generate a pairwise dose-response curve.7,11,15 Drug combi-

nations were measured in seven in vitro growth conditions rele-

vant to the environments encountered byM. tuberculosis during

infection (Table 1): fatty acid carbon sources consisting of (1)

butyrate, (2) valerate, (3) 0.05 mM cholesterol, and (4)

0.2 mM cholesterol (cholesterol-high), as well as (5) acidic me-

dium (acidic), (6) non-replicating/hypoxic medium (dormancy),

and (7) standard laboratory growth medium (standard).

M. tuberculosis replicate during incubation in all conditions

except dormancy, which induces a metabolically inactive, non-

replicative state.7,14 Longitudinal measurements were made,

and two time points were targeted that represent a relatively

consistent drug exposure time across conditions (constant), as

well as the maximal drug exposure time relative to the doubling

time of M. tuberculosis in each growth condition (terminal; con-

stant and terminal times were the same for the standard condi-

tion, Table 1). Five metrics were calculated for each dose-

response curve (Figure 1B and Table 1), capturing combination

potency (the normalized area under the dose-response curve

up to the 25% growth inhibitory concentration [IC25] [AUC25], ef-

fect at infinite drug concentration [maximum achievable

effect] [Einf], normalized growth inhibition effect at infinite drug

concentration [maximum achievable effect] [GRinf]) and drug in-

teractions at low and high doses (fractional inhibitory concentra-

tion at 50% growth inhibition [log2FIC50], fractional inhibitory

concentration at 90% growth inhibition [log2FIC90]). In total, 65

metrics were calculated for each of the 60 drug pairs, totaling

3,900 pairwise dose-response metrics (Data S1).

When breaking down high-order drug combinations into cor-

responding drug pair sets (e.g., ABC into AB, AC, and BC),

some drug pairs will serve as components of multiple high-order

drug combinations (e.g., AB is a component of ABC, ABD,

ABCD). An important consequence is that each drug pair in a

high-order drug combination will have an associated metric
(e.g., for combination ABC, there will be an Einf metric for AB,

AC, and BC), but drug combinations of different orders will

consist of different numbers of drug pairs and consequently

have different numbers of pairwise dose-response metrics. To

make combinations of different orders comparable, we devised

a data structure where each high-order drug combination was

represented by the same number of dose-response features,

accomplished by aggregating the constituent pairwise metrics

(AUC25, Einf, GRinf, log2FIC50, log2FIC90) using three summary

statistics: minimum (min), maximum (max), and arithmetic

mean (mean; Figure 1C). The three summary statistics ensured

a uniform data structure of 195 features (mean, min, max of pairs

for each metric, condition, and time point) from pairwise data for

all high-order combinations (Data S1), facilitating downstream

analyses.

Pairwise data are predictive of high-order in vivo
treatment outcome
To test the hypothesis that in vivo high-order drug combination

treatment outcomes can be predicted from in vitro pairwise

treatment data, we binned the dataset of high-order (three-,

four-, and five-drug) combinations by assessing whether each

combination was better (+C1) or not (�C1) than the SOC in the

RMM outcome using published animal studies. In brief, combi-

nations were deemed better than the SOC if they achieved lower

relapse (increased efficacy), similar relapse percentage with

shorter treatment time (treatment shortening), or both (Data S2;

see STARMethods for details on annotation and binning). These

binned annotations were consistent with the combination treat-

ment improvement estimated in an interstudy comparison using

a mixed-effects logistic regression model approach to normalize

the differences in study methodologies.16 Principal-component

(PC) analysis (PCA) revealed partial separation of +C1 and

�C1 combinations along the first PC, indicating a strong predic-

tive signal in pairwise data and suggesting that linear combina-

tions of in vitro pairwise drug responses may be sufficient to

distinguish drug combinations with different in vivo outcomes,

even in the absence of trained supervised learning models.

Notably, the signal was robust to the number of drugs involved

in a combination, as we observed separation between 3-drug

and 4+-drug combinations along the second PC, which was

orthogonal to the first (Figure S2A).

PCA revealed partial separation of �C1 and +C1 combina-

tions, but the remaining overlap hinders accurate classification

of candidate combinations using PCs alone. To increase classi-

fication accuracy, we turned to supervised ML. We evaluated

seven ML algorithms for their ability to distinguish +C1 and

�C1 combinations and compared their performance with

repeated random partitioning of data for model training and eval-

uation. We observed ensemble methods, such as Random For-

est (RF), to be top performers among the seven algorithms (Data

S3), with corresponding classifiers achieving high (AUC > 0.86)

accuracy on both training and test data. We, therefore, chose

RF for all subsequent analyses. The representative model

training and evaluation partition (see STAR Methods) included

the three-drug SOC (HRZ) in the model training and performed

well when evaluated on the set that included the four-drug

SOC (HRZE; AUC = 1.00; Figure 2A). We retrained a model
Cell Reports Medicine 3, 100737, September 20, 2022 3
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Figure 2. In vitro pairwise data are predictive of treatment improvement in vivo

(A) Receiver operator characteristic (ROC, upper panel) and precision recall (PR, lower panel) curves associated with an SOC Random Forest classifier trained

using all summary pairwise features from seven in vitro growth conditions. Themodel was trained on 70%of annotated combinations and tested on the remaining

30%. Test combinations are colored by annotation (blue = +C1, >SOC; orange = �C1, %SOC).

(B) Schematic of combinations in the training set with annotations indicated by color and brackets. Selected combinations important for defining classes are

indicated with single drug letter abbreviations (Table 1).

(C) ROC and PR curves associated with a BPaL Random Forest classifier trained using all summary pairwise features from seven in vitro growth conditions. The

model was trained and tested as in (A). Test combinations are colored by outcome annotation (green = +C2, >BPaL; yellow = �C2, %BPaL).

(D) Probability scatterplot for SOC model predictions (P(+C1)) and BPaL model predictions (P(+C2)). Marginal boxplots show the annotated combination

probability distributions. Annotated combinations are colored as in (B), and training and test combinations are labeled with circles and triangles, respectively.

Combinations without annotations (candidates) are labeled with gray squares.
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with both HRZ and HRZE withheld for model evaluation and

found comparablemodel performance (AUC= 1.00; Figure S2B),

indicating that the correct identification of combinations did not

depend on the inclusion of SOC combinations in model training.

To assesswhether the performance of high-order drug combina-

tions is primarily driven by the performance of single drug pairs,

we compared the predicted probability of being +C1 for each

combination with the highest predicted probability among the

corresponding constituent drug pairs (Figure S2C). The

observed trend indicates that predicted combination efficacy is

not driven solely by the best-performing drug pair. Together,

these results support using in vitro drug-pair measurements to

predict improvement over the SOC in high-order combinations

and suggest that an effective drug pair may be the backbone

of an effective high-order combination on which more drugs

can be added.

By necessity, TB drug regimen development is iterative in that

drugs are added to or substituted into effective combination scaf-

folds. Testing of combinationsoftenbeginsbyaddingor substitut-

ing a drug into a combination that has been previously tested. To

simulate the process of combining a newdrugwith existing drugs,

we treated each drug from the 12-drug dataset as a ‘‘new’’ drug.

For this analysis, each drug was individually left out except for R,

which could not be left out because too few�C1combinations re-

mained in the training set. We reserved combinations containing

the candidate drug for testing (‘‘leave-one-drug-out’’) and trained

a model on the remaining drug combinations. For each of the 11

‘‘leave-one-drug-out’’ training/test sets, we included the HRZE

combination (four-drug SOC) in the test set to evaluate combina-

tion prediction compared with the SOC. The models correctly

predicted whether including the ‘‘left-out’’ drug improved treat-
4 Cell Reports Medicine 3, 100737, September 20, 2022
ment outcome (meanAUC±SEM, 0.91± 0.04; DataS3). Although

the inclusion of any one drug into the scaffold was not required for

accurate performance, the exception was the model trained after

B was left out, which produced a random classifier (AUC = 0.58;

Data S3). Together, these results demonstrate that RMM out-

comes of combinations containing a previously untested drug

can be effectively predicted using pairwise in vitromeasurements

with minor drug-specific limitations.

Additional classifiers predict top-performing
combination outcomes in vivo

Of all possible 575 three- and four-drug combinations among the

12 drugs, only 39 (�7%) were annotated with an RMM outcome,

which we further split into 29 training and 10 test combinations.

Given the SOC classifier (Figure 2A), we used the 29 annotated

combinations in the training set to compute the optimal classifi-

cation threshold (Youden’s J; P(+C1) = 0.71) and applied it to

categorize in vitro data from the 10 test combinations and the

remaining 536 (�93%) candidate combinations (Data S3). We

note that 76% (31/41) of the binned combinations are annotated

to be +C1 (Data S3), indicating that there are likely to be many

combinations that improve outcome over the SOC in the RMM.

Of the 536 candidates, the classifier predicted 400 (76%) to be

an improvement over the SOC, consistent with the percentage

of +C1 annotated combinations from in vivo studies, but which

is too high for effective follow-up. Selection of combinations us-

ing alternative criteria, such as the top 10% (or fewer) of pre-

dicted combinations, can aid in prioritizing combinations for

in vitro experiments (e.g., direct high-order measurements) and

in vivo studies (such as pharmacokinetic/pharmacodynamic

[PK/PD] studies and dose optimization). We note that HRZE



Table 1. Abbreviations used in this study and brief descriptions

of these abbreviations

Drugs (abbreviations used

in combination names) Descriptions of abbreviations

B bedaquiline, ATP synthesis inhibitor

C clofazimine, antimycobacterial/

multi-process inhibitor

E ethambutol, cell wall synthesis inhibitor

H isoniazid, cell wall synthesis inhibitor

L linezolid, protein synthesis inhibitor

M moxifloxacin, DNA synthesis inhibitor

Pa pretomanid, cell wall synthesis

inhibitor/nitric oxide production

Z pyrazinamide, antimycobacterial/

multi-process inhibitor

R rifampicin, transcriptional inhibitor

P rifapentine, transcriptional inhibitor

Su sutezolid, protein

synthesis inhibitor

Sq SQ109, multi-process inhibitor

Treatment outcome

and classification

+C1 better than standard of care

�C1 as good or worse than the

standard of care (HRZE or HRZ)

+C2 better than BPaL

�C2 as good or worse than BPaL

+C1�C2 (+C1

and �C2)

better than standard of care and

worse than BPaL

SOC standard of care

TTP time to culture positivity

Mouse model

RMM relapsing mouse model

In vitro models

a acidic

b butyrate

c cholesterol (0.05 mM)

d dormancy

h cholesterol-high (0.2 mM)

s standard

v valerate

Data and metrics

C constant time point

T terminal time point

CT constant and terminal

time points are the same

log2FICn fractional inhibitory concentration

at n % growth inhibition

AUC25 the normalized area under the

dose-response curve up to the

25% growth inhibitory

concentration [IC25]

Table 1. Continued

Drugs (abbreviations used

in combination names) Descriptions of abbreviations

Einf the effect at infinite drug concentration

(maximum achievable effect)

GRinf normalized growth inhibition effect at

infinite drug concentration (maximum

achievable effect)

ROC receiver operator characteristic

AUC area under the ROC curve

PR precision recall

F1 harmonic mean of the

precision and recall

Machine learning

acronyms

PC principal component

PCA PC analysis

RF random forest

DT decision tree
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(part of the model test set) would place in the bottom 15% of

combinations evaluated in this study (P(+C1) = 0.633; Data S3).

BPaL is established as better than the SOC for both decreasing

disease relapse and shortening treatment time of mice infected

with drug-sensitive M. tuberculosis.6,16,17 In addition, the use

of BPaL has dramatically shortened the treatment time of

MDR-TB in the clinic.5 We, therefore, chose BPaL as a bench-

mark for further treatment improvement over the SOC in the

RMM, despite not yet knowing the outcome of BPaL over the

SOC in clinical trials for drug-sensitive TB (DS TB) treatment.

We reannotated the RMM outcome (Figure 2B) according to

whether it was better than BPaL (+C2) or not (�C2; Data S2).

The +C2 group is a proper subset of the SOC + C1, and

the new �C2 class combines the remaining +C1 (now

labeled +C1�C2) and the previously labeled�C1 combinations.

As with SOC, in vitro pairwise data are separated by the +C2 and

�C2 labels along the top PC (Figure S2D).

Using the same validation process we performed with SOC

classifiers, we evaluated the performance of a model trained

with features from all conditions for its ability to distinguish +C2/

�C2 combinations. We observed comparable performance for

the all-condition model during model training (AUC = 0.83) and

high performance using the held-out test set (AUC = 0.89; Fig-

ure 2C). Model performance was relatively invariant to the mea-

surement time points (Figures S2E and S2F). We also observed

that combinations predicted to be better than BPaL (Youden’s J;

P(+C2) > 0.36) also tend to have the highest likelihood to improve

treatment outcome over the SOC (P(+C1) > 0.78; Figure 2D; Data

S3). However, the converse is not true: high probability +C1

(P(+C1) > 0.71) combinations may or may not be better than

BPaL. This suggests that the SOC and BPaL classifiers are non-

redundant, and classification for improvement over BPaL (182

combinations, 34%; Data S3) can further refine the set of +C1

combinations for experimental follow-up. We observed a wide

range of probabilities for the BPaL classification (P(+C2) between

�0.35 and�0.75) in which there are few annotated combinations;
Cell Reports Medicine 3, 100737, September 20, 2022 5
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Figure 3. Predictive information in subsets of in vitro conditions and dose-response metrics

(A) Scatterplot of model performance (AUC) for the SOC and BPaL machine learning models trained on data from one, three, or all (seven) conditions and

evaluated in cross-validation (see Figure S3A for performance of models from any number of conditions). Marginal boxplots indicate the performance of models

containing each condition. Dashed line indicates the median performance across all models. Single-condition abbreviations are as in Table 1 and the legend.

(B) Scatterplot of p values from the Wilcoxon rank-sum tests contrasting values of individual potency features across SOC (�C1 versus +C1) and BPaL (�C2

versus +C2) outcomes showing features with p value < 0.05 for BPaL outcome comparison. Inset: scatterplot of all features with the region containing p < 0.05

shown in solid black rectangle. Features are colored by in vitro condition and shaped by metric type (circle, AUC25; square, Einf; downward triangle, GRinf). p

values are corrected for multiple hypothesis testing (FDR) within each outcome group (e.g., corrected for SOC comparison separate from BPaL comparison).

Features with FDR p < 0.05 are annotated with extra information such as time (C or T for constant or terminal, respectively) and the summary statistic type

(minimum, mean, or maximum). Linear regression line (solid black), confidence interval (shaded region), Pearson correlation coefficient (R), and associated

p value are indicated on plot.

(C) Scatterplot of p values from theWilcoxon rank-sum tests contrasting values of individual drug interaction features (plot elements as in B). Features are shaped

by metric type (triangle, log2FIC90; diamond, log2FIC50).
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therefore, further prioritizationmay be achievedusing amore con-

servative BPaL classification threshold (e.g., P(+C2) = 0.5, 14%

(73) +C2 combinations) or by ranking candidate combinations us-

ing probabilities (Figure 2D). Whichever method is used for candi-

date prioritization, it is important to recognize that there may exist

many potential treatment-improving combinations using existing

anti-TB drugs, and that prioritization schemes enable us to focus

on themostpromising ones. In that light, +C2combinations repre-

sent a unique subset of potentially treatment-improving

combinations.

RMM outcome prediction is improved using subsets of
in vitro conditions
M. tuberculosis encounters many environments during infection,

and some are thought to contribute more than others to the

requirement for long treatments. We asked which of the seven

in vitro models were most predictive and whether a smaller set

of in vitro conditions could be used to model RMM outcomes.

We observed that data from dormancy, valerate, and butyrate

conditions produced the top-performing single in vitro condition

models for both the SOC and BPaL outcomes (Figure S3A).

Models constructed from multiple conditions as a ‘‘sum-of-

parts’’ are likely to be the most predictive because they repre-

sent different aspects of the diversemicroenvironments encoun-

tered during an infection.7We reasoned that amodel trainedwith

three conditions would balance the economy of the experimental

scale and capture the complexity in the microenvironment and

dependency of drug efficacy on those environments. Adding

conditions beyond three may help refine models but did not
6 Cell Reports Medicine 3, 100737, September 20, 2022
generally improve performance (Figure S3A). Therefore, we

focused our analyses on three-condition models.

After evaluating all possible three-condition models, we

observed that all but onemodel was high performing for both out-

comes (AUC > 0.7; Figure 3A), and that many performed better

than the seven-condition model (SOC AUC = 0.83, BPaL

AUC = 0.83). These results demonstrate that three conditions

were sufficient to train models that were as good or better than a

model trained on all possible condition information.We confirmed

the high performance of three-condition models using test data

and predicted candidate combination classification comparable

with the all-condition model (Figures S3B–S3G). Furthermore,

high-performing models can be trained using many aggregated

sets of three conditions (Figures S3A–S3G). Finally, the high per-

formanceof three-condition sets for bothBPaLandSOCoutcome

models suggests that usingoneof the two is sufficient for classifier

evaluation. Therefore, we focused on only BPaL outcomemodels

in subsequent analyses.

Conditions with important information for predicting in vivo out-

comes should be those that improve model performance when

included, even if the condition alone is not the highest performing.

Therefore, we compared model training performance with and

without each of the seven conditions.We expected that if a condi-

tion is sufficiently informative, a majority (>50%) of the models

including it should have increased performance compared with

when that condition is excluded.Weobserved that 65%ofmodels

saw an increase in AUC when butyrate was included, with similar

trends for dormancy (54% of models) and cholesterol-high (51%

of models; Figure S3H). The trend toward increased performance
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wasmaintained amongmodels using data from four or more con-

ditions that included butyrate + dormancy + cholesterol-high

compared with those with only two or fewer of these conditions

(p = 0.206; Figure S3I). Lastly, we observed that the model buty-

rate + dormancy + cholesterol-high was the sixth-highest-per-

forming three-condition model for the BPaL outcome

(AUC = 0.92, F1 = 0.81; Figure 3A; Data S3), and the top five

three-condition models included at least one of these three

conditions.

Although dormancy and butyrate were the top two highest-per-

forming single-condition models (Data S3), the cholesterol-high

condition performed modestly as a single-condition model

comparedwith other growth environments. Nevertheless, models

with other conditions improved on the addition of cholesterol-high

measurements (Figure S3H), suggesting that the condition carries

an orthogonal signal to other conditions.

Thisanalysisdemonstrates that there ispredictive information in

many of the in vitromodels, with some conditions carrying redun-

dant information, while others provide an orthogonal signal that

improves classifier performance. Future work to prioritize combi-

nation therapies based on pairwise measurement will therefore

not require exhaustive measurement in many growth conditions

but can instead focus on small (two or more) in vitro models with

established predictive accuracy.

Treatment outcome is driven by exceptional drug pairs
rather than averaged pairwise properties
The RF models classified some of the top +C1 combinations

as +C2 and others as �C2 (Figure 2D), suggesting that different

in vitro metrics were important to distinguish +C2 combinations

from those used to distinguish +C1 combinations. In other

words, the +C2 combinations were not simply the highest

probability +C1 combinations. We sought to understand what

features could accurately distinguish +C2/�C2 and +C1/�C1

combinations and what feature values constituted +C2 combi-

nations. Therefore, we compared the statistical significance of

individual metrics to distinguish SOC (+C1 from �C1) and

BPaL outcomes (+C2 from �C2) using the Wilcoxon rank-sum

test. We examined the values of individual features among all

conditions and found that several correlated with the +C2/�C2

outcome class (9 of the 186 [�5%] features; p < 0.05, Wilcoxon

rank-sum test, using Benjamini-Hochberg multiple hypothesis

correction; Figures 3B and 3C; Data S4; Figure S4A). Although

no features differed significantly between +C1 and �C1 drug

combinations (all p > 0.05), we nevertheless observed a strong

correlation between the significance of potency features in the

SOC and BPaL comparisons (Figure 3B; Pearson correlation,

R = 0.72, p < 0.001). In contrast, drug interaction metric correla-

tion between the SOC and BPaL outcome thresholds was sub-

stantially weaker (Figure 3C; Pearson correlation, R = 0.36,

p = 0.002). As with potency features, several drug interaction

features differed significantly between +C2 and �C2 combina-

tions, but not between +C1 and –C1 ones (Figure 3C); this is

consistent with a prior study where we found that RMM out-

comes relative to the SOC were predicted by potency metrics

rather than synergies.7

We noted that many significant features were from the buty-

rate and dormancy conditions (Figures 3B and 3C), supporting
the use of a three-condition model including these conditions.

We also observed that all the significant features to correlate

with the +C2/�C2 dichotomy describe the most potent and

most synergistic pairs (e.g., minimum GRinf and log2FIC values

and maximum Einf and AUC25 values among the underlying pairs

of a high-order combination). These results suggest that a small

number of strong drug pairs contribute more information about

treatment improvement of a high-order combination than

the average behavior of all involved pairs. Furthermore, these

observations are not specific to the training set and generalize

when test combinations were also considered (Figures S4B

and S4C). These results indicate that the degree of treatment

improvement of a drug combination (over BPaL and SOC)

can be predicted using in vitro measurements of pairwise

drug potency and that there are drug-pair synergies when

M. tuberculosis are dormant that distinguish drug combinations

that are better than BPaL.

Design principles for constructing effective drug
combinations
Given that highly effective drug pairs appear to drive the treat-

ment outcome of high-order drug combinations (Figure 3), we

aimed to understand how to identify and compile effective

drug pairs using in vitro measurements. Our goal was to

compose a set of rules to guide the rational design of high-order

drug combinations using drug pairs as the building blocks.

Decision tree (DT) classification mirrors human decision-

making and can define a set of rules for classification tasks.

To make these rules interpretable and straightforward, we

focused on the features from the butyrate, dormancy, and

cholesterol-high conditions, motivated by the largest increase

in performance when these three conditions were included in

a ML model. We selected a single-potency and drug interaction

feature from each condition by choosing features with the

strongest association (lowest p values) with the +C2/�C2 di-

chotomy based on the Wilcoxon rank-sum test analysis (Data

S4). We used the training and test data split from the BPaL

RF classifier and trained a DT (DT1) to identify the features

and thresholds that were most informative for identifying +C2

combinations (Figure 4A). The rules defined by these features

indicate that the first step in constructing a combination is to

choose a potent drug pair in butyrate (GRinf in butyrate at the

constant time point < �0.38) and then choose a pair that is ad-

ditive/synergistic in cholesterol-high (log2FIC50 in cholesterol-

high at the terminal time point < 0.13; Table 2). Several candi-

date drug combinations were also identified using these rules

as likely to be +C2. The lower complexity of two-feature DT

yields did not alter accuracy when predicting the test set

outcome compared with the RF classifier (83%), demonstrating

that the simplicity of a short ruleset provides an accurate un-

derstanding of how to construct effective combinations based

on minimal information from pairwise measurement in vitro.

The first DT (DT1) used only two features of themany that were

observed to separate +C2 from �C2 combinations, suggesting

that we may be able to write other rulesets. We trained a second

DT (DT2), with an emphasis on dormancy and cholesterol-high

features. DT2was observed to be similar to DT1, with the second

rule (of additivity/synergy in cholesterol-high) being identical.
Cell Reports Medicine 3, 100737, September 20, 2022 7
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Figure 4. Rulesets for assembling +C2 (RMM) drug combinations based on effective drug pairs

(A and B) Scatterplots of two metrics identified to be important for outperforming BPaL, shown as decision tree 1 (A) and an alternative decision tree 2 (B).

Combinations are colored by annotations (green = +C2, orange = �C2). Combinations are plotted separately based on whether they were used in decision tree

model training (circle, left), testing (triangle, middle), or are candidates (square, right). Selected drug combinations are indicated with labels. Regions of the plot

are colored based on the decision tree classification using thresholds (dashed lines) learned during training. White region denotes satisfying rule one, but not rule

two, criteria for +C2 classification. Metric values of selected drug pairs are indicated along plot margins. Rules are written in logic format on the right.
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Conversely, the first decision in DT2 is based on having a highly

synergistic drug pair in dormancy (Figure 4B; log2FIC50 at the

constant time point < �0.84) instead of a potent pair in butyrate

(from DT1; Table 2). The ability to substitute the first rule with

another shows redundancies in predictive signals among the

metrics in the in vitro dataset. Taken together, the DTs define a

set of interpretable rules that can govern the rational design of

effective high-order drug combinations. Notably, the rulesets

are not absolute. Multiple rule variations can instruct the design

of effective +C2 therapies, guided by the availability of the con-

ditions used for the pairwise in vitro measurement (Table 2; for

more DTs in other condition subsets, see Figures S4D–S4H).

We used DT1 and DT2 to predict classification as +C2 or

�C2 on candidate combinations (Figure 4). Many drugs and

drug combinations were over-represented in the combinations

predicted to be +C2 (47 drugs and combinations by Fisher’s

exact test, p < 0.05, after Benjamini-Hochberg multiple hypoth-

esis correction; Data S5). Notably, we observed enrichment of

combinations that include B, Z, clofazimine (C), and SQ109

(Sq), suggesting that these drugs partner well with other drugs.

Prominent in these over-represented combinations is B + Z;

this may be explained by how well B + Z satisfies one rule in

each DT (potent in butyrate and synergistic in dormancy). How-

ever, the likelihood of high-order combinations that include B +
8 Cell Reports Medicine 3, 100737, September 20, 2022
Z to be +C2 increased when another additive or synergistic pair

in cholesterol-high is also included in the combination (Fig-

ure 4A). Stated another way, if B + Z satisfied the first rule

(potent in butyrate or synergistic in dormancy), a combination

would be +C2 (green region) if a different pair contributed to

the second rule (non-antagonism in cholesterol-high). We

trained alternative DTs for other top 3 condition models

(Figures S4D–S4H; Table 2). We observed that potent pairs in

dormancy, butyrate, and standard medium and synergistic

pairs in dormancy, cholesterol-high, and valerate are features

of +C2 combinations. Because we used features that best

distinguished the +C2/�C2 classification, we note that drug in-

teractions metrics favor synergy or antagonism in a growth-

condition-dependent manner (Data S4; Table 2). We also

observed that a ruleset might include both synergy (a synergis-

tic pair in dormancy) and antagonism (mean behavior of antag-

onism among the pairs in acidic medium) (Figure S4G; Table 2);

therefore, synergy as a heuristic may be specific to the growth

condition and whether a dominant drug pair or average pair-

wise drug interaction is considered.

We conclude that when in vitro pairwise data are predictive of

combination treatment outcomes in vivo, simplified and intuitive

heuristics can be developed to define and interpret design prin-

ciples on how to construct combinations from the bottom up.



Table 2. Drug pair rulesets for assembling +C2 (RMM) drug

combinations

Ruleset Pair 1 Pair 2 Figure

1 butyrate

potent pair

GRinf < �0.38

cholesterol-high

additive/synergistic pair

log2FIC50 < 0.13

Figure 4A

2 dormancy

synergistic pair

log2FIC50

< �0.84

cholesterol-high

additive/synergistic

pair log2FIC50 < 0.13

Figure 4B

3 butyrate

potent pair

GRinf < �0.38

dormancy

potent pair

GRinf < �0.012

Figure S4D

4 butyrate

potent pair

GRinf < �0.38

standard

potent overall

GRinf < �0.066

Figure S4E

5 butyrate

potent pair

GRinf < �0.38

valerate

synergistic pair

log2FIC50 < �0.23

Figure S4F

6 dormancy

synergistic pair

log2FIC50

< �0.84

acidic

additive/

antagonistic overall

log2FIC50 > �0.062

Figure S4G

7 dormancy

synergistic pair

log2FIC50

< �0.84

cholesterol-high

additive/

synergistic drug pair

log2FIC50 < 0.13

Figure S4H
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While our RF classifiers leverage a larger dataset to providemore

accurate predictions, a rules-based approach will enable us to

glance at systematic pairwise drug response metrics in

M. tuberculosis to optimize combination therapies without

running classifiers (Table 2). To fully realize the potential of our

drug combination dataset and aid in this ‘‘at-a-glance’’ approach

to combination building, we have provided heatmaps of key pair-

wise drug combination metrics (Figure S5).

Translation of combination drug design principles to
clinical outcomes
The effectiveness and interpretability of the classifiers and rules

for rationally designing combinations support the utility of the

presented in vitro dataset for understanding the drivers of drug

combination efficacy in preclinical mouse models. In principle,

this methodology is agnostic to the in vivo outcomes that the

models will be trained on, as long as the in vitro conditions are

predictive of the infection-site pharmacodynamics. We next

asked whether our in vitro data could inform our understanding

of clinical outcomes of drug treatment. Bactericidal activity is

the standard outcome used in phase 2 studies to evaluate treat-

ments. We compiled a list and annotated the outcome of drug

combinations evaluated for bactericidal activity in phase 2a

and phase 2b clinical trials (Data S2). Clinical outcomes were

scored relative to the SOC, because BPaL is not yet known to

be treatment shortening relative to the SOC for DS TB in clinical

studies (in contrast with the RMM, in which BPaL has been

shown to improve treatment over the SOC). Consistent with pre-

vious studies,18–23 we observed some discordance in the classi-

fication of the effectiveness of drug combinations between RMM
and clinical outcomes (Figure 5A; Data S2). This discordance is

expected because the outcomes (bactericidal versus relapse)

are different and suggest that a model trained for SOC (RMM)

may not necessarily predict combinations with bactericidal effi-

cacy in clinical studies. Two of the six discordant combinations

were HRZM and MRZE; both failed to improve HRZE in the

ReMOX clinical trial21 and are �C1 in our clinical annotation.

We previously annotated both combinations for bactericidal

activity in the BALB/c mouse model as �C1,7 suggesting that

the source of discordance may be the difference in outcome

type. Due to the high cost of misidentifying combinations for

follow-up in clinical trials, developing models and rules that iden-

tify potentially treatment-improving combinations in clinical tri-

als, separate from the preclinical predictions, is highly important.

Furthermore, we expect that refined prioritization of drug combi-

nations for intensive in vivo and dosing studies can be achieved

by combining the predictions from preclinical and clinical

models.

There were too few drug combinations with clinical outcome

scores to evaluate models with a held-out test set. Therefore,

we trained RF classifiers using the same approach applied for

SOC and BPaL RMM and assessed their performance in

cross-validation. We observed high performance (AUC > 0.8,

similar to performances in the RMM) in models using many sub-

sets of conditions (Data S3). Dormancy alone was a predictive

condition (AUC = 0.77; Data S3), suggesting that treating non-

replicating M. tuberculosis is important for identifying effective

drug combinations in humans. As with the BPaL predictions in

the RMM, synergy in dormancy is associated with improved clin-

ical outcomes (Data S4; log2FIC50 dormancy minimum: p = 0.03;

false discovery rate [FDR]: p = 0.41). The three-condition subset

of butyrate + dormancy + cholesterol-high was the highest-per-

forming three-condition model (Data S3), suggesting that the in-

formation in these three conditions may be highly informative for

understanding in vivo drug treatment in the BALB/c mouse

model of TB, as well as in humans. Together, these results sup-

port using the in vitro data to train models that can be used to

predict treatment outcomes in humans.

We generated predictions using the high-performing buty-

rate + dormancy + cholesterol-high model. We observed that

candidate combinations had different predicted classifications

for the SOC RMM and clinical models (Figure 5B), mirroring the

discordance we previously noted (Figure 5A). Many candidate

combinations were predicted to be +C1 for the clinical outcome

(447,�79%; Figure 5B; Data S3), suggesting there may bemany

treatment-improving combinations remaining to be tested using

existing TB drugs.We compared the BPaL (RMM) and SOC (clin-

ical) categorization (Figure S6A) and RF classifiers and found

a weak but significant correlation between their predictions (Fig-

ure S6B; Spearman’s rho = 0.31, p < 0.001). Notably, there were

no combinations predicted (or annotated) to be better than BPaL

in RMM that were also worse than SOC in the clinic, supporting

the use of the RMM for identifying treatment-improving combi-

nations using BPaL as a benchmark.

To define a set of rules for rationally designing clinically effec-

tive drug combinations, we used the DT approach and gener-

ated two example rulesets (Figures 5C and 5D). The clinical rule-

sets require antagonism in butyrate and potency in a lipid-rich
Cell Reports Medicine 3, 100737, September 20, 2022 9
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environment (or synergy in dormancy; Figures 5C and 5D).

Although it is not intuitive to choose combinations with antago-

nistic pairs, we previously identified high-order drug combina-

tion antagonism as important for classifying +C1 drug combina-

tions,7 supporting the notion that in some growth conditions,

average in vitro drug-pair antagonism may be associated with

better outcomes relative to the SOC in both clinical and mouse

studies. In other conditions, particularly in dormancy (Figures 3C

and 5D), synergy should be prioritized. For example, we

observed synergy between H and Z in dormancy (Data S1).

This pair was recently observed to be synergistic in patients

by PET-CT imaging in the first few weeks of clinical treatment.24

For the SOC (clinical) DT, we note that HPZM, the intensive

phase drug combination from study 31 that shortens treatment

time over the SOC in clinical trials,4 satisfies one rule (antago-

nism in butyrate) but barely misses the threshold for the second

rule (potency in cholesterol-high or synergy in dormancy), incor-

rectly predicting it to be�C1. The HPZMDT predictions suggest

that although useful for developing interpretable rules, which

can guide combination design, each DT model may be sensitive

to variations in individual metrics in ways that the RF classifiers

are more robust. However, using either RF or DT models, we

predict that there are treatment-shortening combinations

among the drugs in this 12-drug set (Data S3; Figures 5C and

5D). We anticipate that as more clinical data become available,

we will refine the rulesets and improve prediction accuracy. Us-

ing in vitro drug combination measurements, rules for rationally

designing drug combinations can be written that are interpret-

able and allow for comparisons between human and preclinical

studies.

DISCUSSION

Our original goal in this studywas tomake the prediction of in vivo

outcomes more efficient by factoring high-order combinations

into drug pairs. Classifications based on pairwisemeasurements

increased efficiency for predicting three- and four-way drug

combination outcomes in mouse models of disease relapse

(RMM) by around 10-fold compared with direct DiaMOND mea-

surement of each high-order combination. We introduced a

higher threshold for classifications (better than BPaL) and pre-

dicted outcomes in 536 candidate combinations with no pub-

lished RMM outcomes.

Factorization of high-order combinations into pairwise drug

units enabled us to develop predictive and interpretable models.

We learned that a drug pair could be a building block on which to

assemble high-order combinations and defined rulesets guiding

treatment-improving high-order combination construction. One

such ruleset combines a drug-pair synergistic in the in vitro
Figure 5. Modeling and rational design principals applied to clinical SO

(A) Overlap in +C1(blue) and�C1(red) drug combination categorization between S

between outcome annotation.

(B) Probability scatterplot (P(+C1)) for RMM model predictions and clinical mode

Annotated combinations are colored as in (A). Model training combinations for bo

RMM model and training the clinical model are labeled with diamonds. Candida

(C and D) Scatterplots and alternative rulesets for two metrics identified as imp

(D) trained for clinical bactericidal outcomes. Combinations are plotted and shap
dormancy condition, with another pair potent in a high-choles-

terol growth medium. Although our ML models are more accu-

rate, these simple rules enabled rational combination design.

We found that the principles of combination design in the RMM

translate to clinical outcomes. For example, the clinical and

RMM rulesets included pairs that are synergistic in dormancy

and potent in lipid-rich conditions. This is intuitive and consistent

with the notion that improved treatments will target the most re-

fractory bacteria (dormant) in an infection and aligns with the de-

cadesof preclinical andclinical studies.2,25–27Constructing com-

binations from building-block pairs is harmonious with the

approaches currently used to design preclinical studies and clin-

ical trials; an effective base combination is augmented by addi-

tion of drugs.2,18,21,28–36 Using the available data, we predict

there are treatment-improving combinations in the existing

drug combination space. The design principles presented here

will allowcandidate combination construction ‘‘at aglance’’ using

cost-effect pairwise combination measurement.

The rulesets we define establish a framework for combination

design in experimentally tractable sizes: properties of a drug

pair. We anticipated averaged pairwise data to predict combina-

tion outcome. Instead, properties defining the ‘‘best’’ (e.g., most

potent or most interacting) pair in a combination weremost infor-

mative. Ideally, each objective in a ruleset should be achieved

with a different pair. In this way, each pair can be viewed as a

building block that not only enables us to construct combina-

tions rationally but also to identify how established combinations

may be improved. Our initial rulesets assemble two pairs into

three-way combinations but generally leave a degree of freedom

for choosing a fourth drug. We expect to define the third rule and

enable four-drug combination designwhenmore four-way in vivo

data are available for model training.

The features used in each rule are also specific to the

metric type, e.g., potency or interaction, allowing us to evaluate

whether synergy is a requirement of the best combinations. We

found synergy separates combinations at the BPaL threshold,

especially in dormancy. Classification around the SOC is not

driven by pairwise (this study) or high-order7 drug interactions.

Furthermore, antagonism (not synergy) in in vitro models such

as butyrate increases the likelihood of a combination performing

better than the SOC in vivo. These seemingly disparate rulesmay

reflect thedifferencebetweenachieving treatment efficacy (SOC)

and improving treatment (better than BPaL) or may be indicative

of which populations are easiest to sterilize (potent drug pairs kill

actively growing cells) compared with those where synergy is

necessary (dormancy). Drugs that enhance the effect of each

other could aid in targeting themost refractory cells in an infection

(e.g., dormant/non-replicating).2,25–27,37,38 Further study is

required to evaluate where these rulesets can be understood in
C outcome

OC (RMM) and SOC (clinical) outcomes. Blue/red squares highlight differences

l predictions using the butyrate + dormancy + cholesterol-high condition data.

th RMM and clinical are labeled with circles. Combinations used for testing the

te combinations (without annotations) are labeled with gray squares.

ortant for outperforming the SOC for decision tree 1 (C) and decision tree 2

ed as in Figure 4.
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the drug response in granulomas whereM. tuberculosis residing

inmultiple compartments can respond differentially to treatment.

TB drug regimen design is a lengthy, multi-step process,

including drug discovery, in vivo testing in progressively inten-

sive animal models, toxicity testing, dose optimization, and clin-

ical trials. Tens (but not thousands) of combinations will be pro-

gressed for in vivo and optimization studies. We envision the

experimental and computational framework devised in this

study, supported by other evaluationmethods, can be used early

in regimen development to winnow down the thousands of po-

tential combinations to a priority list for further evaluation using

PK/PD studies and animal testing (Figure S1).
Limitations of the study
Predictive models are only as good as the data on which they

are based, so our ability to make predictions and interpret com-

bination design principles are dependent on the availability of

in vivo and clinical combination data. We anticipate refining

and improving our classifiers with incorporation of new clinical

trial data and in vivo tests of our predictions and combinations

including antibiotics with new target profiles.3 To accommodate

many possible drug combinations early in drug development,

our analyses do not account for differences in drug access sites,

infection sites, or doses. Incorporating dosing and pharmacoki-

netics may improve the predictive ability of models against clin-

ical outcomes. Together, the iterative modeling and systematic

measurement of pairwise drug combinations in validated

in vitro conditions will allow us to use best the rich information

provided by preclinical and clinical studies through parallel

in vitro studies, making bottom-up and top-down coordinated

methods for the rational design of combination therapies for TB.
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Pandas (python package) 45 https://doi.org/10.5281/zenodo.3509134; RRID:SCR_018214
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Bree Al-

dridge (bree.aldridge@tufts.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The published article includes all datasets generated or analyzed during this study.

d All original code is available in this paper’s supplemental information.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial cell lines and culture
A previously transformed autoluminescent strain of theM. tuberculosis Erdman strain was used for all experiments in this study.7 Mtb

wasmaintained using a standard 7H9Middlebrook medium supplemented with 0.2% glycerol, 10%OADC (0.5 g/L oleic acid, 50 g/L

albumin, 20 g/L dextrose and 0.04 g/L catalase), 0.05% Tween-80, and kanamycin (25 mg/mL). Unless noted, all culturing was per-

formed at 37�C with aeration. Cell passaging was performed before reaching OD600 = 0.7.

METHOD DETAILS

In vitro pairwise drug response measurements

To expand the pairwise drug combination response dataset from 10-drugs7 to 12-drugs, we used DiaMOND to measure 2-way dose-

response curveswith sutezolid and SQ109against each other and the 10-drug set. The pairwise datawith sutezolid is new to this study.

Someof theSQ109pairwisemeasureswere reported,14and the remainingcombinationmeasures inothergrowthenvironmentsarenew

to this study. All experiments were performed using the same procedures previously described.7 Briefly, drug response wasmeasured

using an autoluminescent reporter strain of M. tuberculosis Erdman7 (transformed with a single copy chromosomal integration of

pMV306hsp + LuxG1347), andmetrics were averages of at least biological duplicate experiments. DiaMOND requires single- and equi-

potentdrugcombinationdose responses todetermine thepotencyanddrug interactions.A1.5-fold, ten-dose resolutiondose-response

was used for all experiments. SQ109 and sutezolid (non-metabolite form) were provided by Sequella, Inc. Drugs were stored and

dispensed in DMSO using an HPD300e digital drug dispenser.

The base medium of the standard and acidic in vitro models consisted of 7H9 Middlebrook medium supplemented with 10%

OADC (0.5 g/L oleic acid, 50 g/L albumin, 20 g/L dextrose, and 0.04 g/L catalase), 0.05% Tween-80, and 25 mg/mL kanamycin

(to maintain selection of reporter-carrying Mtb). The base medium of the other in vitro models was 7H9 (4.73 g/L) supplemented

with fatty acid-free BSA (0.5 g/L), NaCl (100mM), tyloxapol (0.05%), and 25 mg/mL kanamycin. All in vitromodel media were buffered

to pH7.0 with 100 mM MOPS except acidic (buffered to pH5.7 with 100 mM MES). Carbon sources were added to in vitro model

media to final concentration as follows: acidic and standard (glycerol, 0.2%), butyrate and dormancy (sodium butyrate, 5mM),

valerate (valeric acid, 0.1%), cholesterol (cholesterol, 0.05mM), and cholesterol-high (cholesterol, 0.2 mM).

Mtb were acclimated to in vitromodel growth medium for 2–6 doubling times prior to treatment for the DiaMOND assays. Doubling

time in days were previously determined and are as follows: standard (0.8), acidic (2), butyrate (2), valerate (3), cholesterol-high (4),

cholesterol (7). Acclimated Mtb were seeded at OD600 = 0.05 at 50uL per well into 384-well plates with antibiotics pre-dispensed.

The simple dormancy model is based on the butyrate medium, supplemented with sodium nitrate (5mM), sealed, and cultured without

aeration to lower oxygen levels. After 28days, thesenon-replicatingMtb are plated (20uLperwell) on antibiotic-seededwells, the plates

sealed and incubated. After seven days, 80uL of standardmediumwas added to eachwell, and plateswere incubatedwith aeration for

recovery and growth inhibition measurements.
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Growth inhibition was measured by OD600 (for all conditions except dormancy) or luminescence (dormancy) using a Synergy Neo2

Hybrid Multi-Mode Reader. The constant and terminal times are as follows in days, respectively: standard (4.2), acidic (6, 12), buty-

rate (6, 10), valerate (9, 15), cholesterol-high (12, 24), cholesterol (7, 28), dormancy (2, 4 into recovery). Growth inhibition measure-

ments were processed, and dose-response metrics were calculated using custom scripts written in MATLAB.

Drug pair dataset and data structure
For modeling and analysis, we used a 12-drug, 2-way drug response dataset comprised of data from a 10-drug combination dose-

response DiaMOND dataset,7 a DiaMOND study of drug interactions with SQ109,14 and newmeasurements (sutezolid combinations

and select SQ109 combinations). Drug pair data were selected from the datasets and used the dose-response metrics (AUC25, Einf,

GRinf; higher (positive) AUC25 and Einf values are potent and lower (negative) GRinf values are potent) and drug interactions (log2FIC50,

log2FIC90; negative and positive values indicate synergy and antagonism, respectively) from the constant and terminal time points.

These drug pair metrics were aggregated via the minimum, maximum, and mean summary statistics for each high-order drug com-

bination. Drugs with the same mechanism of action were excluded from any drug pair and high-order drug analysis (i.e.,

linezolid + sutezolid or rifampicin + rifapentine are not in candidate combinations).

in vivo annotation of drug combinations

Comparing drug treatment outcomes between studies necessitated an annotation scheme relatively insensitive to differences in study

methodologies, including infection inoculum, drug dosing, treatment time, and Mtb strain. We initially chose comparison to the SOC

because most studies include the SOC treatment for evaluating drug treatment outcomes and this comparison is generally accepted

as a benchmark to determine if a drug combination should continue to be followed up. Annotations of drug combinations for the

SOCoutcome (+C1/-C1)were taken fromapreviousstudy.7 Inbrief, combinationswith lower relapse (increasedefficacy), similar relapse

percentagewith shorter treatment time (treatment shortening), or both, over theSOCwereannotatedas+C1.Combinationswith equiv-

alent orworse outcomesby these criteria comparedwith theSOCwere annotatedas -C1. Combinations in studies includingSOC treat-

ments enabled direct annotation. When no SOC treatment was included in a study, an inferred combination annotation was attempted

byusing a combination from the study thatwas annotated in a separate, direct comparison toSOCstudy asa cross-study reference. If a

combinationwas testedatmultipledoses, themostefficaciousdosewasused for annotation.Combinations remainedunannotated if no

director inferredcomparison toSOCcouldbemade.Combinations testedatmultipledoseswereannotatedbasedon thebest perform-

ing dose. The same studies and annotation strategy were used to annotate the BPaL outcome (+C2/-C2) with BPaL as the benchmark

instead of the SOC.

Clinical studies evaluating the bactericidal activity of drug combinations using culture negativity or time to positive (TTP) at different

intervals during treatment were annotated as described above (Data S3). The conclusions about differences in drugs and combinations

effects were shown to be smaller but comparable for many treatments at 14 days (outcome in phase 2a trials) as compared to 56 days

(outcome inphase2b trials).48,49Twelvecombinationswereevaluated inPhase2b trials forbactericidal activityusingeitherculturenega-

tivity or TTP culture microbiological outcomes after eight weeks of treatment. To increase the number of combinations for training ma-

chine learningmodels and because of the high clinical efficacy of bedaquiline-containing combinations, we also included one Phase 2a

study,50where threebedaquiline-containingcombinations (B+C+Pa+Z,B+C+Pa,B+C+Z)were tested for earlybactericidal activity

after 14 days of drug treatment using the TTP outcome. We confirmed that including these combinations did not skew our candidate

prediction results by comparing predictions to those made by a model that excluded these three combinations (R = 0.96 Pearson cor-

relation, Figure S7).

Data processing, analyses, and visualization
All data processing, computational analyses, and visualizations were performed in R (v4.0.1) using the tidyverse environment pack-

ages (v1.3.0), except heatmaps that were performed in python (v3.5). The readxls (v1.3.1) and openxlsx (v4.1.4) packages were used

for data table import and export. The prcomp function from the stats package was used for PCA. Features with more than 35%

missing data points were excluded from machine learning and PCA. Mean value imputation51 was used for the remaining features

with missing data. All features were mean-centered and scaled to unit variance prior to PCA. The ggplot2 (v3.3.0), ggpubr

(v0.3.0), and ggrepel (v0.9.1) packages were used for all visualizations. For heatmaps, the xlrd (v2.0.1) was used to import data,

pandas (v0.24.2) for data preparation, andMatplotlib (v3.0.2) to visualize. The scripts used for the analysis and visualization of results

are provided in the supplemental information (Data S6).

Machine learning
Allmachine learning tasks, includingmodel trainingandevaluation in cross-validation,wereperformedusing the ‘‘machine learning inR’’

(mlr v2.17.0) packagewith individual learners loaded fromadditional packages (random forest, randomForestSRC (v2.9.3); Bayesian ad-

ditive regression tree, bartMachine (v1.2.6); extreme gradient boosting, xgboost, (v1.4.1.1); k-nearest neighbor, kknn (v1.3.1); logistic

regression, stats (v4.0.1); naı̈ve Bayes, naiveBayes (v0.9.7); neural net, neuralnet (v1.44.2)). Modelswere evaluated on a 30%proportion

of data (test) withheld from training. The test/training split was selected by random 30/70% partitioning of the data ten times and iden-

tifying a representative partition that had closest estimatedmodel performance to themean of the ten iterations (Data S3).Where appro-

priate, model performance was also estimated via cross-validation with a Monte-Carlo resampling strategy that partitioned the training
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(70%proportion) data into further 70/30% training/test splits across ten iterations. TheYouden’s J52was used to select the optimal clas-

sification threshold based on training data.

Decision tree and ruleset determination
Decision trees were constructed in R using the rpart function (rpart package, v4.1–15), and rules and thresholds were analyzed using

the rpart.plot package (v3.1.0). The minimum number of combinations for splitting a node was set to two, and the minimum terminal

leaf size was set to five (RMM SOC and BPaL) or two (clinical SOC). Trees were allowed to grow fully.

‘‘Leave-one-drug-out’’ analysis
For each of the 12 drugs, annotated combinations containing that drug were withheld from model training. Models were trained with

the remaining annotated combinations, and performance on data containing the withheld drug was determined.

Drug pair enrichment analysis
To determine if + C2 combinations contained signature sets of drugs, we tested for over-representation in the +C2 candidate drug

combinations using Fisher’s Exact Test. We performed tests for each drug, drug pair, and three-drug combination and controlled the

false discovery rate (FDR).53

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Statistical analyseswereperformedusing thestats,g1gpubr (v0.3.0), and rstatrix (v0.5.0)packages inR.Statistical significance threshold

was chosen to be less than 0.05, unless otherwise indicated. The Wilcoxon rank-sum test was used to compare mean values across

outcome groups. The Benjamini-Hochberg method was used to control the false discovery rate (FDR) for multiple hypothesis testing.53

Pearson’s correlation was used to measure linear correlations. Fisher’s Exact Test was used to test for over-representation analyses.
e4 Cell Reports Medicine 3, 100737, September 20, 2022
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Figure S1 

 

Figure S1. Anticipated positioning of pairwise modeling and predictions in the development of new TB 
combination treatments, related to Figure 1. Diagram of TB regimen development envisioned as a tiered pipeline 
from drug discovery (top tier), to prioritization of combinations using the modeling approach presented in the 
current manuscript (middle tier), to deep study of drug combinations, including PK studies, dose optimization, 
regimen design and clinical trials (bottom tier). The size of each tier indicates the relative number of drug 
combinations to be evaluated from the most at the top to the least at the bottom. PK, pharmacokinetic. A, B, C, D, 
W, X, and Y indicate hypothetical new drugs. HRZ is the three-drug SOC and +C1 is annotation for better than the 
SOC. 

  



Figure S2 

 

Figure S2.  Pairwise metrics distinguish higher-order combination in vivo outcomes, related to Figure 2. (A) 
Separation of SOC annotated drug combinations by PCA. Projection of the pairwise in vitro combination data from 
all in vitro models onto PCs 1 and 2 (top) and PCs 1 and 3 (bottom). Points are colored by SOC outcome in the 
RMM: blue=+C1, better than standard of care; red=-C1, standard of care or worse. Percent variance explained by 
each PC indicated in the axis title. Outer box and whisker plots show the distributions of combination classes along 
each PC. (B) Excluding SOC from model training. ROC and PR curves associated for SOC random forest classifiers 
with HRZ and HRZE excluded from model training. ROC (top) and PR (bottom) curves are labeled as in Figure 2A. 
(C) Higher-order drug combination prediction probabilities are influenced by more than the best pair in a 
combination. Scatter plot of 3- and 4-drug combination prediction probabilities compared with the highest 
probability drug pair in each combination. Dashed line indicates the identity line where the probability is the same 
for both higher-order combination and drug pair. (D) Separation of BPaL annotated drug combinations by PCA. The 
same pairwise in vitro combination data projection onto PC space presented in panel A colored by BPaL outcome in 
the RMM: green=+C2, better than BPaL; orange=-C2, BPaL or worse. (E) and (F) Individual time-point model 
performance. ROC and PR curves associated with SOC random forest classifiers (E) and BPaL random forest 
classifiers (F) with constant time point (left) and terminal time point (right) only data used in model training and 
testing. ROC (top) and PR (bottom) curves are labeled as in Figure 2A. 
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Figure S3 

 

Figure S3. ML model performance using subsets of in vitro conditions, related to Figure 2. (A) Model performance 
across different numbers of in vitro conditions. Scatter plots of model training AUC for SOC and BPaL classifiers 
for models trained with data from indicated number of in vitro conditions (one to seven). Median performance of 
every model is shown with black dashed lines (SOC AUC=0.83, BPaL AUC=0.88). (B-G) Top three-condition 
model performance and predictions. Test performance for the six highest performing three-condition models during 
training: (B) butyrate+standard+valerate, (C) dormancy+cholesterol-high + standard, (D) 
butyrate+dormancy+standard, (E) acidic+dormancy+cholesterol-high, (F) acidic+cholesterol+dormancy, (G) 
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butyrate + dormancy + cholesterol-high. ROC (top) and PR (bottom) curves are labeled as in Figure 2A. Probability 
scatter plots are on the right and labeled as in Figure 2D. (H) and (I) Contribution of conditions to model 
performance. (H) Scatter plots of training performance for models without the indicated condition compared to 
models including the indicated condition. Change in model performance by inclusion of the condition is indicated by 
color (increased (blue), decreased (red), or indifferent (grey)). Dashed line indicates the line of “indifference”, where 
model performance does not change with or without indicated condition. Single condition training performance 
indicated above plot and with solid line. Percentage of models with increased or decreased performance are shown. 
(I) Model performance density plot of models with (green) and without (red) butyrate+dormancy+cholesterol-high 
(red). 
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Figure S4. Individual feature univariate and decision tree analyses, related to Figure 3 and 4. (A-C) Univariate 
analysis of features using combined training and test data. Univariate feature analysis in SOC and BPaL models. (A) 
Box plots showing the distribution of values for drug interaction (log2FIC50 and log2FIC90), and drug potency (Einf, 
GRinf, and AUC25 based on BPaL (green = +C2 and yellow = -C2) outcome. (B) Scatter plot of p-values for the 
Wilcoxon Rank Sum test evaluated for predicting SOC (-C1 vs +C1) and BPaL (-C2 vs +C2) outcomes. Features are 
colored by in vitro condition and shaped by metric type (circle, AUC25; square, Einf; downward triangle, GRinf). P-
values are corrected for multiple hypothesis testing within each outcome group (e.g., corrected for SOC comparison 
separate from BPaL comparison). Dashed lines show p=0.05. Features with FDR p-values <0.05 are annotated with 
extra information such as time (C or T for constant or terminal, respectively) and the summary statistic type (min, 
mean, or max). Linear regression line (solid black), confidence interval (shaded region), Pearson correlation 
coefficient (R) and associated p-value are indicated on plot. (C) Scatter plot of p-values from the Wilcoxon rank-
sum tests contrasting values of individual drug interaction features across SOC (-C1 vs. +C1) and BPaL (-C2 vs. 
+C2) outcomes. Plot elements are analogous to those in panel B. Features are shaped by metric type (upward 
triangle, log2FIC90; diamond, log2FIC50). (D-H) Alternative ruleset scatter plots. Scatter plots of two metrics from 
each subset of conditions identified to be important for outperforming BPaL for each subset of conditions: (D) 
butyrate+dormancy+choleterol-high, (E and F) butyrate+standard+valerate, (G and H) 
acidic+dormancy+cholesterol-high. Plots are labeled as in Figure 4. Combinations are separated into those that were 
used in decision tree model training (circle, top-left), testing (triangle, top-right), or are candidates (square, bottom-
left). Selected drug combinations are indicated with labels. Plot regions are colored based on the decision tree 
classification using thresholds (dashed lines) learned during training. Selected drug pair metric values are indicated 
along plot margins. Logic formatted rules are written in the bottom-right of each panel. 

 



Figure S5 

 

Figure S5. “At-a-glance” drug pair in vitro metric heatmaps, related to Figure 4. Heatmap of drug pair data for 
selected drug interaction (A, C, E) and potency (B, D, F) features for the conditions butyrate (A, B), dormancy (C, 
D), and cholesterol-high (E, F). Drugs are indicated along plot margins using abbreviations as in Table 1. Drug pair 
data are colored by their values for the indicated metric and condition.  
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Figure S6 

 

Figure S6. RMM predictions help stratify clinical SOC predictions, related to Figure 5. (A) Overlap in drug 
combination categorization between BPaL (RMM) and SOC (clinical) outcomes. Green/Blue and Orange/Red 
squares indicate treatment improvement agreement (+C2/+C1) between outcomes. Yellow/Blue and Green/Red 
squares highlight treatment improvement differences between outcome annotation (+C2/-C1 or -C2/+C1). (B) 
Probability scatter plot for BPaL model predictions (+C2 probability) and clinical model predictions (+C1 
probability) using the butyrate+dormancy+cholesterol-high condition data. Annotated combinations are colored by 
clinical outcome when treatment improvement agrees, or split color is shown as in panel A. Model training 
combinations for both BPaL and clinical are labeled with circles. Combinations used for testing the BPaL model and 
training the clinical model training are labeled with diamonds. Candidate combinations (without annotations) are 
labeled with grey squares, and the number and percent of candidates in quadrants are indicated.  
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Figure S7 

 

Figure S7. Prediction correlation from clinical models with and without Phase 2a trial combinations, related to 
Figure 5. Scatter plot of prediction probabilities from model trained with only Phase 2b trial combinations (12 
combinations) and model trained with Phase 2a and Phase 2b trial combinations (15 combinations). Annotated 
combinations used for model training are indicated with circles (Phase 2b) and triangles (Phase 2a). Candidate 
combinations are in grey boxes. Linear regression line, Pearson correlation coefficient (R), and associated p-value 
are shown.  
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