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Abstract Deubiquitinating enzymes (DUBs), ~100 of which are found in human cells, are prote-
ases that remove ubiquitin conjugates from proteins, thereby regulating protein turnover. They are 
involved in a wide range of cellular activities and are emerging therapeutic targets for cancer and 
other diseases. Drugs targeting USP1 and USP30 are in clinical development for cancer and kidney 
disease respectively. However, the majority of substrates and pathways regulated by DUBs remain 
unknown, impeding efforts to prioritize specific enzymes for research and drug development. To 
assemble a knowledgebase of DUB activities, co- dependent genes, and substrates, we combined 
targeted experiments using CRISPR libraries and inhibitors with systematic mining of functional 
genomic databases. Analysis of the Dependency Map, Connectivity Map, Cancer Cell Line Encyclo-
pedia, and multiple protein- protein interaction databases yielded specific hypotheses about DUB 
function, a subset of which were confirmed in follow- on experiments. The data in this paper are 
browsable online in a newly developed DUB Portal and promise to improve understanding of DUBs 
as a family as well as the activities of incompletely characterized DUBs (e.g. USPL1 and USP32) and 
those already targeted with investigational cancer therapeutics (e.g. USP14, UCHL5, and USP7).

Editor's evaluation
This study reports the creation of a database on deubiquitinating enzymes (DUBs), which integrates 
existing large- scale datasets with new knock- out and inhibition experiments. The combined data 
confirm known DUB functions and, importantly, correct several current assumptions and highlight 
potential new functions of DUBs. The data are made available through an online portal, providing a 
useful resource for investigators interested in DUB functions or considering DUBs as drug targets.

Introduction
Deubiquitinating enzymes (DUBs) are a family of ~100 proteases (in humans) that cleave ubiquitin 
from protein substrates (Komander et al., 2009). They are essential components of the ubiquitin- 
proteasome system (UPS), which regulates protein turn- over in cells by tagging polypeptide substrates 
with poly- ubiquitin chains. These poly- ubiquitin chains involve linkages between the C terminus of one 
ubiquitin molecule (of 76 amino acids) and one of seven lysine residues or N- terminal methionine on 
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the next ubiquitin molecule. Lysine 48- linked chains are among the ones recognized by the protea-
some, resulting in degradation of the substrate. The primary function of DUBs in this process is to 
remove ubiquitin molecules from substrates, thereby protecting them from proteasomal degradation 
(Nandi et al., 2006). However, ubiquitination can also regulate protein localization, enzyme activity, 
and recruitment of binding partners; in many cases, these types of regulation involve monoubiquitin 
adducts or ubiquitin chains linked to the substrate and each other via a lysine residue other than K48 
(e.g. Lysine 63) but these too can be removed by DUBs. Thus, DUBs can regulate multiple cellular 
processes other than protein degradation (Kerscher et al., 2006).

A growing body of literature shows that DUBs are dysregulated in many disease settings including 
cancer, chronic inflammation, and neurodegenerative diseases (Popovic et  al., 2014; Park et  al., 
2014; Atkin and Paulson, 2014; Shi and Grossman, 2010) and that DUBs may be useful targets for 
the development of therapeutic drugs (Kerscher et al., 2006; Komander and Rape, 2012). Inhib-
iting DUBs with small molecules has emerged as a particularly promising means of indirectly targeting 
proteins that are conventionally considered to be ‘undruggable’, typically due to the absence of a 
binding pocket into which a small molecule might bind; such proteins include transcription factors 
and scaffolding proteins (Dang et al., 2017). For example, USP7 is a DUB that stabilizes MDM2, the 
E3 ligase for the tumor suppressor TP53, and inhibiting USP7 has emerged as a strategy for indirectly 
increasing the levels of TP53, which is among the most highly mutated genes in cancer but has thus 
far eluded direct targeting by small molecules (Schauer et al., 2020). Similarly, USP28 is a DUB that 
stabilizes the c- Myc transcription factor, a potent oncogene in a wide variety of human cancers, and 
inhibiting USP28 is expected to reduce the levels of c- Myc, and downregulate its activities (Weisberg 
et al., 2017; Wrigley et al., 2017; Zhou et al., 2018). However, effectively exploiting DUB biology 
to upregulate tumor suppressor proteins such as TP53 and downregulate oncogenes such as c- Myc 
requires a more complete understanding of DUB specificity, regulation, and knock- down phenotypes.

Only a few DUB inhibitors have entered clinical testing, and none are as- yet approved (Antao 
et al., 2020). The current clinical pipeline includes small molecules targeting USP1 (with a phase 1 
clinicial trials underway sponsored by KSQ Therapeutics, Inc in advanced solid tumors) and USP30 
(with clinical trial plans announced by Mission Therapeutics for kidney disease) (KSQ Therapeutics, 
Inc, 2022, Identifier: NCT05240898; Mission Therapeutics, 2022). While potent and selective inhib-
itors have been described for a small number of DUBs, including USP7, USP14, and CSN5 (Schauer 
et al., 2020; Schlierf et al., 2016; Wang et al., 2018a), development of chemical probes for other 
DUBs has largely yielded relatively non- selective compounds (Ndubaku and Tsui, 2015). Moreover, 
many potential DUB substrates reported in the literature have not yet been explored in detail or fully 
confirmed, and the dependency of DUB- substrate interactions on biological setting (e.g. cell type or 
state) is largely unexplored. Lastly, out of more than 100 DUBs in the human proteome, only a small 
subset has been studied from a functional perspective. This lack of information on DUBs as a family 
makes the task of prioritizing DUBs for development of chemical probes and, ultimately, human ther-
apeutics, more difficult.

In this paper, we take a combined and relatively unbiased computational and experimental 
approach to investigating the functions of DUBs, with an emphasis on cancer cell lines in which DUB 
inhibitors have been most extensively studied. First, we use high- throughput RNA- seq to measure the 
transcriptome- wide impact of an 81- member DUB CRISPR- Cas9 knockout library and also of seven 
small molecule DUB inhibitors chosen for high selectivity. As a complementary source of phenotypic 
and molecular information, we mine several large omics datasets (Table 1), including the Dependency 
Map (DepMap) (Meyers et al., 2017; Tsherniak et al., 2017), the Connectivity Map (CMap) (Lamb 
et  al., 2006) and a recently published Cancer Cell Line Encyclopedia (CCLE) proteomics dataset 
(Nusinow et  al., 2020) as well as multiple protein- protein interaction databases (PPIDs) (Cerami 
et al., 2011; Hermjakob et al., 2004; Malovannaya et al., 2011; Stark et al., 2006). We then test a 
subset of the inferred DUB activities using focused knockout and functional studies.

The DepMap aims to identify genes that are essential for cell proliferation based on a genome- 
wide pooled CRISPR- Cas9 knockout screen conducted in more than 700 cancer cell lines spanning 
multiple tumor lineages. Each cell line in the DepMap carries a unique barcode to enable parallel 
analysis, and each gene knockout is assigned a ‘dependency score’ on a per cell- line basis. The depen-
dency score quantifies the rate at which a cell carrying a particular CRISPR- Cas9 guide RNA is out- 
competed (‘drops out’) in a specific cell line; the more negative the dependency score, the stronger 
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the impact on proliferation and thus, the higher the rate of guide disappearance from the population 
(Meyers et al., 2017; Tsherniak et al., 2017). The dependency score therefore provides a measure of 
the essentiality of a gene in different cell lines.

The CMap is a database of ~1000- gene mRNA signatures obtained from cells treated with small 
molecule drugs or in which individual genes have been knocked down using RNAi or overexpressed; 
data are available for ~3000 different genes and ~5000 small molecules. Each mRNA signature involves 
the measurement of a representative subset of the transcriptome using a bead- based (Luminex) assay 
(Lamb et al., 2006). The CCLE proteomics dataset is comprised of shotgun proteomic data for 375 cell 
lines from multiple tumor lineages without perturbation; ~12,000 proteins are detected in total across 
the dataset (Nusinow et al., 2020).

PPI datasets were obtained from BioGRID, IntAct, and Pathway Commons PPIDs, as well as the 
NURSA dataset that is focused on interactions among proteins involved in transcription; in these 
datasets, interaction was assessed using a variety of methods including affinity capture followed 
by mass spectrometry, affinity capture followed by western blotting, and assembly of reconstituted 

Table 1. Data and public resources used to infer the functions of DUB genes.

Resource Description Key Insights Terms / abbreviations

DGE RNA- seq

High- throughput RNA- seq data collected for this 
study following knockout or inhibition of individual 
DUBs using CRISPR- Cas 9. 81 DUB knockouts (found 
in a commercial library) and 7 small molecules were 
characterized in biological replicate.

Transcriptional signatures acquired from cells 
in which individual DUBs are inactivated. This 
provides insight into potential gene function. 
Similarity between signatures of gene knockout 
and small molecules provides insight into small 
molecule selectivity.

3’DGE- seq: 3’ Digital Gene Expression, a type 
of high- throughput RNA- seq.
Differentially Expressed (DE) gene: Gene with 
different level of expression across two samples 
as defined by a false discovery rate (FDR) 
adjusted P<0.05.

Connectivity Map 
(CMap)

A Broad Institute database of post- perturbation 
RNA- seq signatures generated from multiple cell 
lines following knockdown (RNAi or CRISPR- Cas 9), 
gene over- expression, or treatment of cells with small 
molecule drugs. Signatures in CMAP resource are 
comprised of 978 landmark genes measured using a 
Luminex bead- based assay. The expression of 11,350 
genes is then inferred. Data are available for ~3000 
genes and ~5000 small molecules.

Enables identification of genes that, when 
silenced with RNAi, or overexpressed, have 
similar transcriptional effects as a query L1000 
or DGE- Seq signature. The effects of gene 
knockout/over- expression can be compared to 
the effects of drugs for mechanism of action 
studies.

Query mRNA profile: the transcriptomic 
signature that is used to query CMap and 
retrieve similar signatures.
Tau score: a parameter that quantifies similarity 
between the query mRNA profile and CMap 
signatures (tau similarity is computed by 
counting the number of pairwise mismatches 
between two ranked lists). CMap recommends a 
threshold value for tau similarity scores of >90.

Dependency Map 
(DepMap)

A Broad Institute database of gene essentiality scored 
in >700 cancer cell lines based on genome- wide 
pooled CRISPR- Cas9 knockout screens. Dropout 
of specific Guide RNAs is used as a measure of 
essentiality.

Enables identification of genes that are 
essential for cell proliferation or survival in 
specific cell lines. Patterns of essentiality across 
cell line panels (the DepMap score) can be 
computed to identify genes potentially having 
related biological functions.

DepMap score – a measure of cell line dropout 
rate in a pooled genome- wide CRISPR screen 
(a gene with a dependency score <–0.5 is 
considered an essential gene in that cell line)
Co- Dependency. Genes with similar DepMap 
scores are said to be co- dependent. In our 
study, we analyzed the top seven co- dependent 
genes, but similar data were obtained when 
more or fewer co- dependent genes were 
considered.

Cancer Cell Line 
Encyclopedia 
(CCLE) 
Proteomics

A Broad Institute database of baseline shotgun 
proteomics collected from CCLE cell lines. Data 
from ~375 cell lines and 12,000 proteins per line are 
available.

Protein co- expression across cell line panels 
provides insight into functional interactions: 
proteins in the same complex are often co- 
expressed to a significant degree across CCLE 
cell clines.

Co- expressed genes: correlation in protein 
abundance across cell lines with FDR <0.01 and 
|z- score|>2. These thresholds are set based on 
previous publications (Nusinow et al., 2020).

BioGRID

Protein- protein interaction database compiling 
interaction data from multiple sources. Protein 
interactions are measured using multiple physical 
assays including affinity capture MS, affinity capture 
western blotting, and assembly of reconstituted 
complexes from purified recombinant subunits in vitro.

Discovery of protein- protein interactions using 
a variety of methods that focus on physical 
interaction. PPID: protein- protein interaction database.

IntAct
Protein- protein interaction database that compiles 
interaction data from multiple sources.

Discovery of protein- protein interactions using 
a variety of methods that focus on physical 
interaction. PPID: protein- protein interaction database.

Pathway 
Commons

Protein- protein interaction database compiling 
interaction data from multiple sources.

Discovery of protein- protein interactions using 
a variety of methods that focus on physical 
interaction. PPID: protein- protein interaction database.

NURSA
Physical interactions among proteins, particularly those 
involved in transcription.

Discovery of proteins that interact directly 
as determined by affinity capture mass 
spectrometry; approximately ~3000 IP assays 
are currently included.

PPID: protein- protein interaction database.
NURSA: Nuclear Receptor Signaling Atlas
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complexes from purified recombinant subunits (Cerami et al., 2011; Hermjakob et al., 2004; Malo-
vannaya et  al., 2011; Rouillard et  al., 2016). When combined with CRISPR screens and focused 
hypothesis- testing experiments, data mining provided new insight into the functions and interactors 
of the majority of human DUBs. These data set the stage for further analysis of the DUB protein family 
and for development of chemical probes for specific DUBs and DUB subfamilies.

Results
General description of integrative multi-omics approach
To characterize the DUB family of enzymes, we combined laboratory experiments and data mining 
(Figure 1, Table 1). As a first step, we leveraged CMap to identify genes that, when silenced with 
RNAi, or overexpressed, had similar transcriptional effects as DUB knockouts. This approach is based 
on the observation that genetic perturbations acting on components of the same or related pathways 
frequently give rise to significantly similar transcriptomic signatures (Lamb et al., 2006). To generate 
knockouts, we used a commercially available arrayed CRISPR- Cas9 library targeting 81 DUBs and 13 
additional proteins in the ubiquitin- proteasome system, including ubiquitin- like proteins; the library 
was constructed with four, pooled, guides per target (coverage of DUBs is incomplete in this CRIS-
PR- Cas9 library because it was based on a historical understanding of the DUB family; Figure 2a, 
Supplementary file 1). Prior to screening, transfection was optimized by assaying the abundance of 
selected target proteins using western blots (see Materials and methods, Figure 2—figure supple-
ment 1a). mRNA profiling was performed 96 hr after guide RNA transfection using a high- throughput, 
low- cost RNA- sequencing method (3’ Digital Gene Expression; 3’DGE- seq) in the MDAMB231 breast 
cancer cell line (Figure 2b, Semrau et al., 2017; Soumillon et al., 2014). Four days after guide RNA 
transfection, we generated mRNA profiles by 3’DGE- seq and then queried the CMap database. This 
yielded tau scores quantifying similarity between the query mRNA profile and CMap signatures (tau 
similarity is computed by counting the number of pairwise mismatches between two ranked lists) 
(Lamb et al., 2006). We used the recommended threshold of tau similarity score >90 to determine 
significantly similar perturbations.

Next, we leveraged the DepMap dataset to investigate DUB essentiality. It has been observed 
that genes having similar DepMap scores across large panels of cell lines are likely to have related 
biological functions (Meyers et al., 2017; Pan et al., 2018; Tsherniak et al., 2017), a property known 
as co- dependency. More specifically, co- dependent genes are frequently found to lie in the same or 
parallel pathways (as defined by gene ontology (GO), for example) or to be members of the same 
protein complex. We identified co- dependent genes for DUBs and then ran GO enrichment analysis 
on the co- dependent genes to identify pathways in which the DUBs were likely to be active. We also 
mined data on co- dependent genes from four other datasets. First, we asked whether co- dependent 
genes had similar transcriptomic signatures in CMap. Second, we used protein- protein interaction 
databases (PPIDs) such as BioGRID, IntAct, Pathway Commons, and NURSA to ascertain whether 
co- dependent genes might interact physically with one another. Third, we searched CCLE proteomics 
data for proteins whose expression levels across ~375  cell lines strongly correlated with the level 
of each DUB; it has previously been observed that proteins in the same complex are often co- ex-
pressed to a significant degree across a cell line panel (Nusinow et al., 2020). Fourth, we repeated 
GO- enrichment analysis for protein- interactors identified from PPIDs or for significantly co- expressed 
proteins from the CCLE proteomics data. All four approaches involve indirect assessment of function 
or interaction but they are based on different types of data and different ideas about what constitutes 
a gene- gene ‘interaction’. We reasoned that inferences that were significantly correlated or at least 
consistent across data sources were more likely to be biologically meaningful. As one means of testing 
this hypothesis we asked whether results for well- studied DUBs were consistent with prior literature 
knowledge.

Experimental support for functional associations obtained from data mining was sought by 
knocking out the DUB and several co- dependent genes and then assaying phenotypic similarity by 
mRNA profiling and other means. We also compared CRISPR- Cas9 knockout phenotypes with pheno-
types induced by treatment of MDAMB231 or MCF7 cells with one of seven recently developed small 
molecule DUB inhibitors. We selected these inhibitors based on their reported selectivity for specific 
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Figure 1. Approach to multi- omics analysis DUBs. The functional impact of DUB loss was investigated via 
transcriptomic profiling of cells following CRISPR- Cas9 knockout (purple box); this was compared to signatures 
for genetic perturbations in the Broad Connectivity Map database of RNA- seq signatures (green). The impact 
of DUB knockout on cancer cell line proliferation was analyzed using the Broad Dependency Map (red) and 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.72879


 Research article Biochemistry and Chemical Biology | Computational and Systems Biology

Doherty et al. eLife 2022;11:e72879. DOI: https://doi.org/10.7554/eLife.72879  6 of 31

DUBs. We then compared drug- induced transcriptomic profiles with those obtained by CRISPR- Cas9- 
mediated gene knockout.

The impact of DUB knockouts on the transcriptome
Genes whose knockout with CRISPR- Cas9 resulted in 20 or more differentially expressed (DE) genes 
in MDAMB231 cells at a false discovery rate (FDR) adjusted p- value of p<0.05 included ten DUBs, one 
deSUMOylating enzyme (SENP2), and one ubiquitin- like protein (UBL5) (Figure 2c and d). To deter-
mine if the CMap database, which was collected primarily using a LUMINEX- based ‘L1000’ method 
(Subramanian et al., 2017), could successfully be queried using 3’DGE- Seq signatures, we focused 
in on three DUBs that have been relatively well studied: CYLD, TNFAIP3, and PSMD14. Using 3’ 
DGE- Seq data, we found that knockout of PSMD14, a proteosome subunit, strongly perturbed genes 
involved in the cell cycle (e.g. the GO cell division category), as expected for a DUB essential for 
proteasome function and thus, cell cycle progression (Figure 2e, Supplementary file 2). When CMap 
was queried using the 3’DGE- seq data, PSMD14 knockout was found to be similar to knockout of 
multiple other proteasome subunits (Supplementary file 3). In the case of CYLD and TNFAIP3 (also 
called A20), we found that CRISPR- Cas9 knockout resulted in highly correlated changes in transcrip-
tion, and GO analysis revealed involvement in NF-κB signaling (Figure 2d and e, Lork et al., 2017). 
Both DUBs are known to deubiquitinate members of the NF-κB signaling cascade, such as TRAF2, 
which results in inhibition of signal transduction (Lork et al., 2017). Moreover, we found that 3’DGE- 
seq data for CYLD and TNFAIP3 knockout were most similar to CMap signatures associated with over-
expression of genes that function upstream in the NF-κB pathway, such as the TNF receptor TNFRS1A 
(Supplementary file 3). We interpreted these data on three well- studied DUBs as helping to confirm 
the validity of our approach.

Analysis of DUB essentiality using publicly available datasets
Differences in the expression of DUBs in normal tissues and malignant tumors has been described 
previously (Luise et al., 2011), but the direct impact of DUB deletion on specific types of cells has 
not yet been systematically explored. We therefore investigated the essentiality of DUBs for cancer 
cells and embryonic development by leveraging three datasets: the DepMap, the International Mouse 
Phenotyping Consortium (IMPC) dataset, and the Mouse Genome Informatics (MGI) mouse pheno-
type dataset. Of 94 DUB knockouts found in DepMap, 23 strongly impacted proliferation (dependency 
score <–0.5) in at least 200 of the cell lines tested (30%), and an additional 25 impacted proliferation 
in at least eight cell lines (1%) (Figure 3a). The remainder had little, if any, detectable effect. To iden-
tify dependencies associated with tumor type, we compared DepMap data across sets of cell lines 
that had been divided based on tissue of tumor origin or more specific clinical or genetic subtypes 
(e.g. Leukemia is a general category, while AML, ALL, and CML are more specific subdivisions). This 
can provide insight into disease activity. For example, the tumor type in DepMap most sensitive to 
knockout of the BRAF kinase is melanoma, the disease in which BRAF inhibitors were first approved 
and are most widely used (Kakadia et al., 2018). We identified 34 DUBs that, when knocked out, 
significantly and disproportionately affected at least one tumor type more than all other tumor types 
(two- sided t- test p<0.05, FDR <0.1; Supplementary file 4). STAMBP for example, impacts prolifera-
tion of head and neck cancer cell lines more strongly (mean dependency score = –0.73) than all other 
tumor types in the DepMap (mean dependency score = –0.43; difference in means = 0.30 +/- 0.08, 
FDR = 0.03), suggesting that STAMBP might best be studied in this context; Figure 3—figure supple-
ment 1 depicts analogous information for other DUBs.

compared to other gene knockouts in the dataset; this identified co- dependent genes (sets of genes whose 
knockout had similar effects on cell proliferation across cell lines). Multiple protein- protein interaction databases 
and co- expression (correlation in protein abundance across cell lines) in baseline proteomics in Cancer Cell Line 
Encyclopedia (CCLE; yellow) cell lines were used to provide support for physical or functional interactions among 
DUBs exhibiting co- dependency. We then used these analyses to explore the impact of DUB knockout on the 
transcriptome, determine the impact of DUBs on proliferation, and propose E3 ligase interactors and essential 
functions of DUBs. Acronyms used in figure: knockout (KO), loss of function (LOF), Cancer Cell Line Encyclopedia 
(CCLE).

Figure 1 continued
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Figure 2. Measuring the impact of DUB CRISPR- Cas9 knockout on cell phenotypes. (A) 81 DUBs covering the majority of the DUB phylogenetic tree 
were targeted in MDAMB231 cells using an arrayed CRISPR- Cas9 library (black circles (Figure 2 cont.) designate knockouts included in screen). (B) The 
impact of DUB loss on the transcriptome was profiled using high- throughput 3’ DGE RNA- seq 96 hr after transfection with CRISPR- Cas9. (C) The impact 
of individual DUB knockouts on the transcriptome of MDAMB231 cells, 4 days post CRISPR- Cas9 guide transfection as quantified by the number of 

Figure 2 continued on next page
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Genes are often studied in a setting or cell type in which they are highly expressed, based on 
the assumption that level of expression correlates with activity. However, when we compared DUB 
expression levels and dependency scores, we found that they were uncorrelated (median correla-
tion between DUB dependency score in DepMap and protein abundance in CCLE proteomics data 
= 0.017, median p- value 0.23), except in the case of TNFAIP3, which was more highly expressed in 
more sensitive cell lines (r=–0.32, p- value =1.6 x 10–6, Figure 3—figure supplement 2a). In fact, a 
subset of pan- essential DUBs (those DUBs that were essential in >90% of DepMap cell lines) exhib-
ited positive correlation between DUB abundance and DUB dependency score (r>0.2), meaning that 
the most sensitive cell lines had the lowest DUB expression levels (Ohashi et al., 2019, Figure 3—
figure supplements 2 and 3). Thus, with rare exception, the sensitivity of individual tumor lineages to 
different DUB knockouts is not explained by protein abundance. Moreover, studying DUBs primarily 
in over- expressing cell lines is not supported by available data.

Using mouse data from the IMPC and MGI datasets, we compared data from cell lines in DepMap 
to knockout phenotypes in mice (Figure 3a, Muñoz- Fuentes et al., 2018). Phenotypes in the IMPC 
are scored prior to weaning in pups that arise from mating heterozygous animals, with lethality at 
complete penetrance corresponding to no homozygous pups and lethality with incomplete pene-
trance corresponding to fewer than 12.5% homozygous pups (the expected value for a gene with 
no impact on survival is 25%). For DUBs with no data in the IMPC, we leveraged knockout mouse 
data from the MGI dataset, which compiles mouse phenotypes from multiple sources. Of the 82 DUB 
knockout mice included in the datasets, 20 DUBs were lethal with complete penetrance, 7 were lethal 
with incomplete penetrance, 47 had non- lethal phenotypes, and 8 resulted in no detectable pheno-
type in embryos or pups. Of the 27 DUBs that were essential for embryonic development, 21 were 
also essential for cancer cell viability in at least 1% of cell lines in the DepMap data. A total of 32 DUB 
knockouts yielded a detectable lethal or non- lethal phenotype in mice but were essential in fewer 
than 1% of cancer cell lines. Thus, more DUBs were essential in mice than in cell lines – as might have 
been expected – and the majority of DUBs are likely to have non- redundant functions in development.

Analysis of co-dependent genes to infer function
To investigate genetic interactions between DUBs and other genes, we performed co- dependency 
analysis using DepMap data. For each of the 65 DUBs that were essential in ≥3 cells lines, we selected 
the top seven co- dependent genes and used GO enrichment analysis to identify which protein 
complexes and pathways were involved (hypergeometric test, FDR- adjusted p<0.05, see Materials 

differentially expressed genes (adjusted p- value <0.05). Guide RNA transfections were performed in triplicate and transcriptional responses then 
averaged. Knockouts that resulted in more than 20 differentially expressed (DE) genes are colored red. (D) Hierarchical clustering of log2FC values for 
significantly differentially expressed (DE) genes (adjusted p- value <0.05) for the knockouts colored red in (C). (E) Gene set enrichment analysis results for 
DUB knockouts that resulted in at least 20 DE genes. Gene sets that were significantly enriched (FDR <0.05) and in the top five up- or down- regulated 
gene sets in at least one condition are shown. PRPF8 knockout did not result in any significantly enriched pathways so it is not displayed.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. Assessment of CRISPR- Cas9 guide target downregulation.

Figure supplement 1—source data 1. Original image from western blots in Figure 2—figure supplement 1 (images for target genes).

Figure supplement 1—source data 2. Original image from western blots in Figure 2—figure supplement 1 (images for loading controls).

Figure supplement 1—source data 3. Original image from western blots in Figure 2—figure supplement 1 (images for target genes, darker 
exposure).

Figure supplement 1—source data 4. Original image from western blots in Figure 2—figure supplement 1 (images for GAPDH for USP1 KO).

Figure supplement 1—source data 5. Original image from western blots in Figure 2—figure supplement 1 (images for USP1 for USP1 KO).

Figure supplement 1—source data 6. Labeled, uncropped blots for Figure 2—figure supplement 1 (USP7 KO).

Figure supplement 1—source data 7. Labeled, uncropped blots for Figure 2—figure supplement 1 (USP8 KO).

Figure supplement 1—source data 8. Labeled, uncropped blots for Figure 2—figure supplement 1 (USP10 KO).

Figure supplement 1—source data 9. Labeled, uncropped blots for Figure 2—figure supplement 1 (USP1 KO).

Figure supplement 1—source data 10. Labeled, uncropped blots for Figure 2—figure supplement 1 (USP11 KO).

Figure supplement 1—source data 11. Labeled, uncropped blots for Figure 2—figure supplement 1 (UCHL5 KO).

Figure 2 continued

https://doi.org/10.7554/eLife.72879
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Ring 5: Correlation in DepMap
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Ring 4: Codependencies;         
Interaction in PPID yes
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Ring 6: CCLE proteomics
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Figure 3. DUB essentiality and codependency relationships in DepMap. (A) The fraction of cancer cell lines present in the DepMap that are strongly 
dependent on each DUB (using recommended threshold CERES <–0.5). Bars are colored coded based on knockout mouse phenotype data from the 
IMPC and MGI datasets. (B) The strongest co- dependent genes for each DUB (n=7 but similar results were obtained for n=5–10). For visualization 
purposes, only DUBs that either had a significantly enriched GO term, a co- dependent gene supported by PPID or CCLE proteomics co- expression, 

Figure 3 continued on next page
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and methods for more detail). Similar results were obtained when the top 5, 7, or 10 co- dependent 
genes were analyzed by GO enrichment analysis, but setting the threshold at seven genes yielded 
the largest number of GO terms for well- characterized DUBs that were consistent with literature 
knowledge. We therefore used a threshold of seven co- dependent genes for the remainder of our 
analysis. For 35 of 65 DUBs examined, we could identify at least one significantly enriched GO term 
for co- dependent genes. To enable easy visualization of these and related data, we summarized them 
as a series of concentric rings (Figure 3b); the rings display the most significant GO term (ring 1), the 
gene names and correlation values of the top seven co- dependent genes (rings 4 and 5), as well as the 
fraction of cell lines that are dependent on each DUB in the DepMap (ring 3). Supplementary file 5 
provides the same data in tabular form to facilitate computational analysis, and the data are also avail-
able on the DUB Portal which is automatically updated weekly to capture public database updates.

For the well- studied DUBs described above, co- dependency analysis returned results consistent 
with known functions. For example, genes co- dependent with the proteasomal subunit PSMD14 
included other members of the proteasome (GO: endopeptidase complex), and co- dependent genes 
for CYLD and TNFAIP3 included members of the NF-κB pathway (GO: I-κB kinase/NF-κB signaling) 
(Figure 3b). We therefore asked whether CRISPR- Cas9 knockout of co- dependent genes would elicit 
similar changes in RNA expression as knockout of the DUB itself. Specifically, for the 9 CRISPR- Cas9 
DUB knockouts that resulted in DE of 20 or more genes in MDAMB231 cells, we computed the simi-
larity in CMap for (RNAi- based silencing of) co- dependent genes. We found that four DUBs, CYLD, 
TNFAIP3, PSMD14, and USP8, had at least one co- dependent gene that, when silenced, resulted in a 
significantly similar transcriptomic profile to that of the expected DUB knockout (Supplementary files 
6 and 7). An additional two DUBs, USPL1, and PRPF8, were correlated with splicing factors in both 
DepMap and CMap, although the specific splicing factors were not the same. Further comparison 
of DepMap and CMap data was limited by the fact that CMap contains only ~3000 knockdowns as 
compared to ~18,000 knockouts in the DepMap. We nonetheless conclude that co- dependency anal-
ysis yields data on genes that likely interact functionally with DUBs, and the DepMap data and RNA- 
Seq of CRISPR- Cas9 knockouts were largely consistent in assigning an activity to individual DUBs.

Among the 69 DUBs whose knockout had little or no detectable impact on transcription 
in MDAMB231 cells (<20  DE genes) in our studies, 55 had little or no impact on proliferation of 
MDAMB231 cells in DepMap data and 7 were absent from the dataset (Figure 4—figure supple-
ment 1). In no case did we detect significant differential gene expression in MDAMB231 cells without 
evidence of dependency in at least 1% of cell lines (i.e. 8 cell lines). In seven cases however, DUB 
knockout was associated with a high DepMap dependency score but minimal changes in transcription 
based on CRISPR- Cas9 screens in MDAMB231 cells. We used western blotting (3 DUBs: USP1, USP7, 
USP10) or mRNA profiling (1 DUB: USP36) to establish that four of seven target genes in question 
had actually been downregulated by guide RNA transfection. In these cases, differences in the time 
and format of the measurement, 4 days after guide RNA transfection for mRNA profiling and 21 days 
for DepMap data, may explain the difference in transcript profiling and DepMap dependency data. 
In three other cases (BAP1, USP5, USP37), DUB mRNA was not detectably downregulated in our 

or scored as essential in at least 20% of DepMap cell lines are displayed (see Supplementary files 6 and 7 for complete codependency results). The 
inner ring (ring 1) contains the top GO term for the co- dependent genes for each DUB (highly similar GO terms are grouped to aid in viewing the data, 
see Supplementary file 5 for all GO results). The second ring contains the DUB gene name. The third ring contains the fraction of cell lines strongly 
dependent on the DUB. The fourth ring contains the co- dependent gene name (green if DUB – co- dependent gene pair exists in a protein- protein 
interaction database). The fifth ring contains the Pearson correlation value for the DUB- co- dependent gene pair (red represents a positive correlation 
and blue represents a negative correlation). The sixth ring designates which co- dependent genes had similar transcriptomic profiles in CMap or were 
co- expressed in baseline proteomics with the respective DUB.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Differential DUB dependency by cancer type.

Figure supplement 2. Assessing the association between DUB abundance and dependency.

Figure supplement 3. Copy number loss of individual DUBs in various tumor types.

Figure supplement 4. Enrichment of interactors and co- expressed genes in co- dependent genes.

Figure supplement 5. Enriched GO terms that are common across analyses.

Figure 3 continued

https://doi.org/10.7554/eLife.72879
https://labsyspharm.github.io/dubportal/


 Research article Biochemistry and Chemical Biology | Computational and Systems Biology

Doherty et al. eLife 2022;11:e72879. DOI: https://doi.org/10.7554/eLife.72879  11 of 31

MDAMB231 studies, and we assume that the knockout may have failed for technical reasons. Overall, 
these results suggest good agreement between mRNA profiling and DepMap data with discordance 
that affected ~5–10% of DUBs (depending on the criterion used) and was potentially explainable by 
differences in assay format and experimental error.

Protein interaction and co-expression datasets provide support for co-
dependent genes
To search for evidence of physical interaction between genes scored as similar in function to DUBs 
based on DepMap and CMap data, we mined protein interaction datasets. First, we compiled the 
protein- protein interactions for each DUB from four PPIDs: BioGRID, IntAct, Pathway Commons, and 
NURSA (Cerami et al., 2011; Hermjakob et al., 2004; Malovannaya et al., 2011; Rouillard et al., 
2016). These datasets involve a range of approaches to scoring interaction including affinity capture 
MS, affinity capture western blotting, and assembly of reconstituted complexes from purified recom-
binant subunits in vitro. When we asked whether any proteins that exhibited co- dependent genes 
with DUBs in DepMap data also exhibit interaction with that DUB in PPID data, we found that 31 
DUBs (out of 65 DUBs that were essential in ≥3 cell lines in the DepMap), had at least one co- depen-
dent gene that was also an interactor in PPID data (Figure 3b, ring 4, interactors shown in green). A 
total of 55 of 65 DUBs were detectable in CCLE proteomics data (the expression levels of the others 
were presumably too low) and of those, 24 DUBs were significantly co- expressed with one or more 
co- dependent genes (FDR <0.01 and |z- score|>2). Moreover, DUBs that are well known to function 
in multi- protein complexes, such as the USP22 subunit of the SAGA complex, were found to interact 
with, be co- expressed with, and exhibit co- dependency with other members of the complex. In aggre-
gate, 39 DUBs had at least one co- dependent gene (average 1.6 co- dependent genes per DUB) that 
was also found to be an interaction partner in a PPID and/or significantly co- expressed in the CCLE 
baseline proteomics data. Based on these two lines of evidence, we conclude that co- dependent 
genes for 39 DUBs are likely to interact physically and functionally. These findings are summarized in 
Figure 3b rings 4 and 6 and available in tabular form in Figure 3—figure supplement 4. However, 
some DepMap co- dependent genes were not observed to interact in PPID data, in agreement with 
the general expectation that proteins functioning in the same pathways might, when perturbed, have 
a similar effect on cell growth even in the absence of physical interaction.

We performed GO- enrichment analysis on DUB interactors and significantly co- expressed proteins 
and compared the resulting set of significantly enriched GO terms to the GO terms enriched in the 
co- dependent genes in the DepMap. This comparison enabled identification of GO terms that are 
significantly enriched in multiple datasets, providing corroboration for GO terms enriched in the 
DepMap co- dependent genes. We identified 35 DUBs whose co- dependent genes in the DepMap 
were associated with one or more significantly enriched GO terms. For 26 of these DUBs, at least 
one GO term was also enriched in the co- expressed proteins or PPID interactors for the relevant 
DUB (Figure 3—figure supplement 5). Overall, protein co- expression validated more GO complexes 
than GO pathways, consistent with the idea that the proteome is primarily organized by complexes 
(Nusinow et al., 2020). Moreover, DUBs that have well- characterized functions were often found to 
be enriched for known interactors or substrates across multiple datasets. For example, the prote-
asome subunit PSMD14 was enriched for other proteasome subunits and CYLD was enriched for 
NF-κB signaling in multiple datasets, providing additional confidence in the validity of our approach 
(Figure 3—figure supplement 5).

From these data, we conclude that DepMap co- dependencies, CMap signatures, CCLE proteomic 
data, and PPIDs provide complementary and consistent data on the likely functions and physical inter-
actors for the great majority of DUBs. These data are summarized in the different rings in Figure 3, 
provided in tabular form in Supplementary files 6 and 7 are browsable online via the DUB Portal (see 
methods for full URL). To further increase confidence in results obtained from data mining, we tested 
specific hypotheses by direct experimentation.

New insight into the functions of the proteasome-bound DUBs UCHL5 
and USP14
Since most well- annotated DUBs have many reported substrates, we sought to use DepMap data 
to identify which function(s) of DUBs or their substrate(s) might be responsible for cell- essential 

https://doi.org/10.7554/eLife.72879
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phenotypes. For example, UCHL5 is known to interact with both the INO80 complex (which is involved 
in chromatin remodeling, DNA replication, and DNA repair) and with the proteasome (Yao et al., 
2008). UCHL5 has been pursued as a cancer therapeutic target because of the latter activity (D’Arcy 
et al., 2011; Tian et al., 2014; Xia et al., 2018). However, co- dependent gene data from the DepMap 
show that the effect of UCHL5 knockout is most similar to that of knockout of INO80 subunits (e.g. 
NFRKB, TFPT, INO80, INO80E, INO80B, r range = 0.29–0.54) (Figure 3b). In contrast, no significant 
correlation was observed with knockouts of proteosome components (e.g. PSMD9, PSMD6, PSMD3, 
r range = 0.03–0.05). We conclude that UCHL5 is likely to play an essential and non- redundant func-
tion not in the proteasome, where it has been most widely studied, but instead in the INO80 complex 
(Figure 3b). This suggests that the therapeutic context for the use of UCHL5 inhibitors is likely to be 
different from that of proteasome inhibitors, several of which are approved drugs (e.g. bortezomib; 
Tan et al., 2019). More specifically, since the INO80 complex has an essential role in DNA damage 
repair, (Yao et al., 2008) UCHL5 inhibitors may be most useful in combination with DNA damaging 
agents.

USP14 is another highly studied, proteasome- bound DUB considered to be a promising thera-
peutic target in some cancers (Tian et  al., 2014) and USP14 has been reported to rescue many 
proteins from degradation by the proteasome (Liu et al., 2018). We found USP14 to be co- expressed 
with proteasome subunits in CCLE proteomics data and to interact with the same subunits in PPID 
data (Supplementary files 6 and 7); however, USP14 is not strongly co- dependent with subunits 
of the proteosome (PSMD13, PSMD7, PSMD4, r range = 0.08–0.09). Instead, a DepMap correla-
tion was observed between USP14 and the UBC polyubiquitin gene (r = 0.25), which is one of the 
primary sources of ubiquitin in mammalian cells (Figure 3b). This suggests that loss of USP14 has an 
anti- proliferative phenotype similar to that of ubiquitin loss and that this phenotype is distinct from 
that of proteasome inhibition. This hypothesis is consistent with reports that USP14 is required to 
maintain monoubiquitin pools, and that loss of USP14 leads to an accumulation of polyubiquitin, 
thereby lowering the levels of free ubiquitin available for conjugation onto protein substrates by E3 
ligases (Lee et al., 2018; Yao et al., 2008). Also consistent with this model are our data showing that 
CRISPR- Cas9 knockout of USP14 resulted in significant upregulation of the UBC gene but had little 
additional impact on gene expression (Figure 4a). Finally, when we compared the USP14 knockout 
phenotype to that elicited by exposure of MDAMB231 cells for 24 hr to the USP14 inhibitor I- 335 
(Supplementary file 8), we observed upregulation of UBC and only one other gene (TKT - transke-
tolase - a thiamine- dependent enzyme involved in the pentose phosphate pathway; Figure 4a, Qin 
et al., 2019). From these data, we conclude that maintenance of the pool of free ubiquitin, not regu-
lation of the proteasome, is likely to be the key, non- redundant function for USP14.

USP8 and other ESCRT members impact NF-κB signaling
USP8 is an extensively studied DUB that has been shown to regulate endosomal sorting complexes 
required for transport (ESCRT). ESCRT complexes recognize ubiquitinated transmembrane receptors 
and facilitate their transport to lysosomes for degradation (Mamińska et al., 2016). USP8 interacts 
with and stabilizes both receptors and ESCRT proteins. Although USP8 has been reported to regulate 
the abundance of many proteins (Dufner and Knobeloch, 2019), attention has focused on its role 
in stabilizing EGFR (Byun et al., 2013). We found that CRISPR- Cas9 knockout of USP8 also upregu-
lates the expression of cytokines such as IL6 (with a normalized enrichment score – NES of 1.99 and 
adjusted p- value of 0.005 for ‘go_cytokine_activity’) implying that USP8 may have a role in recycling 
cytokine receptors as well as growth factor receptors. We also observed similarity between the mRNA 
profiles for USP8 knockout and overexpression of NF-κB signaling proteins such as TNFRSF1A and 
BCL10 (CMap tau scores: 98.7 and 99.6; Figure 2e, Supplementary file 3). This is consistent with data 
showing that knockdown of other members of the ESCRT machinery perturbs cytokine receptor traf-
ficking and results in constitutive NF-κB signaling via TNFRSF1A (the primary TNF receptor; Mamińska 
et al., 2016). We hypothesized that USP8 may impact NF-κB signaling via its role in ESCRT complexes.

To test this hypothesis, we used CRISPR- Cas9 to knock out three ESCRT proteins (UBAP1, HGS, 
PTPN23) co- dependent with USP8 in DepMap data (Figure 3b, Figure 4—figure supplement 2a). We 
found that the transcriptional signature of UBAP1 knockout was strongly correlated with that of USP8 
knockout and that both knockouts resulted in upregulation of multiple cytokines (e.g. IL6; Figure 4b 
and c). We also found that, in DepMap data, USP8 knockout exhibited a higher codependency score 

https://doi.org/10.7554/eLife.72879
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Figure 4. Discriminating the functions of well- studied DUBs. (A) Changes in gene expression (log2 fold change vs. log 10 adjusted p- value, adjusted 
p- value <0.05 colored red) in MDAMB231 cells 96 hr following USP14 knockout by CRISPR- Cas9 (left) or 24 hr after treatment with the USP14 inhibitor 
I- 335 at 20 µM (right). (B) Hierarchical clustering of significantly differentially expressed genes (adjusted p- value <0.05) 96 hr following knockout of USP8 
or UBAP1 in MDAMB231 cells. (C) Gene sets significantly (FDR <0.05) enriched in MDAMB231 cells 96 hr after knockout of USP8 or UBAP1. The top 
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(i.e., correlated more strongly) with knockout of ESCRT machinery proteins than with individual growth 
factor or cytokine receptors, independent of cancer lineage, suggesting that the essential function 
of USP8 in cancer cells is not mediated by one specific receptor alone – e.g. EGFR – but rather by 
multiple growth factor and cytokine receptors that undergo similar ESCRT- dependent endosomal 
sorting.

USP7 function dependent and independent of functional TP53
USP7 has been the focus of many small molecule inhibitor campaigns (Kategaya et  al., 2017; 
Lamberto et al., 2017; Schauer et al., 2020) and several pharmaceutical companies are developing 
USP7- based therapeutics, although none have, as yet, advanced to clinical trials. USP7 is reported 
to regulate chromatin remodeling factors such as polycomb complexes and MDM2, the E3 ligase for 
the TP53 tumor suppressor protein (Kim and Sixma, 2017). We found that MDM2 and other proteins 
in the TP53 signaling pathway, such as the PPM1D phosphatase, were the strongest co- dependent 
genes for USP7 (Figure 3b). This is consistent with recent work showing that the impact of USP7 
on proliferation is strongest in TP53 wild type cell lines (Schauer et al., 2020). C16orf72, a protein 
of unknown function, was another top co- dependent gene for USP7 (DepMap correlation = 0.35; 
Figure 3b). We hypothesized that C16orf72 might be regulated by USP7 and also play a role in the 
TP53 pathway.

To investigate this hypothesis, we knocked out USP7 and C16orf72 in MCF7 cells using CRIS-
PR- Cas9 and performed 3’DGE- seq after four days. We found that knockout of either gene 
resulted in a similar mRNA expression profile: in both cases, TP53 pathway genes were upregu-
lated (Figure 4d and e). Published proteomic experiments by others show that C16orf72 is one of 
only eight proteins downregulated two hours after treatment of MM.1S cells with the highly selec-
tive USP7 inhibitor XL177A, further suggesting that C16orf72 may be regulated by USP7 (Bushman 
et al., 2021). Our data are also consistent with the sole publication on C16orf72 in PubMed, which 
describes C16orf72 as a TP53 regulator involved in telomere maintenance (Benslimane et  al., 
2021).

To test directly how much of the USP7 phenotype is dependent on the presence of TP53, we 
applied 1  µM XL177A (for 24  hr) to isogenic MCF7 cell lines that were WT for TP53 or that had 
TP53 stably knocked down using shRNA (Schauer et al., 2020); we then performed 3’DGE- seq. The 
MDM2 inhibitor nutlin3a was used as a positive control for TP53 stabilization and activation. MDM2 
inhibition with nutlin3a elicited a strong TP53 activation phenotype in parental MCF7 cells (1084 DE 
genes) but little phenotype in MCF7 TP53 KD cells (only 2 DE genes; Figure 4d). Exposure of parental 
MCF7 cells to XL177A resulted in 737 DE genes, which strongly correlated with DE genes elicited 
by MDM2 inhibition with nutlin3a as well as knockout of USP7 in parental MCF7 cells (Figure 4d). In 
contrast, exposure of TP53- null cells to XL177A resulted in only 77 DE genes (FDR >0.05) (Figure 4d, 
Figure 4—figure supplement 2b). These findings are consistent with the hypothesis that TP53 is 
a primary target of USP7. The presence of 77 DE genes in XL177A- treated MCF7 TP53 KD cells 
suggests that USP7 may also have a function independent of TP53 or that XL177A has one or more 
targets other than USP7 (see below). Overall, these studies nominate a new candidate substrate for 
USP7 (C16orf72), suggest that C16orf72 plays a role in TP53 signaling, and uncover a possible activity 
of XL177A that is independent of TP53.

five upregulated and top five downregulated gene sets for each condition are shown. (D) Hierarchical clustering of significantly differentially expressed 
genes (adjusted p- value <0.05) 96 hr after knockout of USP7 or C16orf72 in wild- type MCF7 cells or following a 24 hr treatment with 5 µM nutlin3a or 
1 µM XL- 177A in wildtype or p53 knockdown MCF7 cells. (E) Gene sets significantly enriched (FDR <0.05) for the conditions shown in (D). The top five 
up- and down- regulated gene sets for each condition are shown.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison of transcriptional phenotypes and dependency in DepMap.

Figure supplement 2. Additional analysis of knockouts of endosomal sorting proteins as well as characterization of small molecules targeting MDM2 
and USP7.

Figure 4 continued
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Additional DUB regulators of TP53
When we looked for evidence that less well- studied DUBs affect TP53 in a manner similar to USP7, we 
found that VCPIP1, UCHL3, USP38 and USP42 all negatively correlate with TP53 in the DepMap while 
ATXN3 and USP28 positively correlated with TP53 (Figure 3b). The existence of negative correla-
tion in DepMap data is evidence that two genes act in opposing directions on the same pathway. 
The strongest positive correlation in the DepMap for VCPIP1 was the E3 ligase HUWE1 (correlation 
= 0.43), suggesting that VCPIP1 might stabilize HUWE1. HUWE1 targets TP53 for degradation via 
ubiquitination followed by proteolysis by the proteasome, which may explain the negative correlation 
of VCPIP1 and TP53 in DepMap data (Figure 3b). ATXN3 and USP28 have been shown to activate 
TP53 signaling (Liu et al., 2016; Wang et al., 2018b), and knockouts of both of these genes posi-
tively correlated with TP53 knockout in DepMap data, supporting the hypothesis that these DUBs are 
positive regulators of TP53. CCLE co- expression and PPID protein- protein interaction analyses also 
support these findings: VCPIP1 and USP42 are both co- dependent and co- expressed with a negative 
regulator of TP53 (HUWE1 and PPMID respectively). Additionally, USP38 and USP28 both interact 
with DNA damage response proteins (GO response to ionizing radiation, FDR =7.0 × 10–3 and 3.0 
× 10–3 for USP38 and USP28 respectively), supporting the hypothesis that these DUBs are involved 
in DNA repair (Figure 3b). Overall, these data nominate four DUBs – UCHL3, USP38, VCPIP1, and 
USP42 – as potential negative regulators of TP53 signaling in addition to the well- established regu-
lator USP7; they also confirm ATXN3 and USP28 as positive regulators.

New insights into the function of understudied DUBs USPL1 and USP32
Copy number loss of USPL1 is frequent in cancer cell lines and predictive of increased sensitivity to 
CRISPR- Cas9- mediated knockout of USPL1 in the DepMap (Figure 3—figure supplements 2 and 3). 

EA
F1

IC
E2 EL
L

IC
E1

U
SP

L1

−3

−2

−1

0

1

2

3

IC
E1

U
SP

L1
EA

F1 EL
L

IC
E2

hallmark_myc_targets_v1
go_cytosolic_ribosome
go_protn_localztn_to_endoplasmic_reticulum
go_cotranslational_protn_targeting_to_membrane
go_establ_of_protn_localztn_to_endoplasmic_reticulum
go_taste_receptr_activity
go_structural_molecule_activity
go_ribosome
go_large_ribosomal_subunit
go_cytosolic_large_ribosomal_subunit
go_cytosolic_part
go_mrna_metabolic_process
go_cajal_body
go_innate_immune_resp_in_mucosa
go_dna_packaging_complex
go_olfactory_receptr_activity
go_sm_like_protn_family_complex
go_organ_or_tissue_specific_immune_resp
go_antibacterial_humoral_resp
go_ionotropic_glutamate_receptr_activity
go_transmembrane_receptr_protn_kinase_activity
go_forebrain_neuron_development
go_extrinsic_component_of_membrane
go_cell_junction_assembly
go_cell_junction_organization
go_mitochondrial_matrix
go_mrna_binding_involved_in_posttranscriptional_gene_silencing
go_pos_reg_of_vascular_endothlial_grwth_factor_receptr_signaling
go_tethering_complex
go_female_genitalia_development
go_dna_dependent_dna_replication
go_nucleoside_bisphosphate_biosynthetic_process
go_monosaccharide_catabolic_process
go_glutathione_transferase_activity
go_microbody_lumen

−3 −1 1 3
NES

Color Key

A B

CO
PS

5_
KO

TN
FA
IP
3_
KO

US
P8
_K
O

CY
LD

_K
O

PS
M
D1

4_
KO

SE
NP

2_
KO

UC
HL

3_
KO

YO
D1

_K
O

ZR
AN

B1
_K
O

UB
L5
_K
O

US
PL
1_
KO

hallmark_fatty_acid_metabolism
go_virion_assembly
go_mitochondrial_gene_expression
go_leukocyte_apoptotic_proc
go_neg_reg_of_inflammatory_resp
go_golgi_apparatus_part
go_endoplasmic_reticulum_lumen
go_endoplasmic_reticulum_part
go_positive_chemotaxis
go_nucleotide_excision_repair_dna_gap_filling
go_udp_glycosyltransferase_activity
go_growth_factor_activity
go_cytokine_receptor_binding
go_neutrophil_migration
hallmark_inflammatory_resp
hallmark_tnfa_signaling_via_nfkb
go_leukocyte_chemotaxis
go_cytokine_activity
go_receptor_regulator_activity
go_cofactor_metabolic_proc
go_epithelial_cell_differentiation
go_glucose_metabolic_proc
go_monosaccharide_metabolic_proc
hallmark_estrogen_resp_late
go_small_molecule_catabolic_proc
go_protn_tetramerization
go_monocarboxylic_acid_catabolic_proc
go_cofactor_binding
go_deoxyribonuclease_activity
go_organic_hydroxy_compound_biosynthetic_proc
go_steroid_metabolic_proc
go_steroid_biosynthetic_proc
go_sterol_biosynthetic_proc
go_resp_to_mitochondrial_depolarisation
go_reg_of_transcrptn_from_rna_pol_ii_promoter_in_resp_to_hypoxia
go_reg_of_cellular_amino_acid_metabolic_proc
go_peptidase_complex
go_endopeptidase_complex
go_interleukin_1_mediated_signaling_pathway
go_golgi_membrane
hallmark_hypoxia
go_calcium_ion_binding
go_establ_of_endothelial_barrier
go_protn_kinase_a_binding
go_actin_filament_binding
go_protn_containing_complex_scaffold_activity
go_actin_binding
go_histone_binding
go_actin_filament_bundle
go_reg_of_dna_metabolic_proc
go_positive_reg_of_cell_cycle
go_neg_reg_of_chromosome_organization
go_reg_of_chromosome_organization
hallmark_mitotic_spindle
go_reg_of_gene_silencing
hallmark_e2f_targets
go_meiotic_cell_cycle
go_condensed_chromosome_centromeric_region
go_chromosomal_region
go_condensed_chromosome
go_organelle_fission
go_mitotic_nuclr_division
go_cell_division
hallmark_g2m_checkpoint
go_reg_of_ubiqtn_protn_ligase_activity
hallmark_spermatogenesis
go_rna_binding
go_ribosomal_large_subunit_biogenesis
hallmark_myc_targets_v1
go_structural_constituent_of_ribosome
go_ribosomal_subunit
go_nuclr_trnscrbd_mrna_catabolic_proc_nonsense_mediated_decay
go_cytosolic_large_ribosomal_subunit
go_cytosolic_ribosome
go_centriolar_satellite
go_reg_of_execution_phase_of_apoptosis
go_u2_type_spliceosomal_complex
go_transcrptn_initiation_from_rna_pol_i_promoter
go_transcrptn_elongation_from_rna_pol_i_promoter
go_myeloid_cell_homeostasis
go_termination_of_rna_pol_i_transcrptn
go_dna_packaging_complex
go_u1_snrnp
go_reg_of_alpha_beta_t_cell_activation
go_positive_reg_of_blood_circulation
go_alpha_beta_t_cell_activation
go_cd4_positive_alpha_beta_t_cell_activation
go_nucleotide_excision_repair_dna_incision
go_transcrptn_coupled_nucleotide_excision_repair
go_inner_mitochondrial_membrane_protn_complex
go_organelle_inner_membrane

−3 −1 1 3
NES

Color Key

log2FC

knockout

knockout
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In our hands, knockout of USPL1 gave the second strongest phenotype in terms of the number of DE 
genes (Figure 2c) and clustered most closely with knockouts of the spliceosome subunit PRPF8 and 
the 73 amino acid ubiquitin- like protein UBL5, which also plays a role in splicing (Oka et al., 2014, 
Figure 2d). Additionally, knockout of USPL1 in MDAMB231 cells resulted in an mRNA expression 
signature similar to that of knock down of splicing factors such as SNRPD1 in CMap data (Supplemen-
tary file 3); genes upregulated by USPL1 knockout were enriched in mRNA processing (e.g. GO: u2 
type spliceosomal complex, FDR P- value = 0.03) (Figure 2e). The strongest DepMap co- dependent 
genes for USPL1 across tumor types were members of the Little Elongation Complex (LEC), which is 
involved in transcription of spliceosomal machinery (Hutten et al., 2014) suggestive of an association 
between USPL1 and the LEC (Figure 3b).

To investigate these inferred connections, we used CRISPR- Cas9 to knock out members of the 
LEC (ICE1, ICE2, ELL, and EAF1) in MDAMB231 cells followed by 3’DGE- seq to score phenotypes. 
We found that the USPL1 knockout expression signature clustered with signatures for knockout of 
several of the LEC genes we tested and was most similar to knockout of ICE1 (Figure 5a): in both 
cases, upregulation of genes involved in RNA processing was observed (Figure 5b). The high degree 
of similarity between the USPL1 and ICE1 knockouts is consistent with the DepMap prediction that 
USPL1 activity is mediated largely by the LEC. USPL1 also interacts with ICE1, ELL, and EAF1 in PPID 
data, suggesting there is a physical interaction between USPL1 and the LEC. Our findings are also 
consistent with a previous study showing that USPL1 interacts with subunits of the LEC and affects the 
localization of spliceosome machinery (Hutten et al., 2014; Schulz et al., 2012).

USP32 has recently been reported to be important for endosomal sorting to the Golgi apparatus 
via regulation of the small GTPase, RAB7 (Sapmaz et al., 2019). When we ran enrichment analysis on 
the top USP32 DepMap co- dependent genes, the most significant GO term was Retrograde Transport 
Endosome to Golgi. The co- dependent genes for USP32 include VPS52, VPS54, and RAB6A, which 
are known to be involved in endosomal sorting to the Golgi apparatus. RAB7 was not a codependent 
gene, however (correlation = 0.06; Liewen et  al., 2005). This suggests that the role of USP32 in 
endosomal transport may be via regulation of the small GTPase RAB6A rather than RAB7 (Figure 3b). 
RAB6 functions in Golgi trafficking, while RAB7 acts more broadly, by associating with late endosomes 
and lysosomes and regulating diverse trafficking events, including directing late endosomes to the 
Golgi (Guerra and Bucci, 2016; White et al., 1999). USP32 is co- expressed with genes involved in 
retrograde endosome transport to Golgi and the vesicle tethering complex (GO: Retrograde Endo-
some Transport to Golgi and GO: Tethering Complex, FDR adjusted enrichment p- values 6.86 × 
10–6 and 1.72 × 10–12 respectively; Figure 3b), providing additional evidence that USP32 is involved in 
endosomal sorting to the Golgi apparatus.

Association of DUBs with E3 ligases
When we combined the top seven co- dependent genes for DUBs that impact viability in ≥3 cancer 
cell lines and ran GO enrichment analysis, we identified strong enrichment for gene sets that included 
ubiquitin ligases (E3 ligases) and ubiquitin conjugating enzymes (E2 enzymes) (GO: ubiquitin- like 
transferase activity, FDR adjusted p- value =4.9 x 10–3) (Figure 7—figure supplement 1). DUBs are 
expected to antagonize E3 ligase activity by deubiquitinating E3 ligase substrates, making negative 
correlations the expected outcome. However, it has also been suggested that DUBs might asso-
ciate directly with E3 ligases and inhibit their auto- ubiquitination activity, thus preventing proteasomal 
degradation of the E3 ligase (Wilkinson, 2009). In this case, positive correlations in the DepMap 
between E3 ligases and DUBs are expected. We found that multiple DUBs exhibited strong positive 
rather than negative correlations with one or more E3 ligases in the DepMap data. We therefore 
constructed a network of all proteins having ubiquitin transferase activity (including E3 ligases and E2 
ubiquitinating proteins) for top co- dependent genes for each DUB (Figure 6). This network was found 
to include many known interactions such as USP7 regulation of the MDM2 E3 and CYLD regulation 
of the TRAF2 E3. The strongest DUB- ligase correlation in the DepMap was OTUD5 with the UBR5 E3 
(r = 0.776) which is consistent with previous data that shows that OTUD5 regulates UBR5 (de Vivo 
et al., 2019). Many previously undescribed interactions were also observed, a subset of which are also 
supported by PPID or co- expression data, including VCPIP1 with HUWE1 and ZRANB1 with HECTD1 
(Figure 6, circled with dashed lines). These findings suggest roles for 23 DUBs in stabilizing 33 ubiq-
uitin ligases, and provide new insight into which ligases are regulated by which DUBs (Figure 6).

https://doi.org/10.7554/eLife.72879
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Comparison of transcriptional impact of small molecule DUB inhibition 
and DUB knockout
There is growing interest in developing small molecule DUB inhibitors for use as human therapeutics 
(Davis and Simeonov, 2015; Harrigan et al., 2018) but the field is still relatively new. We compiled a 
set of seven recently developed DUB inhibitors that have been described by their developers as being 

Figure 6. DUB E3 ligase network. : Ubiquitin or ubiquitin- like transferases whose co- dependency relationships correlated with DUBs in the DepMap. 
DUBs are colored blue and ubiquitin transferases are colored grey. Red lines represent correlations in the top seven co- dependent genes. Green 
lines represent similarity by CMap (tau similarity score >90). Yellow lines represent co- expression in proteomics (FDR <0.01 and |z- score|>2). Blue lines 
represent interaction in protein- protein interaction databases.

https://doi.org/10.7554/eLife.72879
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selective for one of six DUBs (COPS5, OTUD7B, USP7, USP14, USP19, and USP30); early generation 
DUB inhibitors were not included since many of these have been shown to have substantial polyphar-
macology (Altmann et al., 2017; Kluge et al., 2018; Schauer et al., 2020; Schlierf et al., 2016). 
USP7 inhibitors were studied in the MCF7 breast cancer cell line, which is wild type for TP53 and all 
other drugs were tested in MDAMB231 cells (which are TP53 mutant). Cells were plated for 24 hr, 
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Figure 7. Comparison of DUB knockout and inhibition. (A) The number of significantly differentially expressed genes (adjusted p- value <0.05) as a 
result of small molecule DUB inhibition (24 hr treatment) and knockout of the putative target (96 hours after transfection with guide). (B) Hierarchical 
clustering of log2FC values for significantly differentially expressed genes (adjusted p- value <0.05) for small molecule inhibitors of DUBs, the knockout 
of the putative DUB targets of the small molecules, and the DUB knockout hits that resulted in more than 20 differentially expressed genes. inhibition 
with XL177A, the DUB inhibitor and knockout were strongly correlated, but the inhibitor resulted in substantially more DE genes, and (iii) in five cases 
(inhibition of COPS5 with Compound 6 or CSN5i- 3, inhibition of OTUD7B with I- 145, inhibition of USP19 with I- 124, and inhibition of USP30 with MF- 094) 
the inhibitor and knockout had dissimilar signatures (a and b). CRISPR- Cas9 mediated knockout or small molecule inhibition of USP14 with I- 335 resulted 
in only two DE genes, and the most strongly perturbed DE gene was the same in both instances: UBC. From these data, we conclude that I- 335 is a 
potent and selective inhibitor of USP14.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Gene set enrichment results (Hypergeometric test) of the top seven co- dependent genes for all DUBs using GO Molecular 
Function gene sets.

https://doi.org/10.7554/eLife.72879
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exposed to a small molecule for 24 hr at one dose per compound in technical triplicate (Figure 7a, 
Supplementary file 8) and mRNA profiling was performed by 3’DGE- seq. We identified significantly 
perturbed genes (FDR p- value <0.05) for each condition and compared the signatures to those asso-
ciated with CRISPR- Cas9 knockout of the putative target DUB. We found that treatment of cells with 
small molecule DUB inhibitors resulted in a median of 10- fold more DE genes than CRISPR- Cas9 
knockout of their proposed targets (median DE genes following KO =11, and following inhibitor treat-
ments = 316 Figure 7a and b). We then clustered the small molecule 3’DGE- seq signatures with those 
from our CRISPR- Cas9 DUB knockouts and also used the small molecule signatures to query CMap to 
identify potential off targets.

Our findings were consistent with three scenarios: (i) in the case of USP14 inhibition by I- 335, the 
mRNA signature was very similar to that of target knockout, (ii) in the case of USP7.

In contrast, inhibition of USP7 with XL177A resulted in 737 DE genes whereas knockout gener-
ated 48 DE genes. The two signatures were strongly correlated and querying CMap with the USP7 
inhibitor signature also returned USP7 knock down signatures (Supplementary file 3). Genes that 
were significantly DE following XL177A treatment but not USP7 knockout were strongly enriched for 
TP53 signaling (Hallmark P53 pathway, q- value=3.2 x 10–29) and cell cycle pathways (GO cell cycle, 
q- value 1.13 × 10–72), which are GO terms also enriched in USP7 knockout DE genes. This suggests 
that XL177A affects the same TP53 signaling pathway as USP7 knockout but to a greater degree. 
This difference might reflect differences in time point (24 hr for inhibition vs. 96 hr for knockout), 
incomplete knockout of USP7 by CRISPR- Cas9, or the existence of additional XL177A targets (some 
of which could include DUBs other than USP7 shown above to regulate TP53). Not all the effects of 
XL177A on cells were TP53- mediated however: exposure of TP53 KD cells to XL177A upregulated 
cell cycle genes, such as genes in the G2 checkpoint (hallmark G2M checkpoint, NES =1.94, adjusted 
p- value =6.76 x 10–6) as well as histone genes (DNA packaging complex, NES =1.76, adjusted p- value 
= 0.0066) (Figure 4c).

Exposure of cells to the OTUD7B inhibitor I- 145, the USP30 inhibitor MF- 094, USP19 inhibitor 
I- 124, or the CSN5 inhibitors Compound 6 or CSN5i- 3 resulted in strong perturbation of transcrip-
tion (651, 30, 316, 246, and 457 DE genes, respectively) whereas CRISPR- Cas9- based knockout of 
OTUD7B, USP30, USP19, or COPS5 resulted in far fewer DE genes (0, 3, 11, and 52, respectively) and 
the small molecule and CRISPR- Cas9 signatures were not significantly correlated (Figure 3a, Supple-
mentary file 8). However, the transcriptomic signature for the OTUD7B inhibitor I- 145 had significant 
similarity to multiple tubulin inhibitors in CMap data (Supplementary file 3) but no DepMap depen-
dency was identified for OTUD7B knockout in MDAMB231 cells. The transcriptomic signature of the 
USP30 inhibitor MF- 094 was similar to multiple cyclin dependent kinase inhibitors in the CMap data 
(Supplementary file 3) while the transcriptomic signature of the USP19 inhibitor I- 124 was similar in 
CMap data to the signature associated with overexpression of the cyclin- dependent kinase inhibitors 
CDKN1A, CDKN2C, or CDKN1B. In CMap data, Compound 6 was dissimilar to COPS5 knockdown 
(tau =25.4), whereas CSN5i- 3 was similar to COPS5 knockdown (tau =94.8). From these data, we 
conclude that I- 145, I- 124, Compound 6, and MF- 094 (see Supplementary file 8 for details) are 
very likely to target proteins other than the DUB they were designed to inhibit. CSN5i- 3 may or may 
not be acting on- target given mixed results (similar by RNAi in CMap but dissimilar to CRISPR- Cas9 
knockout) but we cannot rule out inefficient CRISPR- Cas9 knockout or differences in the timing of 
protein run- down as opposed to inhibition by a small molecule as a contributor to differences in tran-
scriptomic signatures.

Discussion
Rapid growth in publicly available and ‘functional genomic’ datasets affords an opportunity for exten-
sive analysis of large gene families such as human DUBs. A total of nine different public resources 
measuring transcript signatures following gene perturbation (CMap), gene essentiality (DepMap, 
IMPC, ad MGI), protein co- expression (CCLE proteomics), and protein- protein interaction (BioGRID, 
IntAct, Pathway Commons PPID, and NURSA PPID) were mined for data, in most cases starting with 
a CRISPR- Cas9 knockout or small molecule signature we collected in our laboratories. Comparison 
of enriched gene sets or GO terms made it possible to bridge different types of data. We observed 
substantial and encouraging consistency among datasets. For example, genes identified as co- depen-
dent with DUBs in DepMap data frequently exhibited similar transcript signatures, were co- expressed 

https://doi.org/10.7554/eLife.72879
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across cell lines, and were physically associated. Overall, our analysis yielded three types of information: 
(i) potentially new or more precisely specified functions for several well- characterized DUBs, including 
a UCHL5, USP7, USP8, and USP14 (ii) potential pathways or functional roles for understudied DUBs, 
including a role for USPL1 in the Little Elongation Complex and UCHL3, USP38, VCPIP1, and USP42 
in the regulation of TP53 signaling; (iii) insight into the DUB family as a whole, including evidence 
that 23 DUBs play a role in stabilizing 33 E3 ubiquitin ligases, most likely by antagonizing their auto- 
ubiquitination activities. 52 DUBs were found to be essential for proliferation in at least five cancer 
cell lines, and 34 of these DUBs affected the proliferation of cell lines from one tumor type more than 
cell lines from all other tumor types, potentially providing insight into disease context. These data are 
summarized in a simple graphical form in Figure 3, as a series of tables suitable for computational 
analysis in supplementary materials, and in an automatically updating set of tables at the DUB Portal.

Discriminating among essential and non-essential DUB functions
In several cases, our studies yielded unexpected hypotheses about the functions of DUBs that have 
already been well studied. For example, USP14 is a component of the proteasome and considered to 
be a promising therapeutic target in cancer due to the clinical success of other proteasome inhibitors 
(Tan et al., 2019). However, we found that USP14 was strongly co- dependent in DepMap data not 
with subunits of the proteasome but instead with the UBC polyubiquitin gene, a primary source of 
ubiquitin in mammalian cells. Knockout of USP14 by CRISPR- Cas9, or exposure of cells to the USP14 
inhibitor I- 335 resulted in highly selective upregulation of the UBC gene. We therefore propose that 
maintenance of the pool of free ubiquitin, not regulation of the proteasome, is likely to be the key, 
non- redundant function for USP14. A similar story emerged for UCHL5, which is a component of both 
the INO80 complex and the proteasome. The effect of UCHL5 knockout is most similar to that of 
knockout of other INO80 subunits and no significant correlation was observed in DepMap data with 
knockout of proteosome subunits. In this case, we hypothesize that UCHL5 plays an essential and non- 
redundant function in the INO80 complex rather than the proteasome. These data strongly suggest 
that the therapeutic context for use of USP14 and UCHL5 inhibitors currently in pre- clinical develop-
ment is likely to be different from that of proteasome inhibitors. More generally, the data show how 
DepMap data can distinguish among multiple activities for a protein and identify those activities most 
important for cell survival.

One of the most promising potential uses of DUB inhibitors is to indirectly regulate the levels of 
disease- associated genes that are not conventionally considered to be druggable such as transcrip-
tion factors and scaffolding proteins. This strategy has been most actively pursued for USP7, which is a 
regulator of MDM2, the E3 ligase for the TP53 tumor suppressor protein: inhibition of USP7 increases 
the levels of ubiquitinated MDM2, promoting its degradation and thereby increasing TP53 levels. Our 
data on USP7 are consistent with this hypothesis: we find that the top DepMap co- dependent gene 
for USP7 is MDM2, and knockdown of TP53 largely rescues the transcriptional phenotype observed 
for USP7 inhibition in TP53 wildtype cells. We find that USP7 has at least one additional substrate, 
C16orf72, that may also be a TP53 regulator. Moreover, the USP7 inhibitor XL177A has a phenotype 
that is independent of TP53 and involves upregulation of histone genes and genes involved in the 
G2M cell cycle checkpoint. We speculate that this may reflect the reported involvement of USP7 in 
the regulation of polycomb complexes (de Bie et al., 2010), although we cannot rule out an off- target 
activity for XL177A. Regardless, we conclude that the primary role of USP7 in cancer cells involves 
regulation of the MDM2- TP53 axis (Schauer et al., 2020). A number of other DUBs also appear to be 
TP53 regulators including UCHL3, USP38, VCPIP1, and USP42. Targeting these DUBs in addition to 
USP7 may be useful as a means to modulate TP53 levels for therapeutic benefit. This could potentially 
be achieved by developing a small molecule inhibitor active against multiple TP53- regulating DUBs or 
by using a combination of selective compounds.

DUBs as E3 regulators
The relationship between USP7 and MDM2 does not appear to be the only instance of a DUB regu-
lating an E3 ligase. DepMap co- dependent genes for DUBs were strongly enriched and positively 
correlated with E3 ligases and other ubiquitin or ubiquitin- like transferases; in many cases, DepMap 
data were supported by PPID or co- expression data (e.g. the VCPIP1 DUB and HUWE1 E3 ligase). 
Overall, we identified 23 DUBs with at least one co- dependent E3 ligase, and eight of these DUBs 
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had a co- dependent E3 ligase also supported by PPID or co- expression data. Selected DUBs have 
previously been reported to stabilize E3 ligases; for example, USP7 stabilizes MDM2, CYLD stabi-
lizes TRAF2, and OTUD5 stabilizes UBR5 (de Vivo et al., 2019; Lork et al., 2017). However, our 
data suggest that this may be a general feature of the DUB family, with many E3 ligases interacting 
with DUBs that antagonize E3 auto- ubiquitination and increase protein stability (Wilkinson, 2009). 
Multiple E3 ligases act as oncogenes and promoting their degradation via DUB inhibition may be a 
broadly useful therapeutic strategy.

Comparing DUB inhibitors and DUB knockouts
Using transcript profiling we compared seven small molecules reported by their developers to be 
highly selective inhibitors of specific DUBs to CRISPR- Cas9- mediated knockout of their targets. DUB 
inhibitor signatures were significantly similar to knockout signatures in only two cases: USP14 inhibi-
tion with I- 335 and USP7 inhibition with XL177A. We conclude that these compounds are selective, 
although the signature of USP7 inhibition was substantially stronger than that of USP7 knockout. 
This was true in general, with exposure of cells to DUB inhibitors resulting, in all cases, in significantly 
more DE genes than knockouts. In the case of XL177A, our studies cannot determine whether this 
difference reflects the time at which the measurements were made, the degree of USP7 inhibition by 
drug or mRNA depletion by CRSPR- Cas9, or the existence of off- target effects. In the cases of the 
COPS5, OTUD7B, USP19, and USP30 inhibitors, the lack of a significant correlation between weak 
knockout phenotypes and the strong drug- induced phenotypes suggest substantial off- target activity. 
Small molecules targeting multi- protein families via competitive inhibition at the active site commonly 
exhibit some degree of polypharmacology (that is, they exert their biological effects by binding to 
multiple targets; Giri et al., 2019). It appears that, except in the case of USP7 and USP14, additional 
medicinal chemistry will be required to manage polypharmacology.

It has been suggested that redundancy among DUBs (Vlasschaert et  al., 2017) might limit 
the effectiveness of selective DUB inhibitors as therapeutic agents, (Davis and Simeonov, 2015). 
However, we find that single gene knockouts of 43 DUBs impact proliferation in at least 8 DepMap 
cancer cell lines, and 21 DUBs are embryonic lethal with complete or partial penetrance in mice; dele-
tion of an additional 26 DUBs has a scorable murine phenotype. Thus, many DUBs appear to have 
non- redundant functions. Moreover, since many targets for successful anticancer drugs are embryonic 
lethal, (Yu and Xu, 2020) our data support further development of DUBs as cancer therapeutics.

Limitations of this study
The goal of this work was to study the DUB gene family as broadly as possible with limited follow- up 
on a subset of inferred functions. As a result, deep analysis of individual genes was not possible, and 
many interferences made from public data are necessarily indirect. We also generate many more 
hypotheses than we are able to test. The high degree of concordance observed among datasets 
suggests that pursuing many of these hypotheses will be worth the effort. One nominal ‘disagree-
ment’ among datasets is essentiality as scored by DepMap data and transcriptional responses as 
measured by CMap (and our own mRNA profiling studies). For example, seven DUB knockouts impact 
MDAMB231 viability in the DepMap but do not elicit a strong transcriptional phenotype following 
CRISPR- Cas9 knockout. We speculate that these discrepancies are due to differences in time point (4 
days in the transcriptomics and three weeks in the DepMap screen) or incomplete knockout (although 
we could confirm successful depletion of four of seven DUBs in question). More study is required 
to understand the origins and significance of discrepancies between DepMap and CMap. We also 
found that many physically- interacting and co- expressed genes are not co- dependent in DepMap. 
Such differences are not unexpected from a biological perspective, given the many different ways in 
which genes can interact, but further work focused on distinguishing technical errors from functional 
differences will be important.

Because we analyzed whole gene knockouts rather than point mutations or protein deletions, the 
results in this paper do not distinguish among catalytic and structural functions for DUBs. This will be 
an important next step, particularly for clarifying the therapeutic utility of competitive small molecule 
inhibitors. For example, copy number loss was predictive of increased sensitivity to USPL1 deletion, 
so we hypothesize that a USPL1 inhibitor may be useful in this context; however, one study suggests 
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that USPL1 is important for Cajal body architecture independent of its catalytic activity (Schulz et al., 
2012).

Conclusion
Our studies provide a diverse set of data on the DUB family as a whole, as well as new insight into 
many individual DUBs, including several that have been studied intensively. One theme that emerges 
is that for genes with multiple proposed functions (USP7 and UCHL5 for example), a combination of 
profiling CRISPR- Cas9 knockouts or drug- induced perturbations with systematic mining of functional 
genomic databases makes it possible to distinguish among essential and non- essential phenotypes. 
A second is that more DUBs than anticipated have non- redundant roles in the tumor suppressor 
and oncogenic pathways, most notably TP53 regulation, suggesting new approaches to undruggable 
targets. The approaches described in this work are also directly applicable to other gene families and 
therapeutic targets.

Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Genetic reagent (human)

DUB CRISPR- Cas9 screening library: Dharmacon 
EDIT- R crRNA Library - Human Deubiquitinating 
Enzymes

Dharmacon (Horizon 
Discovery)

GC- 004700 Lot 
17,107

Genetic reagent (human) Dharmacon Edit- R tracrRNA
Dharmacon (Horizon 
Discovery) U- 002005–05

Transfected construct Dharmafect 4
Dharmacon (Horizon 
Discovery) T- 2004–02

Cell line (human) MDAMB231 ATCC CRM- HTB- 26

Cell line (human) MCF7 ATCC HTB- 22

Antibody Flag- tag (L5) antibody (rat monoclonal) Thermo Fischer MA1- 142 1:1,000 dilution

Antibody USP7 antibody (rabbit monoclonal) Cell Signaling 4,833 1:1,000 dilution

Antibody USP8 antibody (mouse monoclonal) Santa Cruz Biotechnology sc- 376130 1:1,000 dilution

Antibody USP10 antibody (rabbit monoclonal) Cell Signaling 8,501 1:1,000 dilution

Antibody USP1 antibody (rabbit monoclonal) Cell Signaling D37B4 1:1,000 dilution

Antibody USP11 antibody (rabbit monoclonal) abcam ab109232 1:1,000 dilution

Antibody UCHL5 antibody (mouse monoclonal) Santa Cruz Biotechnology sc- 271002 1:1,000 dilution

Antibodies, cell lines, and reagents
The Cas9- Flag was a generous gift from Andrew Lane at the Dana Farber Cancer Institute.

Compounds
All compounds were quality control checked using LCMS and NMR. CSN5i- 3 was purchased from 
MedChemExpress. XL177A, I- 335, Compound 6, I- 145, I- 124, and MF- 094 were synthesized according 
to published methods and compound characterization data matched published data (patents 
WO2015073528A1, WO2017149313A1, WO2018020242A1) (Altmann et  al., 2017; Kluge et  al., 
2018; Schauer et al., 2020).

Cell culture
MDAMB231 (ATCC cat no. CRM- HTB- 26) was maintained in DMEM media (Corning 10–017- CV) with 
10% FBS (Life Technologies 26140–079) and 1% penicillin/streptomycin (Corning 30–002 Cl). MCF7 
(ATCC cat no. HTB- 22) was maintained in EMEM media with 10% FBS and 1% penicillin/streptomycin. 
Isogenic MCF7 and MCF7 stable shRNA p53 were a generous gift from the Galit Lahav lab. Cell lines 
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were maintained in a 5% CO2 incubator at 37 °C, they were identity- validated by STR profiling (Masters 
et al., 2001) and verified to be Mycoplasma- free by the Lonza MycoAlert Kit (Cat. # LT07- 318).

Cell lines stably expressing Cas9 were generated by lentiviral infection with pCRISPRV2- FLAG- CAS9 
(Addgene #52961) followed by puromycin selection and monoclonal population generation by limiting 
dilution in 96 well plates. Monoclonal populations with the highest observed knockout efficiency of 
individual DUBs (USP10 and USP7) were selected.

CRISPR-Cas9 knockouts and inhibitor treatments for transcriptomic 
profiling
MDAMB231 Cas9- Flag and MCF7 Cas9- Flag expressing cells were seeded in 96 well plates (4000 cells/
well) and allowed to adhere for 24 hr. crRNAs were resuspended in 10 mM Tris- HCl Buffer pH 7.4 (Dhar-
macon (Horizon Discovery) B- 006000–100) and four crRNA guides per DUB were pooled to increase 
knockout efficiency. Guide transfection was performed according to the recommended manufacturer 
protocol with optimized conditions as follows. Cells were transfected with 25 nM crRNA and 25 nM 
tracr RNA using 0.2 µL/well Dharmafect 4, triplicate transfections were performed per condition. The 
media was replaced 16–18 hr post transfection.

In parallel, MDAMB231 (12,000  cells/well), MCF7 parental (10,000  cells/well), and MCF7 TP53 
shRNA (10,000  cells/well) were seeded in 96- well plate format and allowed to adhere for 24  hr. 
DUB inhibitors and DMSO were dispensed into the 96- well plate using a d300 digital dispenser 
(Hewlett- Packard).

Cells were lysed 96 hr post crRNA transfection or 24 hr post inhibitor treatment; the plates were 
washed one time with PBS on a plate washer (BioTek). The PBS was removed (leaving ~15 µL/well 
residual volume), and 30 µL/well 1 X lysis buffer (1 x Qiagen TCL, 1% beta- mercaptoethanol) was 
added. The plates were incubated for 5 min at room temperature to aid cell lysis, and then frozen at 
–80 °C until RNA extraction.

3’DGE-seq transcript profiling
The DGE RNA- seq was performed as previously published (Semrau et al., 2017; Soumillon et al., 
2014) with modifications described previously (Schauer et al., 2020) (full protocol at https://www. 
protocols.io/view/3-39-dge-high-throughput-rna-library-preparation-bumynu7w). All automated 
liquid handling steps described below were performed at the ICCB- Longwood Screening Facility. The 
cell lysates were mixed and 10 µl was transferred from each well of the 96 well screening plates to a 
well in a clean 384- well PCR plate, consolidating samples from up to four 96 well plates into a single 
384- well plate for RNA extraction. SPRI (solid- phase reversible immobilization) beads, prepared as 
described previously (Rohland and Reich, 2012), were added to the lysate (28 µL/well), mixed, and 
incubated for 5 min. The beads were then pulled down magnetically, washed with 80% ethanol two 
times, air dried for one minute, and rehydrated with nuclease free water (20 μL/well). The plate was 
removed from the magnet, and the beads were resuspended by mixing. After a 5- min incubation, the 
beads were pulled down again by placing the plate back on the magnet, and the supernatant was 
transferred to a new 384- well plate. The Qubit Fluorometer and the Agilent BioAnalyzer RNA 6000 
Pico Kit were used to verify RNA quantity and quality respectively. RT master mix, 1 µL of barcoded 
E3V6NEXT adapters, and 5 μl of the total RNA supernatant was transferred to a new 384- well plate for 
reverse transcription and template switching. All RNA extraction steps were performed with a BRAVO 
Automated Liquid Handling Platform (Agilent). Following a 90- min incubation at 42 °C, the cDNA was 
pooled, and the QIAquick PCR purification kit was used for purification. In order to remove excess 
primers, the cDNA was treated with Exonuclease I for 30 min at 37 °C. The Advantage 2 PCR Enzyme 
System and the SINGV6 primer were used to amplify the cDNA (5 cycles). Following amplification, 
Agencourt AMPure XP magnetic beads were used to purify the cDNA and the Qubit Fluorometer was 
used for quantification. The Nextera DNA kit was used to prepare the sequencing library following 
the manufacturer’s instructions. 55 ng of cDNA was tagmented for 5 min at 55 °C and purified using 
a Zymo DNA Clean & Concetrator- 5 column. The cDNA was amplified (7 cycles) then purified using 
a 0.9 x ratio of AMPure XP magnetic beads. The Agilent BioAnalyzer HS DNA Kit was used to assess 
the library size distribution before qPCR quantification and sequencing at the Harvard Medical School 
Biopolymers Facility (paired end sequencing was performed on an Illumina NextSeq).

https://doi.org/10.7554/eLife.72879
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The data was separated by well barcode and the reads were converted to counts using the bcbio- 
nextgen single cell RNA- seq analysis pipeline (https://bcbio-nextgen.readthedocs.io/en/latest/). The 
pipeline removes any barcodes that differ by more than one base from an expected barcode and uses 
unique molecular identifiers (UMIs) to identify unique reads and remove PCR duplicates. RapMap was 
used to align reads to the transcriptome (GRCh38). The R package DESeq2 (version 1.30.0) was used 
for differential expression analysis, and the R package gseaMultilevel was used for gene set enrich-
ment analysis of all genes sorted by the log2 fold change (adjusted p- value <0.05) using Molecular 
Signatures Database (MSigDB) gene sets.

To compare the small molecules and CRISPR- Cas9 knockouts, we performed hierarchical clustering 
of the DE genes of the small molecule treatments, the DE genes of the CRISPR- Cas9 knock outs of 
each putative target of the small molecules, as well as the DE genes of the DUB CRISPR- Cas9 knock 
outs that induced the strongest transcriptomic responses in our CRISPR- Cas9 screen (more than 20 
DE geness).

Dependency map analysis
The Broad Institute Dependency Map dataset (CRISPR AVANA dataset 2020 Q3) was analyzed to 
determine the impact of DUB knockouts on cancer cell lines (Meyers et al., 2017; Tsherniak et al., 
2017). The recommended dependency score threshold of –0.5 was used to score dependent cell 
lines. The number of cell lines with scores below –0.5 divided by the total number of cell lines tested 
for a particular DUB was used to determine the fraction of cell lines dependent on a particular DUB. 
To determine differential response by cancer type, t- tests were conducted to compare the depen-
dency scores for a particular tumor type for a given DUB to the scores of all other cell lines. This was 
repeated for each tumor type for each DUB, and the p- values were FDR corrected.

To determine co- dependent genes for each DUB, the CRISPR AVANA dataset was used to calcu-
late Pearson correlations between each DUB and all other gene knockouts in the dataset. We limited 
this analysis to DUBs that had at least three dependent cell lines. To find the pathways and complexes 
significantly enriched in the strongest co- dependent genes for each DUB, the R package ClusterPro-
filer was used for gene set overrepresentation analysis of the top 5, 7, or 10 co- dependent genes for 
each DUB using MSigDB GO gene sets. The overall results were similar, but because the top seven 
co- dependent gene analysis yielded the largest number of expected GO terms for the well- studied 
DUBs, the top seven results were used.

In order to extract the associations between DUBs and ubiquitin transferase enzymes, the GO gene 
set GO Ubiquitin Like Protein Transferase Activity was used to subset DUB co- dependent genes that 
are ubiquitin or ubiquitin- like transferases.

Protein-protein interaction database analysis
To compile rich protein- protein interaction data for each DUB, interactions from multiple sources were 
compiled: IntAct, BioGRID, PathwayCommons, and NURSA.(Cerami et al., 2011; Hermjakob et al., 
2004; Malovannaya et al., 2011; Rouillard et al., 2016) The R package ClusterProfiler was used for 
gene set overrepresentation analysis of the interacting proteins for each DUB using MSigDB GO gene 
sets.

CCLE proteomics co-expression analysis
The normalized protein abundance data for CCLE cell lines was analyzed to determine genes co- reg-
ulated with each DUB(Nusinow et al., 2020). Pearson correlations in protein abundance were calcu-
lated between each protein in the dataset and each DUB. Only correlations where both proteins 
were detected in at least 100 cell lines were considered. Significant correlations were selected by 
thresholding Benjamini- Hochberg adjusted p- values <0.01 (the same significance threshold described 
in the dataset publication) as well as |z- score|>2. The R package ClusterProfiler was used for gene set 
overrepresentation analysis of the significant co- expressed genes using MSigDB GO gene sets.

Overlapping DUB-gene association analysis
To determine which associations between DUBs and genes have support across multiple anal-
yses, the DUB- gene pairs were integrated across the four analyses: top seven DepMap co- depen-
dent genes, CMap (Broad recommended threshold of Score >90), CCLE proteomics coexpression 
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(Benjamini- Hochberg adjusted p- values <0.01 (the same significance threshold described in the 
dataset publication) and |z- score|>2), and PPIDs (DUB and gene interact in any of four databases 
compiled: BioGRID, IntAct, PathwayCommons, or NURSA). Each DUB- gene association was given an 
evidence count score computed as the sum of the number of analyses that interaction was significant 
in. Thus, evidence scores range from 0 (DUB gene pair not significant in any of the analyses) to 4 (DUB 
gene association in all four analyses). The complete table integrating all of these datasets is provided 
so individual DUBs can be explored (Supplementary file 6).

The DUB portal
To make the data and results presented in this paper available in a reusable form, we also generated 
online data resources.

First, we created the DUB Portal (RRID:SCR_022476, version 2, https://labsyspharm.github.io/ 
dubportal/), for exploring the most notable results from the experimental and computational anal-
yses for each DUB. The page for each DUB first lists the standard identifier for the related gene, 
protein, and orthologs in model organisms. It also shows the significantly differentially expressed 
genes resulting from its knockout in the CRISPR- Cas9 screen described above as well as the signifi-
cant gene sets calculated by gene set enrichment analysis (GSEA) over the MSigDB.(Liberzon et al., 
2011) It lists the DUB’s top correlations with other genes from the DepMap and provides evidence 
from PPIDs for direct physical interaction between the correlated genes, when available. In addition, 
we provide evidence for relations (direct or indirect) between the correlated genes from the INDRA 
system, which integrates pathway databases and text mined relations from the literature (Gyori et al., 
2017). The results are further contextualized by presenting the significant Gene Ontology (GO) terms 
from over- representation analysis. Finally, the portal allows browsing the interactions of each DUB 
and their supporting evidences collected using INDRA. The DUB portal is automatically generated 
from source data using Python scripts that standardize the names and identifiers for genes, biological 
processes, and pathways to promote interoperability (RRID:SCR_022476, version 2, https://github. 
com/labsyspharm/dubportal, Hoyt, 2022).

Second, we added the family- and complex hierarchy of DUB proteins presented in Figure 2A 
to the FamPlex ontology (Bachman et al., 2018) and curated cross references to related resources 
including Medical Subject Headings (MeSH), IntAct, and HGNC Gene Groups (for families of DUB 
proteins) as well as the Complex Portal and Gene Ontology (for DUB protein complexes). These can 
be browsed through the FamPlex website at https://sorgerlab.github.io/famplex/ (Bachman et al., 
2018).
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