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Abstract

Ordinary differential equation (ODE) models are widely used to study biochemical reactions

in cellular networks since they effectively describe the temporal evolution of these networks

using mass action kinetics. The parameters of these models are rarely known a priori and

must instead be estimated by calibration using experimental data. Optimization-based cali-

bration of ODE models on is often challenging, even for low-dimensional problems. Multiple

hypotheses have been advanced to explain why biochemical model calibration is challeng-

ing, including non-identifiability of model parameters, but there are few comprehensive stud-

ies that test these hypotheses, likely because tools for performing such studies are also

lacking. Nonetheless, reliable model calibration is essential for uncertainty analysis, model

comparison, and biological interpretation.

We implemented an established trust-region method as a modular Python framework

(fides) to enable systematic comparison of different approaches to ODE model calibration

involving a variety of Hessian approximation schemes. We evaluated fides on a recently

developed corpus of biologically realistic benchmark problems for which real experimental

data are available. Unexpectedly, we observed high variability in optimizer performance

among different implementations of the same mathematical instructions (algorithms). Analy-

sis of possible sources of poor optimizer performance identified limitations in the widely

used Gauss-Newton, BFGS and SR1 Hessian approximation schemes. We addressed

these drawbacks with a novel hybrid Hessian approximation scheme that enhances opti-

mizer performance and outperforms existing hybrid approaches. When applied to the cor-

pus of test models, we found that fides was on average more reliable and efficient than

existing methods using a variety of criteria. We expect fides to be broadly useful for ODE

constrained optimization problems in biochemical models and to be a foundation for future

methods development.
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Author summary

In cells, networks of biochemical reactions involving complex, time-dependent interac-

tions among proteins and other biomolecules regulate diverse processes like signal trans-

duction, cell division, and development. Precise understanding of the time-evolution of

these networks requires the use of dynamical models, among which mass-action models

based on ordinary differential equations are both powerful and tractable. However, for

these models to capture the specifics of a particular cellular process, their parameters must

be estimated by minimizing the difference between the simulation (of a dynamical vari-

able such as a particular protein concentration) and experimental data (this is the process

of model calibration). This is a difficult and computation-intensive process that has previ-

ously been tackled using a range of mathematical techniques whose strengths and weak-

nesses are not fully understood. In this manuscript, we describe a new software tool,

fides, that makes rigorous comparison of calibration methods possible. Unexpectedly,

we find that different software implementations of the same mathematical method vary in

performance. Using fides, we analyze the causes of this variability, evaluate multiple

improvements, and implement a set of generally useful methods and metrics for use in

future modeling studies.

1 Introduction

Many cellular biochemical networks exhibit time-varying responses to external and internal

stimuli. Modeling networks requires using dynamical models that capture key features of these

networks at the level of individual bio-molecules but remain computationally tractable. Devel-

oping and testing these models requires time-resolved experimental data, but these datasets

are usually severely limited, particularly for mammalian cells: only a subset of model species

(e.g., proteins) are typically measured (observed), and these measurements are usually made at

discrete timepoints. To partially compensate for the sparsity of measurements, the experimen-

tal system is typically observed under a range of conditions that differ in the strength of the

stimulus and the presence or absence of inhibitory drugs and genetic mutations.

Given these challenges, mass-action biochemical systems have emerged as an effective

means of modeling the temporal evolution of a wide range of cellular networks [1]. Mass

action biochemistry is a continuum approximation (i.e., one in which a large number of well-

mixed molecules are present in each reaction compartment) that can be modeled by ordinary

differential equation (ODE) models. Although cells are not well-mixed systems, ODE model-

ing can be highly effective for describing biochemical processes in both eukaryotic and pro-

karyotic cells [2]. Few parameters in these models, e.g., the initial reactant concentrations and

rate constants, are known a priori and must instead be estimated from the (often limited) data.

Estimation is commonly formulated as an optimization problem, where the objective function

describes the discrepancy between a given solution to the ODE and experimental data. Mini-

mizing this discrepancy can be computationally demanding due to the numerical integration

required when evaluating the objective function and its derivatives [3]. Moreover, optimiza-

tion is complicated by the wide range of time scales and intrinsic non-identifiability of many

biochemical models (a property related to their “sloppiness” [4]) and the structure of the

experimental data.

Efficiently finding robust solutions to the optimization problem is essential for model anal-

ysis, including prediction of unseen conditions and attempts to understand the logic of the

underlying biochemical system [5]. Optimized parameter values are often used to initialize
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model analysis, such as uncertainty quantification via the profile likelihood or sampling

approaches [6, 7]. Similarly, parameter optimization is required when models are compared

based on goodness of fit, using measures such as Akaike information criterion (AIC) or

Bayesian information criterion (BIC), or when other complexity-penalizing methods are

applied [8, 9].

In general, the optimization problem for ODE models is non-convex, resulting in few theo-

retical guarantees of convergence when numerical optimization is employed. It is therefore

necessary to rely on empirical evidence to select appropriate optimization algorithms for any

specific class of problems [3, 10]. With respect to optimization in general, parameter estima-

tion for ODE-based biochemical models belongs to an uncommon class of problems having

four characteristic properties: (i) the optimization problem is often ill-posed due to parameter

non-identifiability; (ii) optimization is computationally intensive, involving tens to hundreds

of estimated parameters, yet the problems do not qualify as “high-dimensional” problems in

the broader optimization literature, since, for example, there is rarely concern that the Hessian

cannot be stored in memory; (iii) computation time for numerically solving the optimization

problem is dominated by evaluation of the objective function and its derivatives whereas com-

putation time required for a proposed parameter update itself is negligible; (iv) since models

are inexact and experimental data is noisy, the residual values between simulation and data

may be much larger than zero, even at the global minimum of the optimization problem (such

problems are commonly called non-zero residual problems). The existing benchmarks for gen-

eral purpose optimization, such as the CUTE(r/st) [11–13] set of benchmarks, do not cover

models having these four characteristics. Thus, domain-specific benchmarks are required to

select optimal optimization algorithms.

Only two collections of models and accompanying experimental data have been proposed

as benchmark problems in the literature to date. Villaverde et al. [14] proposed a set of 6 pub-

lished models covering metabolic, developmental and signaling models in different organisms,

but only two problems include real experimental data. More recently, Hass et al. [15] proposed

a set of 20 published models covering signal transduction, immunological regulation, and epi-

genetic effects in a variety of organisms, all with real experimental data. The models in Hass

corpus are small to medium sized, making them computationally tractable, but they are biolog-

ically realistic and the basis of a wide variety of previously published biological discoveries.

The data are also realistic in their inclusion of Western blots, flow cytometry, and immunoflu-

orescence microscopy. As mentioned above, such data typically provide indirect measure-

ments of a subset of molecular species. Moreover, measurements are noise-corrupted and

limited in time resolution, necessitating the use of data from multiple experimental conditions

and the introduction of parameter dependent observable functions. Unfortunately, this pro-

hibits the application of more efficient calibration techniques, such as quasi-linearization

methods [16, 17] that require direct observation of all model species. Both the structure of bio-

chemical models and limitations in the data impose a non-identifiability that results in param-

eter optimization problems that are not well-posed in a mathematical sense, violating a crucial

assumption of many general-purpose optimization algorithms. For these reasons, the Hass

corpus et al. [15] represents a unique a powerful resource for the evaluation of optimization

methods for biochemical models under realistic conditions of varying data-richness and

parameter identifiability.

Trust-region methods initialized from hundreds to thousands of random initial parameter

values (often referred to as “multi-start”) have performed well for a broad set of biochemical

ODE models [15, 18]. Trust-region methods are versatile methods that do not make any

assumption about underlying model and data structure except that the objective function

must be sufficiently smooth. They use local (quadratic) approximations of the objective
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function to propose parameter updates and then iteratively refine the local neighborhood in

which the local approximation is expected to adequately recapitulate the shape of the true

objective function, i.e. the trust-region [19]. Popular implementations of trust-region methods

are available in the MATLAB optimization toolbox and the scipy Python optimization module.

However, for many problems encountered in biology, including low dimensional biochemical

models with as few as 20 parameters, these optimizers do not consistently converge to parame-

ter values that yield similar values for the objective function [15], strongly suggesting failure to

reach a global optimum—or even a local optimum. For example, the benchmark study by

Hass et al. performed optimization for a model based on work of Fujita et al. [20], which

describes Epidermal Growth Factor (EGF)-mediated activation of the Protein Kinase B path-

way (also known as the PI3K/AKT pathway). Hass et al. found that the difference in negative

log-likelihood between the best and second best parameter values was >5, exceeding the statis-

tical threshold for model rejection according to AIC and BIC criteria [21]. Model selection is

challenging in these cases, because poor optimizer performance could easily lead to the errone-

ous rejection of a model if the starting point that yields the best optimization run was omitted.

More generally, “optimal” solutions of parameter values that yield inconsistent objective

function values, i.e., values that do not cluster in a small set of distinct values (Fig 1A), can

indicate either (i) that the optimization converged on a few of the many critical points (local

minima, saddle points) (Fig 1B right) or (ii) that the optimization terminated before conver-

gence to any (local) minimum was achieved (Fig 1B left) [22]. Many of the problems of interest

in biochemistry and cell biology involve ODE models and datasets that have multiple local

minima, which can be a result of curvature of the model manifold [23]. In these cases, repeated

convergence of multiple optimization runs on a small set of similar objective function values

may not represent a problem with the optimization approach itself, but rather arise from

model non-identifiability. This setting contrasts with the situation where the objective function

values are inconsistent, despite a large number of runs that converge on one or a set of minima

(setting rigorous thresholds for what is considered “consistent” is a tricky problem in and of

itself, which we revisit this later in the manuscript). In such a situation, it is unclear whether

optimization is non-convergent or the objective function is very “rugged” [3] with many local

minima, not all of which may have been identified.

Non-convergent optimization can also result from noisy model simulations, in which lax

integration tolerances result in inaccurate numerical evaluation of the value of the objective

function and its gradient [24]. Inaccurate gradients often result in poor parameter update

proposals, slowing the search in parameter space. Inaccurate objective function values can

also result in incorrect rejection of parameter updates, erroneously suggesting convergence

to a minimum and leading to premature termination of optimization. For example,

Fig 1. Illustration of final objective function values consistency and possible objective function landscapes. A:

Waterfall plot with examples of consistent (blue) and inconsistent (red) final objective function values. B: Possible

objective function landscapes that could explain the waterfall plots in A.

https://doi.org/10.1371/journal.pcbi.1010322.g001
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Tönsing et al. [24] found that optimization runs that yielded similar, but inconsistent objective

function values were often located in the neighborhood of the same local minima, suggesting

that these runs had been prematurely terminated. The authors suggested that a nudged elastic

band method, which aims to identify shortest connecting paths between optima, might be

effective in improving consistency.

Premature termination can also arise from problems with the optimization method itself.

Dauphin et al. [25] found that saddle points are prevalent in the objective functions of neural

network models and optimization methods that do not account for directions of negative cur-

vature may perform poorly in the vicinity of saddle points. However, neither the prevalence of

saddle points nor their impact on premature optimizer termination has been investigated in

the case of biochemical ODE models. Lastly, Transtrum et al. [23] suggested that the use of

Gauss-Newton Hessian approximations might not work well for sloppy biochemical models.

Sloppiness is encountered when the objective function Hessian has a broad eigenvalue spec-

trum, which results in parameter non-identifiability and an ill-posed optimization problem.

Sloppiness is believed to be a universal property of biochemical models [4]. However, the geo-

desic acceleration proposed by Transtrum et al. [23] to address the limitations of Gauss-New-

ton Hessian approximation has not been widely adopted, likely due to the complexity of its

implementation and the computational cost of determining directional second-order

derivatives.

Overall, the results described above show that early optimizer termination is a recurrent

issue with ODE-based biochemical models and that it has a variety of causes. However, a com-

prehensive evaluation of this issue on a set of relevant benchmark problems, as well as develop-

ment and testing of methods to identify or resolve the underlying causes of optimization

failures are missing. In principle, this could be addressed by adapting and then combining sev-

eral optimization algorithms. For example, it might be possible to resolve issues with the

Gauss-Newton Hessian approximation by using alternative approximation schemes, such as

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [26–29] scheme. Issues with saddle points

could be resolved by employing symmetric rank-one (SR1) [30] approximations that account

for negative curvature directions. However, many optimization algorithms were written

decades ago and are difficult for practitioners familiar with contemporary programming lan-

guages such as Python to customize or extend. Many existing methods lack reporting func-

tions that provide user with statistics about individual optimization traces. These limitations

make it difficult to diagnose problems with optimization and to resolve them with algorithmic

improvements.

To tackle these and other challenges associated with ODE model optimization, this paper

re-implements a standard trust-region algorithm in Python and uses it to study a range of

hypotheses about the causes and potential solutions for poor optimizer performance. We find

that the use of an inaccurate Hessian approximation is a major contributor to poor optimiza-

tion performance and therefore propose a novel hybrid Hessian approximation scheme. We

demonstrate that this scheme outperforms existing approaches on a the best available corpus

of benchmark biochemical network problems.

2 Materials and methods

For the purpose of this study, we considered four different optimizers that all implement the

interior-trust-region algorithm proposed by Coleman and Li [31]: fmincon, referring to the

MATLAB function of the same name and with trust-region-reflective as algo-

rithm and ldl-factorize as subproblem algorithm, lsqnonlin, referring to the

MATLAB function of the same name, ls_trf, referring to the scipy function
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least_squares with trf algorithm, and fides, the new implementation developed in

the current manuscript. Below we describe algorithmic and implementation details of fides
(a summary is provided in Table 1), and of the benchmark problems we used to evaluate these

algorithms.

2.1 Model formulation

When applied to a biochemical system, an ODE model describes the temporal evolution of

abundances of nx different molecular species xi. The temporal evolution of x is determined by

the vector field f and the initial condition x0:

_x ¼ f ðt; x; θ Þ; xðt0Þ ¼ x0ðθÞ: ð1Þ

Both f and x0 depend on the unknown parameters θ 2 Y � Rny such as catalytic rates or

binding affinities. Restricting optimization to the parameter domain Θ can constrain the

parameter search space to values that are realistic based on physicochemical theory and helps

prevent numerical integration failures associated with extreme parameter values. For most

problems, Θ is the tensor product of scalar search intervals (li, ui) with lower and upper bounds

li< ui that satisfy li; ui 2 R [ f� 1;1g for every parameter θi.

Experiments usually provide information about observables y which depend on abun-

dances x and parameters θ. A direct measurement of x is usually not possible. Thus, the depen-

dence of observables on abundances and parameters is described by

yðt; θ Þ ¼ hðxðt; θÞ; θÞ: ð2Þ

Implementation in this study: All methods described here use CVODES from the SUNDI-

ALS suite [32] for numerical integration of model equations. CVODES is a multi-step implicit

solver for stiff- and non-stiff ODE initial value problems.

2.2 Optimization problem

To generate models useful in the study of actual biological systems, model parameters θ must

be inferred from experimental data, which are typically incomplete and subject to measure-

ment noise. A common assumption is that the measurement noise for nt time-points tj and ny

observables yi is additive, independent and normally distributed for all time-points:

�yij ¼ yiðtj; θ Þ þ �ij; �ij�
id N ð0; s2

ijðθÞÞ: ð3Þ

Thus, model parameters can be inferred from experimental data by maximizing the likeli-

hood, yielding a maximum likelihood estimate (MLE). However, the evaluation of the likeli-

hood function involves the computation of several products of large terms, which can be

Table 1. Feature overview for different trust-region optimization implementations. The non least-squares column indicates whether the method is applicable to non

least-squares problems. The free column indicates whether the implementation is freely available or proprietary software.

Optimizer Subspace Non least-squares BFGS/SR1 Programming Language free

lsqnonlin S2D □ □ MATLAB □
fmincon S2D ✓ □ MATLAB □
ls_trf Rny , S2D □ □ Python ✓

fides Rny , S2D ✓ ✓ Python ✓

https://doi.org/10.1371/journal.pcbi.1010322.t001
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numerically unstable. Thus, the negative log-likelihood

Jðθ Þ ¼
1

2

Xny

i¼1

Xnt

j¼1

log 2ps2

ijðθÞ
� �

þ
�yij � yiðtj; θÞ

sijðθÞ

 !2

ð4Þ

is typically used as objective function that is minimized. As the logarithm is a strictly monoton-

ically increasing function, the minimization of J(θ) is equivalent to the maximization of the

likelihood. Therefore, the corresponding minimization problem

θ� ¼ argmin
θ2Θ

JðθÞ; ð5Þ

will infer the MLE parameters. If the noise variance s2
ij does not depend on the parameters θ,

the objective function (4) has a weighted least-squares formulation. As we discuss later, prop-

erties of a least-squares formulation can be exploited in specialized optimization methods.

Optimizers that do not require least-squares structure can also work with other noise

models [33].

Implementation in this study: For the MATLAB optimizers fmincon and lsqnonlin,

the objective function and its derivatives were evaluated using data2dynamics [34] (commit

b1e6acd), which was also used in the study by Hass et al. [15]. For the Python optimizers

ls_trf and fides, the objective function and its derivates were evaluated using

AMICI [35] (version 0.11.23) and pyPESTO (version 0.2.10).

2.3 Trust-region optimization

Trust-region methods minimize the objective function J by iteratively updating parameter val-

ues θk+1 = θk + Δθk according to the local minimum

Dθk ¼ p�k ¼ argmin
p

mkðpÞ s:t: kpk� Dk ð6Þ

of an approximation mk to the objective function. Δk is the trust-region radius that restricts the

norm of parameter updates. The optimization problem (6) is known as the trust-region sub-

problem. In most applications, a local, quadratic approximation

mkðpÞ ¼ fk þ gT
k pþ

1

2
pTBkp ð7Þ

is used, where fk = J(θk) is the value, gk =rJ(θk) is the gradient and Bk =r2J(θk) is the Hessian

of the objective function evaluated at θk.

The trust-region radius Δk is updated in every iteration depending on the ratio ρk between

the predicted decrease � mkðp�kÞ and actual decrease in objective function value DJ ¼
JðθkÞ � Jðθk þ p�kÞ [19]. The step is accepted if ρk exceeds some threshold μ� 0. When bound-

ary constraints (on parameter values) are applied, the predicted decrease is augmented by an

additional term that accounts for the parameter transformation (see Section 2.6) [31].

Implementation in this study: All optimizers evaluated in this study use μ = 0 as accep-

tance threshold. They all increase the trust-region radius Δk by a factor of 2 if the predicted

change in objective function value is accurate (ρk> 0.75) and the local minimum is at the edge

of the trust region (kp�k k> 0:9Dk for fmincon, lsqnonlin and fides, kp�k k> 0:95Dk for

ls_trf). All optimizers decrease the trust-region radius if the predicted change in objective

function value is inaccurate (ρ< 0.25), but fmincon, lsqnonlin and fides set the trust-

region radius to
minðDk;kp�kkÞ

4
, while ls_trf sets it to

Dk
4

.
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When the predicted objective function decrease is negative (� mkðp�kÞ < 0, i.e., an increase

in value is predicted) fides and ls_trf set ρk to 0.0. Positive values for mkðp�kÞmay arise

from the augmentation accounting for boundary constraints. Setting ρk to 0.0 prevents inad-

vertent increases to Δk or step acceptance when � mkðp�kÞ and ΔJ are both negative. However,

in contrast to fides, ls_trf does not automatically reject respective step proposals and

only does so if ΔJ< 0. fmincon and lsqnonlin only reject step proposals with ΔJ< 0, but

do not take the sign of mkðp�kÞ into account when updating Δk.

When the objective function cannot be evaluated—for ODE models this is typically the

result of an integration failure—all optimizers decrease the trust-region radius by setting it to
minðDk;kp�kkÞ

20
(fmincon and lsqnonlin),

minðDk;kp�kkÞ
4

(fides) or
Dk
4

(ls_trf). These subtly

nuanced differences in the implementation are likely the result of incomplete specification of

the algorithm in the original publication [31]. In particular, handling of mkðp�kÞ > 0, which

does not occur for standard trust-region methods, was not described and developers needed to

independently work out custom solutions.

2.4 Hessian approximation

Constructing the local approximation (7) that defines the trust-region subproblem (6) requires

the evaluation of the gradient gk and Hessian Bk of the objective function at the current param-

eter values θk. While the gradient gk can be efficiently and accurately computed using first

order forward or adjoint sensitivity analysis [36], it is computationally more demanding to

compute the Hessian Bk [37]. Therefore several approximation schemes have been proposed

that approximate Bk using first order sensitivity analysis. In the following we will provide a

brief description of approximation schemes considered in this study, an overview of schemes

and their characteristics is provided in Table 2.

Gauss-newton approximation: The Gauss-Newton (GN) approximation BðGNÞ
k is based on

a linearization of residuals rij

rijðθ Þ ¼
�yij � yiðtj; θÞ

sijðθÞ
BðGNÞ

k ¼
1

2

Xny

i¼1

Xnt

j¼1

rrijðθkÞrrT
ij ðθkÞ; ð8Þ

which yields a symmetric and positive semi-definite approximation to Bk and does not account

for negative curvature. At the maximum likelihood estimate, B(GN) is equal to the negative

empirical Fisher Information Matrix assuming σij does not depend on parameter values θ. For

parameters dependent σ, the log(σ) term in (4) cannot be assumed to be constant, which results

Table 2. Overview of properties of different Hessian approximation schemes. BFGS is the Broyden-Fletcher-Goldfarb-Shannon algorithm. SR1 is the Symmetric Rank-

one update. GN is the Gauss-Newton approximation. SSM is the Structured Secant Method. TSSM is the Totally Structured Secant Method. FX is the hybrid method pro-

posed by Fletcher and Xu [45]. GNSBFGS is the Gauss-Newton Structured BFGS method. The construction column indicates whether pointwise evaluation is possible or

whether iterative construction is necessary. The positive semi-definite column indicates whether the approximation preserves positive semi-definiteness given a positive

semi-definite initialization.

Scheme Construction Positive Semi-Definite Convergence Requirement Requires Least-Squares

BFGS iterative ✓ ✓ □
SR1 iterative □ ✓ □
GN pointwise ✓ kr(θ�)k = 0 ✓

SSM pointwise + iterative □ ✓ ✓

TSSM pointwise + iterative □ ✓ ✓

FX pointwise + iterative ✓ ✓ ✓

GNSBFGS pointwise + iterative ✓ λmin(r2J(θ�)) > 0 ✓

https://doi.org/10.1371/journal.pcbi.1010322.t002
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in a non least-squares optimization problem. For non least-squares problems, the adequate-

ness and formulation of the GN approximation is not well established. Thus, Raue [38] pro-

posed to transform the problem into a least-squares form by introducing additional error

residuals reij and adding a corresponding correction to the Gauss-Newton approximation B(GN)

from (8), yielding B(GNe):

reijðθ Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðsijðθÞÞ þ C

q

BðGNeÞ
kl ¼ BðGNÞ

kl þ

@sij

@yl

@sij

@yk

sijðθÞ
2
ð2 logðsijðθÞÞ þ CÞ

;

ð9Þ

where C is some arbitrary, but sufficiently large constant so that 2 log(σij(θ)) + C> 0. This con-

dition ensures that residuals are real-valued and the approximation B(GNe) is positive semi-def-

inite, but inherently makes optimization a non-zero residual problem. Adding the constant C
to residuals adds a constant to the objective function value and, thus, neither influences its gra-

dient and Hessian nor the location of its minima. However, C does enter the GNe approxima-

tion, with unclear implications. Instead, Stapor et al. [37] suggested that one ignores the

second order derivative of the log(σ) term in (4), which corresponds to the limit limC!1

B(GNe) = B(GN).

Iterative approximations: In contrast to the GN approximation, Broyden-Fletcher-Gold-

farb-Shanno (BFGS) or Symmetric Rank-one (SR1) are iterative approximation schemes, in

which the approximation in the next step

Bkþ1 ¼ Bk þ Dðs; z;BkÞ

is constructed based on the approximation in the current step Bk and some update Δ(x, s, Bk),

where s = Δθk and z = gk+1 − gk.
The BFGS update scheme

D
ðBFGSÞ
ðs; z;MÞ ¼

zzT

zTs
�
ðMsÞðMsÞT

sTMs

guarantees a positive semi-definite approximation as long as a curvature condition zTs > 0 is

satisfied and the initial approximation BðBFGSÞ
0 is positive semi-definite [19]. Thus, the update

scheme is usually only applied with line search methods that guarantee satisfaction of the cur-

vature condition by selecting the step length according to (strong) Wolfe conditions [19].

However, BFGS can also be used in trust-region methods by rejecting updates when the curva-

ture condition is not satisfied, although this invalidates some theoretical convergence guaran-

tees [19].

The SR1 update scheme

D
ðSR1Þ
ðs; z;MÞ ¼

ðz � MsÞðz � MsÞT

ðz � MsÞTs

can also yield indefinite approximations, incorporating negative curvature information, and

has no step requirements beyond ensuring that the denominator of the update is non-zero.

Structured secant approximations: The accuracy of the GN approximation depends on

the magnitude of the residuals, since the approximation error is the sum of products of the
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residuals and the residual Hessians

Bk ¼ BðGNÞ
k þ

1

2

Xny

i¼1

Xnt

j¼1

rijðθk Þr
2rijðθk Þ: ð10Þ

For non-zero residual problems, in which there are indices i, j such that rij(θ�)� 0, or in

the presence of strong non-linearities, the second order term in (10) does not vanish and the

GN approach is known to perform poorly; it can even diverge [39, 40]. This issue is addressed

in structured secant methods [39, 41, 42], which combine the pointwise GN approximation

with an iterative BFGS approximation Ak of the second order term. In the Structured Secant

Method (SSM) [42], the matrix Ak is update using a BFGS scheme:

BðSSMÞkþ1 ¼ BðGNeÞ
kþ1 þ Akþ1

Akþ1 ¼ Ak þ D
ðBFGSÞ
ðs; z#;BðGNeÞ

kþ1 þ AkÞ

z# ¼ ðrrðθkþ1Þ � rrðθkÞÞ
Trðθkþ1Þ:

Similarly, the Totally Structured Secant Method (TSSM) [43] scales Ak with the residual

norm, to mimic the product structure in the second order term in (10), and, accordingly, scales

the update to Ak with the inverse of the residual norm:

BðTSSMÞ
kþ1 ¼ BðGNeÞ

kþ1 þ krðθkþ1
Þk Akþ1

Akþ1¼ Ak þ
D
ðBFGSÞ
ðs; zy;BðGNeÞ

kþ1 Þþ krðθkþ1Þk AkÞ
krðθkþ1Þk

zy¼ BðGNeÞ
kþ1 sþ z# krðθkþ1Þk

krðθkÞk
:

Despite the use of a BFGS updating scheme, the SSM and TSSM approximations do not

preserve positive semi-definiteness, as the matrix BðGNeÞ
k is updated at every iteration without

any additional safeguards. Structured secant approximations have been popularized by the

NL2SOL toolbox [44], but are not featured in the standard optimization libraries in MATLAB

or Python.

Hybrid schemes: Other hybrid schemes can dynamically switch between GN approxima-

tions and iterative updates when some metric indicates that the considered problem has non-

zero residual structure. For example, Fletcher and Xu [45] proposed an approach to detect

non-zero residuals by computing the normalized change in the residual norm and applying

BFGS updates when the change is smaller than some tolerance �FX:

BðFXÞkþ1 ¼

BðFXÞk þ D
ðBFGSÞ
ðs; z;BðFXÞk Þ if krðθkÞk � krðθkþ1Þk

krðθkÞk
< �FX

BðGNeÞ
kþ1 otherwise:

8
>><

>>:

As BðGNeÞ
k is positive semi-definite and the BFGS updates preserve this property, the FX

approximations are always positive semi-definite.

To address the issue of possibly indefinite approximations in the SSM and TSSM

approaches, Zhou and Chen proposed a Gauss-Newton structured BFGS method
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(GNSBFGS) [40].

BðGNSBFGSÞ
kþ1 ¼

(
BðGNeÞ

kþ1 þ Akþ1 if
z◊T
kþ1

skþ1

sTkþ1skþ1

> �GNSBFGS

BðGNeÞ
kþ1 þ krðθkþ1Þk I otherwise

Akþ1 ¼
Ak þ D

ðBFGSÞ
ðs; z◊;AkÞ if

z◊T
kþ1

skþ1

sTkþ1skþ1

> �GNSBFGS

Ak otherwise

8
<

:

z◊ ¼ z#
krðθkþ1Þk

krðθkÞ

that combines the TSSM approach with the dynamic updating of the FX approach. As sum of

two positive semi-definite matrices, BðGNSBFGSÞ
kþ1 is always positive semi-definite. The authors

demonstrate that the term
z◊T
kþ1

skþ1

sTkþ1
skþ1

plays a similar role as the
krðθkÞk� krðθkþ1Þk

krðθkÞk
term in the FX algo-

rithm. However, they only prove convergence if the tolerance 2�GNSBFGS is smaller than the

smallest eigenvalue λmin(r2J(θ�)) of the Hessian at the optimal parameters and ifr2J(θ�) is

positive definite. This condition is not met for problems with singular Hessians, which are

often observed for non-identifiable problems.

Implementation in this study: fmincon and lsqnonlin were only evaluated using the

GNe approximation, as implemented in data2dynamics. ls_trf can only be applied using

the GNe approximation. Fides was evaluated using BFGS and SR1 using respective native

implementations in addition to GN and GNe, as implemented in AMICI. We used the default

value of C = 50 for the computation of GNe in both data2dynamics and AMICI. We provide

implementations for BFGS, SR1, SSM, TSSM, FX and GNSBFGS schemes in fides. FX,

SSM, TSSM and GNSBFGS were applied using GNe, as they require a least-squares problem

structure. Hyperparameters �FX = 0.2 and �GNSBFGS = 10−6 were picked based on recommended

values in respective original publications.

2.5 Solving the trust-region subproblem

In principle, the trust-region subproblem (6) can be solved exactly [19]. Moré proposed an

approach using eigenvalue decomposition of Bk [46]. Yet, Byrd et al. [47] noted the high

computational cost of this approach and suggested an approximate solution by solving the

trust-region problem over a two dimensional subspace S2D, spanned by gradient gk and New-

ton B� 1
k gk search directions, instead of Rny . Yet, for objective functions requiring numerical

integration of ODE models, the cost of eigenvalue decomposition is generally negligible for

problems involving fewer than 103 parameters.

A crucial issue for the two-dimensional subspace approach are problems with indefinite

(approximate) Hessians. For an indefinite Bk, the Newton search direction may not represent

a direction of descent. This can be addressed by dampening Bk [19], but for boundary-con-

strained problems additional considerations arise and require the identification of a direction

of strong negative curvature [31].

Implementation in this study: fmincon and lsqnonlin implement optimization only

over S2D, where the Newton search direction is computed using preconditioned direct factori-

zation. For preconditioning and direct factorization, fmincon and lsqnonlin employ

Cholesky and QR decomposition respectively, which both implement dampening for numeri-

cally singular Bk. fides and ls_trf implement optimization over S2D (denoted by 2D in

text and figures) and Rny (denoted by ND in text and figures). For ls_trf, we specified
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tr_solver = “lsmr” for optimization over S2D. To compute the Newton search direc-

tion, ls_trf and fides both use least-squares solvers, which is equivalent to using the

Moore-Penrose pseudoinverse. fides uses the direct solver scipy.linalg.lstsq, with

gelsd as LAPACK driver, while ls_trf uses the iterative, regularized scipy.sparse.
linalg.lsmr solver. In fides, the negative curvature direction of indefinite Hessians is

computed using the eigenvector to the largest negative eigenvalue (computed using scipy.
linalg.eig).

2.6 Handling of boundary constraints

The trust-region region subproblem (6) does not account for boundary constraints, which

means that θk + Δθk may not satisfy these constraints. For this reason, Coleman and Li [31]

introduced a rescaling of the optimization variables depending on how close the current values

are to the parameter boundary @Θ. This rescaling is realized through a vector

viðθÞ ¼

yi � ui if rJðθÞi < 0 and ui <1

yi � li if rJðθÞi � 0 and li > � 1

� 1 if rJðθÞi < 0 and ui ¼ 1

1 if rJðθÞi � 0 and li ¼ � 1

8
>>>>><

>>>>>:

which yields transformed optimization variables

θ̂k ¼ D� 1

k θk ¼ diagðjvðθkÞÞj
1
2Þ
� 1θk

and a transformed Hessian

B̂k ¼ DkBkDk þ diagðgkÞrvðθk Þ: ð11Þ

As the second term in (11) is positive semi-definite, this handling of boundary constraints

can also regularize the trust-region sub-problem, although this is not its primary intent.

Coleman and Li [31] also propose a stepback strategy in which solutions to (6) are reflected

at the parameter boundary @Θ. Since this reflection defines a one-dimensional search space,

the local minimum can be computed analytically at negligible computational cost. To ensure

convergence, Δθk is then selected based on the lowest mk(p) value among (i) the reflection of

p� at the parameter boundary (ii) the constrained Cauchy step, which is the minimizer of (7)

along the gradient that is truncated at the paramtere boundary and (iii) p� truncated at the

parameter boundary.

Implementation in this study: fmincon, lsqnonlin and ls_trf all implement

rescaling, but only allow for a single reflection at the boundary [48]. In contrast, fides imple-

ments rescaling and also allows for a single or arbitrarily many reflections until the first local

minimum along the reflected path is encountered.

2.7 Optimizer performance evaluation

To evaluate optimization performance, Hass et al. [15] computed the success count γ, which

represents the number of “successful” optimization runs that reached a final objective function

value sufficiently close (difference smaller than some threshold τ) to the lowest objective func-

tion value found by all methods, and divided that by the time to complete all optimization

runs ttotal, a performance metric that was originally introduced by Villaverde et al. [49]. In this

study, we replaced ttotal with the total number of gradient evaluations across all optimization

runs ngrad for any specific optimization setting. The resulting performance metric ϕ = γ/ngrad
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ignores differences in computation time for gradients having different parameter values and

prevents computer or simulator performance, node load and parallelization from influencing

results. This provides a fairer evaluation of the algorithm or method itself and is particularly

relevant when optimization is performed on computing clusters with heterogeneous nodes or

when different number of threads are used to parallelize objective function evaluation, as it

was the case in this study. Since ϕ ignores potentially higher computation times for step-size

computation, we confirmed that step-size computation times were negligible as compared to

numerical integration of model and sensitivity equations. For all trust-region optimizers we

studied, the number of gradient evaluations was equal to the number of iterations, with the

exception of ls_trf which only uses objective function evaluations when a proposed step is

rejected. Thus, 1/ngrad is equal to the average number of iterations for the optimization to con-

verge (divided by the number of optimization runs, which is 103 in all settings). We therefore

refer to ν = 1/ngrad as the convergence rate. Performance ϕ is equal to the product of γ and ν.

To calculate γ, we used a threshold of τ = 2, which corresponds to the upper limit of the

objective function value in cases in which a model cannot be rejected according to the

AIC [50]. Similar to Hass et al. [15], we found that changing this convergence threshold

did not have a significant impact on performance comparison, but provide analysis for values

τ = 0.05 (threshold used by Hass et al., divided by two to account for difference in objective

function scaling, Fig A in S1 Text) and τ = 5 (the threshold for rejection according to the AIC

and BIC [21], Fig B in S1 Text) in the Supplementary Material.

2.8 Extension of boundary constraints

For some performance evaluations, we extended parameter boundaries. Even though initial

points are usually uniformly sampled in Θ, we did not modify the locations of initial points

when extending bounds. The Schwen (Table 3), problem required a different approach in

which the bounds for the parameter fragments were not modified, as values outside the

standard bounds were implausible.

As previously reported [15], extending boundaries can expose additional minima having

globally lower objective function values. Thus, success count γ for optimization settings with

normal boundaries were computed using the lowest objective function Jmin found among all

settings excluding those with extended boundaries. γ for optimization settings using extended

Table 3. Summary of problem characteristics for benchmark examples, as characterized by Hass et al. [15].

Problem nθ nx ny � nt sloppy identifiable

Bachmann 113 36 541 ✓ □
Beer 72 4 27132 ✓ □
Boehm 9 8 48 ✓ ✓

Brannmark 22 9 43 ✓ □
Bruno 13 7 77 □ ✓

Crauste 12 5 21 ✓ □
Fiedler 19 6 72 ✓ □
Fujita 19 9 144 ✓ □
Isensee 46 25 687 ✓ □
Lucarelli 84 43 1755 ✓ □
Schwen 30 11 286 ✓ □
Weber 36 7 135 ✓ □
Zheng 46 15 60 ✓ □

https://doi.org/10.1371/journal.pcbi.1010322.t003
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boundaries were computed using the minimum of Jmin and the lowest objective function value

found for that particular setting.

2.9 Statistical analysis of optimizer traces

During the statistical analysis of optimizer traces, we quantified several numerical values

derived from numerical approximation of matrix eigenvalues with limited accuracy (due, for

example, to limitations in floating point precision). It was therefore necessary to account for

this limitation in numerical accuracy:

Singular Hessians: To numerically assess matrix singularity of Hessian approximations,

we checked whether the condition number, computed using the numpy function

numpy.linalg.cond, was larger than the inverse of the floating point precision

� = 1/numpy.spacing(1).

Negative eigenvalues: To numerically assess whether a matrix has negative eigenvalues we

computed the smallest (λmin) and largest (λmax) eigenvalues of the untransformed Hessian

approximation Bk using numpy.linalg.eigvals and checked whether the smallest

eigenvalue had a negative value that exceeded numerical noise λmin(Bk)< −� � |λmax(Bk)|.

2.10 Implementation

fides is implemented as modular, object-oriented Python code. The subproblem, subprob-

lem solvers, stepback strategies and Hessian approximations all have class-based implementa-

tions, making it easy to extend the code. Internally, fides uses SciPy [51] and NumPy [52]

libraries to store vectors and matrices and perform linear algebra operations. To ensure access

to state-of-the-art simulation and sensitivity analysis methods, we implemented an interface to

fides in the parameter estimation toolbox pyPESTO, which uses AMICI [35] to perform

simulation and sensitivity analysis via CVODES [32]. This approach also enabled import of

biological parameter estimation problems specified in the PEtab [53] format.

2.11 Benchmark problems

To evaluate the performance of different optimizers, we use the benchmark problems

(Table 3) introduced by Hass et al. [15]. As discussed in the introduction, these problems are

excellent representatives of ODE-based biochemical models and include realistic experimental

data for model calibration. We selected a subset of 13 out of the 20 models based on whether

they can be encoded in the PEtab [53] format and imported in AMICI and pyPESTO. The

exclusion of some models in Hass et al. [15] does not reflect a limitation of fides itself, as it

supports optimization for any objective function that provides routines to compute its gradi-

ent. In summary, the Hass problem was excluded because it includes negative initial simula-

tion time, which is not supported by PEtab; the Raia model because it involves state-

dependent value for σ, which is unsupported by AMICI; Merkle and Sobotta because they are

missing SBML implementations; Swameye because it includes spline functions that are not

supported by SBML; Becker because it involves multiple models, which is not supported by

pyPESTO; and Chen because forward sensitivity analysis is prohibitively computationally

expensive for this model. There is no evidence that the excluded models are different in any

systematic way from the models we do consider.

All benchmarks problems were previously published and included experimental data for

model calibration as described by Table 3, which also provides a brief summary of numerical

features of the various benchmarks. These problems cover a wide array of common model fea-

tures such as preequilibration, log-transformation of observables as well as parameter depen-

dent initial conditions, observable function and noise models. A more detailed description of
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the biochemical systems described by these models is available in the supplemental material of

the study by Hass et al. [15].

2.12 Simulation and optimization settings

We encountered difficulties reproducing some of the results described by Hass et al. [15] and

therefore repeated evaluations using the latest version of data2dynamics. We deactivated Bes-

sel correction [15] and increased the function evaluation limit to match the iteration limit. Rel-

ative and absolute integration tolerances were set to 10−8. The maximum number of iterations

for optimization was set to 105. Convergence criteria were limited to step sizes with a tolerance

of 10−6, and ls_trf code was modified such that the convergence criteria matched the

implementation in other optimizers. For all problems, we performed 103 optimizer runs. To

initialize optimization, we used the initial parameter values provided by Hass et al. [15].

2.13 Parallelization and cluster infrastructure

Optimization was performed on the O2 Linux High Performance Compute Cluster at Harvard

Medical School, a typical academic High Performance Compute resource running SLURM.

O2 includes 390+ compute nodes and 12,000+ compute cores, with the majority of the com-

pute nodes built on Intel architecture; all nodes run CentOS 7.7.1908 Linux with MATLAB

R2017a and python 3.7.4. Optimization for each model and each optimizer setting was run as

a separate job. For MATLAB optimizers, optimization was performed using a single core per

job. For Python optimizers, execution was parallelized on up to 12 cores. Parallelization was

always carried out on an individual node, avoiding inter-node communication.

We observed severe load balancing issues due to skewed computational cost across optimi-

zation runs for Bachmann, Isensee, Lucarelli and Beer models. To mitigate these issues, optimi-

zation for these models was parallelized over 3 threads using pyPESTOs

MultiThreadEngine and simulation was parallelized over 4 threads using openMP multi-

threading in AMICI, resulting in a total parallelization over 12 threads. For the remaining

models, optimization was parallelized using 10 threads without parallelization of simulations.

Wall-time for each job was capped at 30 days (about 1 CPU year), which was only exceeded by

the GNSBFGS and FX Hessian approximation schemes for the Lucarelli problem after 487 and

458 optimization runs respectively and also by the SSM Hessian approximation scheme for the

Isensee problem after 973 optimization runs. Subsequent analysis was performed using partial

results for those settings.

Compute times could not be reliably compared across methods and problems because it

was necessary to use different degrees of parallelization for different problems and optimiza-

tions were run on different nodes with distinct processor models. We therefore evaluated per-

formance based on the number of optimizer iterations. The number of iterations is

independent of the degree of parallelization and processor models, but for any given imple-

mentation, the compute time will be proportional to the number of optimizer iterations.

3 Results

3.1 Validation and optimizer comparison

The implementation of trust-region optimization involves complex mathematical operations

that can result in error-prone implementations. To validate the trust-region methods imple-

mented in fides, we compared the performance of optimization using GN and GNe

schemes against implementations of the same algorithm in MATLAB (fmincon,
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lsqnonlin) and Python (ls_trf). The subspace solvers and Hessian approximation used

for each analysis are denoted by the notation implementation subspace/hessian.

We found that fides 2D/GN (blue) and fides 2D/GNe (orange) were the only meth-

ods that had non-zero performance (ϕ> 0) for all 13 benchmark problems (Fig 2A), with

small performance differences between the two methods (0.72 to 1.12 fold difference, average

0.96). This established fides 2D/GN as good reference implementation. In what follows we

therefore report the performance of other methods relative to fides 2D/GN (Fig 2B). The

ls_trf method outperformed fides 2D/GN on three problems (1.54 to 22.4-fold change;

Boehm, Crauste, Zheng; purple arrows), had similar performance on one problem (1.15-fold

change; Fiedler), exhibited worse performance on four problems (0.02 to 0.55-fold change;

Brannmark, Bruno, Lucarelli, Weber) and did not result in successful runs (zero performance

Fig 2. Comparison of MATLAB and Python optimizers. Colors indicate optimizer setting and are the same in all

panels. A: Performance comparison (ϕ), absolute values. B: Performance comparison (ϕ), values relative to fides
2D/GN. C: Increase in convergence count γ, values relative to fides 2D/GN. D: Increase in convergence rate ν,

values relative to fides 2D/GN.

https://doi.org/10.1371/journal.pcbi.1010322.g002
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ϕ = 0) for the remaining five problems (Bachmann, Beer, Fujita, Isensee, Schwen). Decompos-

ing performance improvements ϕ into increases in convergence rate ν (Fig 2C) and success

count γ (Fig 2D) revealed that increase in ϕ was primarily due to higher ν, which was observed

for all but four problems (Bachmann, Bruno, Isensee, Schwen). However, in most cases,

improvements in ν were canceled out by larger decreases in γ.

For fmincon (green) and lsqnonlin (red), ϕ was higher for one problem (2.34 to

2.94 -fold change; Fiedler; red/green arrow), similar for two problems (0.92 to 1.00 fold change,

Boehm, Bruno) and worse for the remaining 10 problems (0.00 to 0.80 fold change, Bachmann,

Brannmark, Fujita, Isensee, Lucarelli Schwen, Weber, Zheng), with zero performance on two

problems (Beer, Crauste) (Fig 2B). Since we observed similar ϕ for fides 2D/GN (blue) and

fides 2D/GNe (orange) on all problems, the differences in ϕ between fides 2D/GN and

the other implementations are unlikely to reflect use of GNe as opposed to a GN scheme.

Instead we surmised that the differences were due to discrepancies in implementation of the

Newton direction (this would explain the similarity for the two identifiable problems (Boehm,

Bruno, Table 3)).

Overall, these findings demonstrated that trust-region optimization implemented in

fides was more than competitive with the MATLAB optimizers fmincon and lsqnon-
lin and the Python optimizer ls_trf, outperforming them on a majority of problems.

Simultaneously, our results demonstrate a surprisingly high variability in optimizer perfor-

mance among methods that implement fundamentally similar mathematical operations (i.e.,

the same algorithm). This variability may explain some of the conflicting findings in previous

studies that assumed that differences in optimizer performance arose from the “mathematics”

rather than the computational implementation [54, 55].

3.2 Parameter boundaries and stepback strategies

One of the few changes in implementation that we deliberately introduced into the fides
code was to allow multiple reflections during stepback from parameter boundary condi-

tions [31]. In contrast, ls_trf, lsqnonlin and fmincon only allow a single reflec-

tion [48]. The modular design and advanced logging capabilities of fides make it

straightforward to evaluate the impact of such modifications on optimizer performance ϕ and

arrive at possible explanations for observed differences. For example, when we evaluated

fides 2D/GN with single (orange) and multi-reflection (dark-green, Fig 3A–3C) implemen-

tations and correlated changes to ϕ with statistics of optimization trajectories (Fig 3D and 3E),

we found that the single reflection performance ϕ was reduced on four problems (0.59 to

0.65-fold change; Beer, Lucarelli, Schwen, Zheng; orange arrows Fig 3A). Lower performance

was primarily due to a decrease in convergence rate ν (Fig 3B and 3C). We attributed this

behavior to the fact that a restriction on the number of reflections lowered the predicted

decrease in objective function values for reflected steps. This, in turn, increased the fraction of

iterations in which stepback yielded constrained Cauchy steps (Pearson’s correlation coeffi-

cient r = −0.85, p-value p = 2.3 � 10−4, Fig 3D) as well as the average fraction of boundary-con-

strained iterations (r = −0.82, p = 6 � 10−4, Fig 3E), both slowing convergence.

A naive approach to addressing issues with parameter boundaries is to extend or remove

them. We therefore repeated optimization with fides 2D/GN (multi-reflection) with

parameter boundaries extended by one (blue) or two (pink) orders of magnitude or completely

removed (light green). We found that extending boundaries by one order of magnitude

reduced ϕ for 6 problems (0.12 to 0.74 fold change; Bachmann, Beer, Fiedler, Isensee, Lucarelli,
Weber; blue arrows Fig 3A) and extending boundaries by two orders of magnitude reduced ϕ
for an additional 4 problems (0.13 to 0.85 fold change; Bruno, Crauste, Schwen, Zheng; pink
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arrows Fig 3A). We found that decreased ϕ was primarily the result of lower ν (Fig 3B), which

we attributed to a larger fraction of iterations in which the transformed Hessian B̂k was singu-

lar (r = −0.78, p = 1.6 � 10−3, Fig 3F). Removing boundaries decreased ϕ for all problems, a

result of lower values of γ, which we attributed to higher fraction of iterations with integration

failures (r = −0.82, p = 5.7 � 10−4, Fig 3G).

These findings demonstrate the importance and difficulty of choosing appropriate optimi-

zation boundaries, since excessively wide boundaries may lead to frequent integration failures

and/or the creation of an ill-conditioned trust-region subproblem. In contrast, using bound-

aries that are too narrow has the potential to exclude the global optimum. When managing

boundary constraints the use of multi-reflection as compared to single-reflection yields a small

performance increase, albeit significantly smaller than the variation we observed (in the previ-

ous section) between different implementations of the same optimization algorithm.

3.3 Iterative schemes and negative curvature

To further study the positive effect of improving the conditioning of trust-region subproblems

on the optimizer performance ϕ, we carried out optimization using BFGS and SR1 Hessian

approximations. BFGS and SR1 can yield full-rank Hessian approximations, resulting in

well-conditioned trust-region subproblems, even for non-identifiable problems. Moreover,

Fig 3. Evaluation of stepback strategies. Colors indicate optimizer setting and are the same in all panels. All increases/decreases are relative to multi-

reflection fides 2D/GN with normal bounds. A: Performance comparison (ϕ). B: Increase in convergence count γ. C: Increase in convergence rate ν.

D: Association between increase in average fraction of constrained Cauchy steps with respect to total number of boundary constrained iterations and

increase in ν for the single-reflection method. E: Association between increase in average fraction of boundary constrained iterations and increase in ν
for the single-reflection method. F: Association between increase in average fraction of iterations with a numerically singular transformed Hessian B̂k
and decrease in γ for the multi-reflection method for fides 2D/GN with bounds extended by two orders of magnitude. G: Association between

increase in average fraction of iterations with integration failures and increase in γ for multi-reflection fides 2D/GN without bounds.

https://doi.org/10.1371/journal.pcbi.1010322.g003
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in contrast to GN, these approximations converge to the true Hessian under mild assump-

tions [19]. The SR1 approximations can also account for directions of negative curvature and

might therefore be expected to perform better when saddle-points are present.

We compared ϕ for fides 2D/GN (blue), fides 2D/BFGS (orange) and fides 2D/
SR1 (green) (Fig 4A) and found that fides 2D/BFGS failed to reach the best objective

function value for one problem (Beer) and Fides 2D/SR1 for two problems (Beer, Fujita).

Fig 4. Evaluation of iterative Hessian approximation schemes. Color scheme is the same in all panels. All increases/decreases are relative to fides
2D/GN unless otherwise noted. A: Performance comparison (ϕ). B: Increase in convergence count γ. C: Increase in convergence rate ν. D: Association

between increase in average fraction of iterations without updates to the trust-region radius Δk and increase in ν for fides 2D/SR1 (green) and

fides 2D/BFGS (orange). E: Association between average fraction of iterations where smallest eigenvalue λmin of the transformed Hessian B̂ðSR1Þ

k is

negative and ν for fides 2D/SR1. F: Association between fraction of iterations without updates to Bk and increase in ν relative to fides 2D/SR1
for fides 2D/BFGS. G: Association between fraction of iterations with a numerically singular transformed Hessian B̂k and increase in γ for fides
2D/SR1 (green) and fides 2D/BFGS (orange). Change in γ was was censored at a threshold of 10−2 to visualize models with γ. H: Association

between fraction of iterations without updates to Δk and increase in ν for fides ND/GN. I: Association between change in average fraction of

iterations where smallest eigenvalue λmin of the transformed Hessian B̂ðSR1Þ

k is negative and γ relative to fides 2D/SR1 for fides ND/SR1.

https://doi.org/10.1371/journal.pcbi.1010322.g004
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Compared to fides 2D/GN, ϕ for fides 2D/BFGS was higher on three problems (2.02 to

9.88 fold change; Boehm, Fiedler, Schwen; orange arrows) and four problems for fides 2D/
SR1 (1.32 to 7.12 fold change; Boehm, Crauste, Fiedler; green arrows), it was lower for a major-

ity of the remaining problems (BFGS 7 of 13 problems, 0.05 to 0.49 fold change; SR1 8 of 13

problems, 0.07 to 0.78 fold change). Decomposing ϕ into improvements in convergence rate ν
(Fig 4B) and improvements in success counts γ (Fig 4C) revealed that SR1 improved ν for 7

problems (2.23 to 5.97 fold change; Beer, Boehm, Crauste, Fiedler, Fujita, Weber, Zheng; green

arrows Fig 4B). Out of these 7 problems, BFGS improved ν for only four problems (2.33 to

6.63 fold change; Beer, Boehm, Fiedler, Zheng; orange arrows Fig 4B). We found that for both

approximations, the increase in ν was correlated with the change in average fraction of itera-

tions without trust-region radius (Δk) updates (BFGS: r = −0.8, p = 1.1 � 10−3; SR1: r = −0.61,

p = 2.8 � 10−2, Fig 4D). Δk is not updated when the predicted objective function decrease is in

moderate agreement with the actual objective function decrease (0.25 < ρk< 0.75, see Section

2.3), likely a result of inaccurate approximations to the Hessian. Thus, higher convergence rate

ν of SR1 and BFGS schemes was likely due to more precise approximation of the objective

function Hessian.

To better understand the origins of performance differences between BFGS and SR1, we

analysed the eigenvalue spectra of SR1 approximations and found that SR1 convergence rate ν
was correlated with the average fraction of iterations where the transformed Hessian approxi-

mations B̂k had negative eigenvalues (r = −0.71, p = 6.7 � 10−3, Fig 4E). This correlation sug-

gests that directions of negative curvature approximated by the SR1 scheme tended not to

yield good search directions; handling of negative curvature is therefore unlikely to explain

observed improvements in convergence rates. In contrast to negative eigenvalues, we found

that difference in ν between BFGS and SR1 was correlated with the average fraction of itera-

tions in which the BFGS approximation did not produce an update (r = −0.88, p = 8.3 � 10−5,

Fig 4F). The BFGS approximation is not updated when the curvature condition is violated (see

Section 2.4). Such a high fraction of iterations not prompting updates is surprising, since the

violation of the curvature condition is generally considered to be rare [19]. It is nonetheless a

plausible explanation for lower convergence rates, since the BFGS approximation is not

expected to always converge to the true Hessian under such conditions [19].

For three problems, the BFGS (orange arrows, Fig 4C) and/or SR1 (green arrows, Fig 4C)

approximations increased γ (1.29 to 3.12 fold change; Boehm, Crauste, Schwen), but for most

problems γ was reduced by more than two-fold (−1 to 0.46 fold change; SR1+BFGS: Beer,
Fiedler Fujita, Isensee, Lucarelli Weber, Zheng; BFGS: Bachmann; SR1: Brannmark), canceling

the benefit of faster convergence rate for many of these problems. Paradoxically, we found that

convergence count changes were correlated with changes in the average fraction of iterations

having ill-conditioned trust-region subproblems (BFGS: r = 0.86, p = 1.6 � 10−4; SR1: r = 0.73,

p = 4.8 � 10−3, Fig 4G). Therefore, improved conditioning of the trust-region subproblem,

unexpectedly, came at the cost of smaller regions of attraction for minima having low objective

function values.

We complemented the analysis of 2D methods by evaluating their respective ND methods,

which almost exclusively performed worse than 2D methods. We found that Fides ND/GN
outperformed Fides 2D/GN on two problems (1.43 to 3.25-fold change; Crauste, Zheng)

and performed similarly on one problem (0.99-fold change; Fiedler). Fides ND/BFGS out-

performed Fides 2D/BFGS on three problems (1.16 to 1.37-fold change; Boehm, Fujita,

Schwen) and performed similarly on three examples (1.01 to 1.06-fold change; Bachmann,

Bruno, Fiedler). Fides ND/SR1 outperformed Fides 2D/SR1 on two problems (1.51 to

1.70-fold change; Crauste, Schwen). These results were surprising, since the use of 2D methods
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is generally motivated by lower computational costs, not better performance; the ND approach

gives, in contrast to the 2D approach, an exact solution to the trust-region subproblem. For

GN, the change in convergence rate ν was correlated with the change in average fraction of

iterations in which the trust-region radius Δk was not updated (r = −0.8, p = 1.1 � 10−3, Fig 4H).

For fides SR1/ND, the change in γ with respect to fides SR1/2D was correlated with

the change in average fraction of iterations in which B̂k had negative eigenvalues (r = −0.72,

p = 1.2 � 10−2, Fig 4I). This suggests that inaccuracies in Hessian approximations may have

stronger impact on ND methods as compared to 2D methods, thereby mitigating advantages

that are theoretically possible.

Overall these results suggest that BFGS and SR1 approximations can improve optimization

performance through faster convergence, but often suffer from poorer global convergence

properties. Thus, they rarely outperform the GN approximation. BFGS and SR1 perform simi-

larly on most problems, with the exception of a few problems for which BFGS cannot be

updated due to violation of curvature conditions. We conclude that, while saddle points may

be present in some problems, they do not seem to pose a major issues that can be resolved

using the SR1 approximation.

3.4 Hybrid switching approximation scheme

We hypothesized that the high success count γ of the GN approximation primarily arose in the

initial phase of optimization, which determines the basin of attraction on which optimization

will converge. In contrast, we the high convergence rate ν of the BFGS approximation seemed

more likely to arise from more accurate Hessian approximation in later phases of optimization,

when convergence to the true Hessian is achieved. To test this idea, we designed a hybrid

switching approximation that initially uses a GN approximation, but simultaneously con-

structs an BFGS approximation. As soon as the quality of the GN approximation becomes lim-

iting, as determined by a failure to update the trust-region radius for nhybrid consecutive

iterations, the hybrid approximation switches to the BFGS approximation for the remainder of

the optimization run.

We compared the hybrid switching approach using different values of nhybrid (25, 50, 75,

100) to fides 2D/GN (equivalent to nhybrid =1) and fides 2D/BFGS (equivalent to nhy-

brid = 0). Evaluating optimizer performance ϕ, we found that the hybrid approach was success-

ful for all problems, with nhybrid = 50 performing best, improving ϕ by an average of 1.51 fold

across all models (range: 0.56 to 6.34-fold change). The hybrid approach performed better

than fides 2D/GN and fides 2D/BFGS on 5 problems (1.71 to 6.34-fold change;

Crauste, Fiedler, Fujita, Lucarelli, Zheng; + signs Fig 5A). It performed better than fides
2D/GN, but worse than fides 2D/BFGS only on one problem (Boehm; (+) sign Fig 5A).

The hybrid approach performed similar to fides 2D/GN on 5 out of the 7 remaining prob-

lems (0.89 to 1.03-fold change; Beer, Brannmark, Bruno, Isensee, Schwen; = signs Fig 5A).

Decomposing ϕ into γ and ν, we found that hybrid switching resulted in higher ν for the four

problems in which fides 2D/BFGS had higher ν than fides 2D/GN (Beer, Boehm, Fied-
ler, Zheng), as well as three additional problems (Crauste, Fujita, Lucarelli). These were the

same three problems for which SR1 had higher ν (Fig 4B), but BFGS did not, as a consequence

of a high number of iterations without Bk updates (Fig 4F). Consistent with this interpretation,

we confirmed that the hybrid approach had very few iterations without Bk updates. In contrast

to BFGS, the hybrid switching approach maintained a similar γ as GN, meaning that higher ν
generally translated into higher ϕ. Evaluating the overlap between start-points that yielded suc-

cessful runs for GN showed a higher overlap for the hybrid switching approach as compared

to BFGS (Fig 5D), suggesting that higher γ for the hybrid switching was indeed the result of
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higher similarity in regions of attraction. These findings further corroborate that local conver-

gence of fides 2D/GN is slowed by the limited approximation quality of GN.

4 Comparison of hybrid approximation schemes

Inaccuracies in the GN approximation have been previously discussed in the optimization

literature and are known to lead to slow convergence and even divergence of optimization

runs [39, 40]. Several methods have been proposed to address this issue in the context of non-

zero residual problems. These include the Structured Secant Method (SSM) [42], the Totally

Structured Secant Method (TSSM) [43], the hybrid scheme by Fletcher and Xu (FX) [45] and

the Gauss-Newton Structured BFGS (GNSBFGS) approach [40]. All of these methods combine

the GN and BFGS approximations in different ways (see Section 2.4).

Fig 5. Evaluation of hybrid switching approximation. Color scheme is the same in all panels. All increases/decreases

are relative to fides 2D/GN. A: Performance comparison (ϕ). B: Increase in convergence count γ. C: Increase in

convergence rate ν. D: Overlap score for start-points that yield successful optimization runs with respect to fides
2D/GN.

https://doi.org/10.1371/journal.pcbi.1010322.g005
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We implemented support for these Hessian approximation schemes in fides and com-

pared optimizer performance ϕ against fides 2D/GN and the best performing hybrid

switching method (nhybrid = 50). We found that the hybrid switching method was among the

best performing methods (fold change-0.85 to 1.15) on a majority of problems (7 out of 13;

Beer, Brannmark, Bruno, Crauste, Fujita, Lucarelli, Schwen; oragne arrows Fig 6A) and was the

only method other than fides 2D/GN that resulted in successful runs for all problems.

fides 2D/GN was among the best performers on 6 problems (Beer, Boehm, Bruno, Isensee,

Schwen, Weber; dark green arrows Fig 6A) whereas GNSBFGS was among the best performers

for three problems (Beer, Boehm, Zheng; yellow arrows Fig 6A) and FX for one problem (Fied-
ler; purple arrows Fig 6A). Both GNSBFGS and FX failed for one problem (Lucarelli). SSM and

TSSM were among the best performers on one problem (Bachmann) and failed on one prob-

lem (Isensee). We conclude that the hybrid switching method is the most reliable and efficient

method among all methods that we tested.

5 Discussion

In this paper we evaluated the properties of trust-region methods that affect the performance

of parameter estimation for ODE models of cellular biochemistry. We used a previously

described corpus of 13 models and the associated experimental data as a testbed relevant to

many problems encountered in the application of dynamical models in bio-medicine. The

evaluation was made possible by the re-implementation of a MATLAB algorithm originally

Fig 6. Evaluation of hybrid switching approximation. Color scheme is the same in all panels. All increases/decreases

are relative to fides 2D/GN. A: Performance comparison (ϕ). B: Increase in convergence count γ. C: Increase in

convergence rate ν.

https://doi.org/10.1371/journal.pcbi.1010322.g006
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described by Coleman and Li [31]. The resulting fides toolbox also implements advanced

logging capabilities that permits detailed analysis of optimization traces. We then compared

success counts γ and convergence rate ν to the numerical properties of optimization traces

across multiple models. This analysis promoted us to develop a novel hybrid switching scheme

that uses two approaches for Hessian approximation: the Gauss-Newton approximation early

in a run (when the basin of attraction is being determined) and the BFGS approximation later

in a run (when a fast convergence rate to the local minimum is crucial). For many but not all

problems in our test corpus, we found that fides in combination with hybrid switching

exhibited the best performance and resolved issues with inconsistent final objective function

values.

Overall we were unable to identify a single uniformly superior optimization approach, in

line with the infamous “no free lunch” theorem of optimization [10]. Hybrid switching

improved average performance and was superior for the majority of problems, but there

remained a minority for which other hybrid methods performed substantially better. This het-

erogeneity highlights the existence of several distinct problem classes but we have thus far been

unable to identify their essential properties. We anticipate that future innovation in optimiza-

tion methods for biochemical models will likely be driven either by better understanding of

how differences in optimizer performance relate to model structure, enabling a priori selection

of the best numerical approach, or new ways of analyzing the numerical properties of optimi-

zation traces, driving the development of new adaptive methods. Until then, the availability of

multiple Hessian approximation schemes and trust-region sub-problem solvers in fides will

be of general utility with a range of models. We have used it ourselves with large ODE-based

models that are on the limit of what can be considered practically [56]. Similarly, fides will

be a sound foundation for the development of new and better optimization methods.

Our findings suggest that issues previously encountered with fmincon and lsqnonlin
are likely due to premature optimizer termination and not due to “rugged” objective function

landscapes (a situation in which many similar local minima are present). Our results also cor-

roborate previous findings from others showing that the use of Gauss-Newton approximations

can be problematic for optimization problems featuring sloppy models [4]. However, we did

not find improved performance with the SR1 scheme, which can handle saddle points. The

inconsistent and often poor performance of BFGS and SR1 schemes was also unexpected, but

our findings suggest that the problem arises in the global convergence properties of BFGS and

SR1, as revealed by lower convergence counts γ. Global convergence properties depend on the

shape of the objective function landscape and are therefore expected to be problem-specific.

BFGS and SR1 may therefore perform better when combined with hybrid global-local methods

such as scatter search [57], which substantially benefit from good local convergence [49], but

are less dependent on global convergence. Moreover, SR1 and BFGS schemes enable the use of

trust-region optimization for problems in which the GN approximation is not applicable, such

as when a non-Gaussian error model is used [33] or when gradients are computed using

adjoint sensitivities [36], which is particularly relevant for large multi-pathway models with

many parameters [58].

We were surprised to observe that differences in the performance of distinct numerical

implementations of the same fundamental mathematical instructions (algorithm) could be

greater than the differences between distinct algorithms. We propose that these unexpected

differences arise from how numerical edge cases are handled. For example, fides uses a

Moore-Penrose pseudoinverse to compute the Newton search direction for the 2D subprob-

lem solver, while fmincon uses damped Cholesky decomposition. Another possible source

of difference is the use of different simulation and sensitivity computation routines. While

both data2dynamics and AMICI employ CVODES [32] for simulation and computation of
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parameter sensitivity, there may be slight differences in implementation of advanced features

such as handling of events and pre-equilibration. Overall, these findings demonstrate the com-

plexity of comparing trust-region methods and the impact of subtle differences in numerical

methods on optimizer performance. Thus, the benchmarking of different optimization algo-

rithms requires consistent implementation within a single framework. This consistency is

likely to have practical benefit for individuals interested in developing new optimization meth-

ods. It is also possible that the superior performance exhibited by fides will generalize to

optimization problems other than biochemical models.

Overall, our results demonstrate that fides not only finds better solutions to parameter

estimation problems for ODE-based biochemical models when state-of-the-art algorithms fail,

but also performs on par or better on problems where established methods find good solu-

tions. The modular and flexible implementation of fides and its interoperability with other

toolboxes that facilitates the import of PEtab problems is expected to drive its adoption within

the systems biology as a preferred means of performing parameter estimation.
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Funding acquisition: Fabian Fröhlich, Peter K. Sorger.
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Writing – review & editing: Fabian Fröhlich, Peter K. Sorger.
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15. Hass H, Loos C, Raimúndez-Álvarez E, Timmer J, Hasenauer J, Kreutz C. Benchmark problems for

dynamic modeling of intracellular processes. Bioinformatics. 2019; 35(17):3073–3082. https://doi.org/

10.1093/bioinformatics/btz020 PMID: 30624608

16. Abdulla UG, Poteau R. Identification of parameters for large-scale kinetic models. Journal of Computa-

tional Physics. 2021; 429:110026. https://doi.org/10.1016/j.jcp.2020.110026

17. Abdulla UG, Poteau R. Identification of parameters in systems biology. Mathematical Biosciences.

2018; 305:133–145. https://doi.org/10.1016/j.mbs.2018.09.004 PMID: 30217694

18. Raue A, Schilling M, Bachmann J, Matteson A, Schelke M, Kaschek D, et al. Lessons learned from

quantitative dynamical modeling in systems biology. PLoS ONE. 2013; 8(9):e74335. https://doi.org/10.

1371/journal.pone.0074335 PMID: 24098642

19. Nocedal J, Wright S. Numerical optimization. Springer Science & Business Media; 2006.

20. Fujita KA, Toyoshima Y, Uda S, Ozaki Yi, Kubota H, Kuroda S. Decoupling of Receptor and Down-

stream Signals in the Akt Pathway by Its Low-Pass Filter Characteristics. Science Signaling. 2010; 3

(132):ra56–ra56. https://doi.org/10.1126/scisignal.2000810 PMID: 20664065

21. Burnham KP, Anderson DR. Model selection and multimodel inference: A practical information-theoretic

approach. 2nd ed. New York, NY: Springer; 2002.

22. Kreutz C. Guidelines for benchmarking of optimization-based approaches for fitting mathematical mod-

els. Genome Biology. 2019; 20(1):281. https://doi.org/10.1186/s13059-019-1887-9 PMID: 31842943

PLOS COMPUTATIONAL BIOLOGY Fides: Reliable trust-region optimization for parameter estimation of ODE models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010322 July 13, 2022 26 / 28

https://doi.org/10.1038/nature01254
https://doi.org/10.1038/nature01254
http://www.ncbi.nlm.nih.gov/pubmed/12432404
https://doi.org/10.1371/journal.pcbi.0030189
http://www.ncbi.nlm.nih.gov/pubmed/17922568
https://doi.org/10.1038/ncb1497
http://www.ncbi.nlm.nih.gov/pubmed/17060902
https://doi.org/10.1093/bioinformatics/bty229
http://www.ncbi.nlm.nih.gov/pubmed/29949983
https://doi.org/10.1093/bioinformatics/btp358
http://www.ncbi.nlm.nih.gov/pubmed/19505944
https://doi.org/10.1016/j.cels.2018.04.008
http://www.ncbi.nlm.nih.gov/pubmed/29730254
https://doi.org/10.1093/bioinformatics/btw461
https://doi.org/10.1093/bioinformatics/btw461
http://www.ncbi.nlm.nih.gov/pubmed/27587694
https://doi.org/10.1109/4235.585893
https://doi.org/10.1145/200979.201043
https://doi.org/10.1145/200979.201043
https://doi.org/10.1145/962437.962439
https://doi.org/10.1145/962437.962439
https://doi.org/10.1007/s10589-014-9687-3
https://doi.org/10.1186/s12918-015-0144-4
http://www.ncbi.nlm.nih.gov/pubmed/25880925
https://doi.org/10.1093/bioinformatics/btz020
https://doi.org/10.1093/bioinformatics/btz020
http://www.ncbi.nlm.nih.gov/pubmed/30624608
https://doi.org/10.1016/j.jcp.2020.110026
https://doi.org/10.1016/j.mbs.2018.09.004
http://www.ncbi.nlm.nih.gov/pubmed/30217694
https://doi.org/10.1371/journal.pone.0074335
https://doi.org/10.1371/journal.pone.0074335
http://www.ncbi.nlm.nih.gov/pubmed/24098642
https://doi.org/10.1126/scisignal.2000810
http://www.ncbi.nlm.nih.gov/pubmed/20664065
https://doi.org/10.1186/s13059-019-1887-9
http://www.ncbi.nlm.nih.gov/pubmed/31842943
https://doi.org/10.1371/journal.pcbi.1010322


23. Transtrum MK, Machta BB, Sethna JP. Geometry of nonlinear least squares with applications to sloppy

models and optimization. Physical Review E. 2011; 83(3):036701. https://doi.org/10.1103/PhysRevE.

83.036701
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