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Abstract

Deep learning using neural networks relies on a class of machine learnable models constructed 

using “differentiable programs.” These programs can combine mathematical equations specific 

to a particular domain of natural science with general-purpose machine-learnable components 

trained on experimental data. Such programs are having a growing impact on molecular and 

cellular biology. In this Perspective, we describe an emerging “differentiable biology” in which 

phenomena ranging from the small and specific (e.g. one experimental assay) to the broad and 

complex (e.g. protein folding) can be modeled effectively and efficiently, often by exploiting 

knowledge about basic natural phenomena to overcome the limitations of sparse, incomplete, 

and noisy data. By distilling differentiable biology into a small set of conceptual primitives and 

illustrative vignettes, we show how it can help address long-standing challenges in integrating 

multi-modal data from diverse experiments across biological scales. This promises to benefit fields 

as diverse as biophysics and functional genomics.

Machine learning (ML) (and its applications in artificial intelligence; AI) has undergone 

dramatic changes over the past decade, led by rapid advances in differentiable programming. 

The development of better algorithms, introduction of more powerful computers, and 

increased data availability have allowed neural networks to transform one ML subfield 

after another. What began as deep learning has now evolved into a broader class of 

learnable models, often termed “differentiable programs” (where differentiable literally 

means functions with defined derivatives). Like traditional mathematical or computational 

models from physics and chemistry, differentiable programs can be specified in part using 

logic or equations particular to the problem under investigation. Unlike traditional models, 

which are commonly parameterized using a handful of fitted variables (often having physical 

meanings), differentiable programs can have millions or even billions of variables as 

part of their neural networks. Training involves learning these parameters. “End-to-end 
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differentiable” programs have the important feature that they can be jointly optimized from 

input to output to achieve a desired behavior; in current practice they frequently comprise 

neural networks but they need not do so.

The emergence of differentiable programming has been driven by four interrelated 

developments in basic science and software engineering: better pattern recognizers, 

the rise of bespoke (fit-to-purpose) modelling, joint optimization, and robust automatic 

differentiation frameworks and programming interfaces (e.g., TensorFlow1, PyTorch2 and 

JAX3). In this Perspective, we discuss how ML models that incorporate biological and 

chemical knowledge have the potential to overcome limitations commonly encountered 

when modeling sparse, incomplete, and noisy experimental data. We distill the essential 

features of differentiable programming into conceptual primitives and use two illustrative 

vignettes to show how these primitives can be leveraged to solve a range of biologically 

significant problems. The vignettes cover the small and specific (e.g., one experimental 

assay) and the broad and general (e.g., protein folding). Taking stock of “differentiable 

biology”, we consider its implications for functional genomics and “multi-omic” biology, 

and how the long-standing challenges in data integration might be addressed by 

differentiable programming. We conclude with outstanding challenges and a description 

of new frontiers in ML, arguing that the full impact of end-to-end differentiable biology has 

yet to be realized.

Four Key Developments

Pattern Recognizers

The first and most visible development in differentiable programming is the emergence 

of powerful algorithms for processing (“recognizing”) sensory inputs such as images 

and speech. Deep neural networks are central to the success of these algorithms. Neural 

networks were first formulated decades ago, subjected subsequently to intensive study and 

then largely dismissed; their widespread adoption in the last decade represents a dramatic 

and important shift for the ML field4. Prior to the emergence of deep learning, which was 

made possible by faster processors and better optimization techniques, supervised ML relied 

heavily on convex functions, a simpler class of mathematical functions than neural networks. 

Convex functions have a single global minimum that is reachable by moving in the direction 

of descent irrespective of where the function is evaluated. The use of deep neural networks4 

has yielded a dramatic advance in the expressivity of ML algorithms: they need no longer 

be convex. When combined with large amounts of data, this has made it possible to generate 

hierarchical representations of data and capture the gestalt of vision and sound, in some 

cases with super-human performance5.

Deep learning is sometimes dismissed in a biological context as mere pattern recognition6 

(a viewpoint challenged below) but pattern recognition has long been a holy grail of AI 

and is itself valuable in biomedicine7. Moreover, recent and rapid progress in pattern 

recognition is historically unprecedented: as recently as 2011 the classification error for 

image recognition (measured by the difference between labels such as cat, flower, etc. 

assigned by humans and machines using ImageNet8 data) was >25%; by 2016 that figure 

had fallen to ~3%8 (Figure 1). This is below the error for a single human trained to 
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distinguish ImageNet classes and therefore represents super-human performance8. In speech 

recognition, the error rate for the Switchboard Corpus9, long stalled at ~30%, fell to 5% 

in 2017, similar to human transcribers10. These well-known examples illustrate the degree 

to which pattern recognition has thoroughly changed our expectation of what is possible 

in AI, with biomedical applications in fields as diverse as ophthalmology11-13 and digital 

pathology14,15.

AI subfields that tackle cognition, such as symbolic systems, planning, and optimization 

have also benefited from advances in pattern recognition, in many cases bringing 

wider attention to under-appreciated advances: with the sudden advent of robust pattern 

recognizers, there is an opportunity to exploit an untapped reservoir of classical AI research. 

For example, the AlphaGo game playing agent16 fused the classical AI approach of Monte 

Carlo Tree Search17 with neural networks. Similarly, robotics, which has long been resistant 

to machine learning, is now benefiting from greatly improved vision systems18. Once 

classical AI systems are given the ability to process sensory inputs, they gain the ability 

to perform a variety of complex real-world tasks including relational reasoning19.

Bespoke Modelling

The application of ML to scientific problems has been accompanied by the emergence of 

bespoke ML models designed to capture salient aspects of a specific physical or chemical 

process. Bespoke models contrast with general purpose ML algorithms such as support 

vector machines20 or random forests21 by encoding prior knowledge about the structure of 

input data. Ideally, this is accomplished using general-purpose abstractions that deemphasize 

complex feature engineering in favor of architecture engineering. In feature engineering, 

transformations are made on primary inputs to extract information judged to be relevant 

based on past experience; such transformations often involve complex and potentially 

opaque data “pre-processing”. In architecture engineering the emphasis is on incorporating 

high-level aspects of the phenomenon being modeled in the design of the learning systems 

itself. This can involve fundamental concepts such as translational or rotational invariance 

of molecules in solution, the known chemistry of polypeptide backbones, and established 

relationships between data types of measurement methods.

A simple example is provided by convolutional networks22 that assume translational 

equivariance in an image (Figure 2). Convolutional networks are effective in this setting 

because they reuse the same set of parameters, and hence the same pattern recognition 

components, across a receptive field. Bespoke models can also encode priors that facilitate 

the learning process, for example by including hierarchy in the organization of neural 

networks23 to capture short and long-range interactions in the inputs. A model that generates 

image captions provides an early example24 (circa 2015): visual and text-processing neural 

networks were paired so that one processes an image and the other a caption. During 

training, the joint model learned a latent representation that captured both the visual and 

textual aspects of inputs; the latent representation is subsequently used to generate new 

captions conditioned on unseen images. Bespoke models are now commonplace25 and 

can be constructed using reusable templates and libraries of interoperable building blocks, 

creating a rich ecosystem for innovation.
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Joint Optimization of Differentiable Systems

By exclusively using mathematically differentiable functions as building blocks, 

differentiable models can be jointly optimized, from input to output, using 

backpropagation22. Joint optimization ensures that all model parameters are tuned 

simultaneously to optimize global behavior. Regardless of how complex a model becomes, 

the same backpropagation algorithm can be used. In contrast, earlier generations of ML 

algorithms typically involved many separate components, each of which needed to be 

optimized independently. Updating such algorithms is technically demanding and jointly 

optimized models are not only simpler, they are also more performant and robust. The power 

of end-to-end differentiable models has spurred renewed interest in first-order numerical 

optimization26, a class of simple optimization techniques that have proven to be the 

most effective for deep models.27 Their continued development and elucidation has led to 

resurgent interest in the theory of nonconvex optimization28-30 as well as new techniques31 

that have made training deep differentiable models relatively routine.

Automatic Differentiation Frameworks

A fourth advance in differentiable programming is the wide-spread availability of industrial-

quality software tools known as automatic differentiation (autodiff) frameworks; these 

include TensorFlow1,PyTorch2 and JAX3 among others. Using autodiff frameworks it is 

possible to use a few lines of code in a high-level programming interface such as Keras32 

(which runs on top of TensorFlow) to combine off-the-shelf neural network building blocks 

with custom mathematical transformations. Crucially, it is necessary to specify only the 

“forward” view of a model, i.e., the direct relationship between inputs and outputs. Autodiff 

frameworks automatically compute the “backward” pass, which specifies how changes in 

parameter values affect model input-output relationships. These are precisely the derivatives 

used during training. Autodiff frameworks greatly simplify the practical task of model 

construction, making computation of derivatives a programming detail rather than the 

purview of a specialized branch of computer science. Modern autodiff frameworks come 

preloaded with a variety of ready-to-use neural network and mathematical operations, a 

suite of optimization algorithms for fitting parameters to data, and continuously updated 

documentation. The existence of a few widely used frameworks promotes model reuse and 

has democratized bespoke model building, making it possible for a large community of 

scientists to contribute. Democratization is potential cause for concern because subtle errors 

can still be made. Ideally, greater transparency in model formulation, which is enhanced by 

the use of high-level languages and common frameworks, will make it easier to document 

and error-check new applications of ML.

Primitives for a Differentiable Biology

In the biological context, differentiable programming provides primitives for tackling 

three conceptually distinct classes of information: biological patterns, physical and 

phenomenological priors, and experimental and data acquisition priors. Priors constrain the 

space of possible models and enable use of smaller datasets. The most useful and defensible 

priors are those based on well-understood features of physical and chemical systems, such as 

the range of allowable bond angles in a polypeptide chain33. Priors can be interspersed with 
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pattern recognizers that learn from data mappings that are too complex or poorly understood 

to be modeled explicitly.

Biological Patterns

As a class, pattern recognizers are the most mature differentiable programming tools. They 

have been used to learn essential aspects the retinal fundus,11 identify and segment cell 

boundaries in crowded environments such as tissues,34 and predict new cell states from 

multiplexed immunofluorescence images35. The complexity of a pattern recognizer is often 

determined by the structure of the inputs. Images represented by 2D grids of pixels having 

fixed dimensions (e.g. images collected by conventional electronic cameras) are among the 

simplest inputs and they exhibit shift invariance, which can be used as a prior in model 

training via data augmentation.36 “Images” need not be restricted to visual patterns. For 

example, intra-protein contact maps encoding residue co-evolution have been used as inputs 

to convolutional neural networks (CNNs) to predict protein structure37-40. Generalizing 

2D grids to higher dimensions, e.g., by discretizing 3D space into equal-sized cubes, has 

yielded pattern recognizers that can operate on high molecular weight macromolecules to 

predict protein functions41,42 and the affinity of protein-drug complexes43,44. Some of the 

features learned by these models are human-interpretable but some are not, due to their size, 

complexity, or counter-intuitive nature, but neural networks are still able to learn them.

Variable-sized grids whose dimensions vary with the input data, such as one-dimensional 

grids comprising DNA sequences of varying length, represent another step up in complexity. 

For example, the patterns underpinning transcription factor binding motifs in DNA have 

long eluded a simple probabilistic code45, but convolutional neural networks have modelled 

them with success46,47. Trees and other types of graphs, which can represent phylogenies, 

interaction networks and molecules, vary not only in length but in structure and can be 

learned using graph convolutional networks (GCNs).48 GCNs have been used to learn 

mappings from molecules to protein-binding affinities44 and to perform in silico chemical 

retrosynthesis49. In all of these cases, the key advantages of neural networks are their ability 

to recognize multi-way interactions occurring at both small and large scales.

While most contemporary ML applications focus on the relationship between complex 

inputs such as protein structure and simple outputs such as binding affinity, differentiable 

programming allows for richer input-output mappings. For example, we have developed an 

end to end differentiable “ recurrent geometric network” (RGN) that learns protein structure 

directly from sequence, taking a variable-length protein sequence as input and generating a 

variable-sized set of atomic coordinates as output33. More recently, AlphaFold2 developed 

by Google’s sister company DeepMind, uses an end-to-end differentiable system to predict 

single domain protein structures with accuracy approaching that of experimental methods 

such as crystallography (Figure 1).50,51 The ability to generate complex outputs (e.g., 

3D folded proteins) from simple inputs (primary sequence) demonstrates one significant 

advantage of differentiable programs vis-à-vis conventional ML methods used for regression 

and classification. The latter are limited to narrow ranges of simple outputs types, most 

commonly categorical variables or real-valued scalars.
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Phenomenological Priors

ML research in biology increasingly incorporates prior knowledge about structure, 

chemistry, and evolution into differentiable programs (Figure 3a). Prior information 

can range in scope and generality from enumeration of genes or proteins and their 

interactions52 to fundamental biophysics, including features of space itself.53 For example, 

interactions within and between macromolecules are translationally and rotationally 

invariant and this can be formalized by generalizing CNNs from fixed grids (which have 

no guarantee of rotational invariance) to mathematical objects known as Lie groups54 which 

capture rotational symmetry in three (or higher) dimensions. In modeling protein-protein 

interaction (PPI) networks, protein folding, and similarly complex biological phenomena, 

the incorporation of such priors makes it easier to capture distance-dependent physical 

interactions (e.g., rotationally-invariant electrostatic forces). Recent progress in equivariant 

networks on Lie groups has been swift55, including applications in molecular sciences56 - 

most prominently protein folding - but the problem and attendant approaches remain far 

from solved. When such approaches become broadly deployable, they may prove to be as 

consequential for molecular systems as convolutional networks have been for image data: 

the analogy here is between shift invariance and rotational symmetry (in practice there are 

subtleties even within shift invariance, e.g., local vs. global invariance57).

A valuable aspect of bespoke ML models in biomedical applications is that they 

can incorporate detailed information on the structural and chemical properties of 

macromolecules. For example, due to divergent and convergent evolution, many proteins 

utilize similar structural features for binding other biomolecules58-60. These features 

constitute the vocabulary of protein binding surfaces and, once learned, can be reused 

across domain families to increase predictive power. Phenomenological priors formalized 

mathematically force models to distill interactions across a protein family to a compact 

set of binding surfaces, or to prefer that evolutionarily-related proteins share binding 

partners. Pursuing this line of reasoning, we recently developed a model61 for predicting 

the ligands of peptide-binding domains (PBDs) involved in signal transduction (e.g., 

Src Homology 2 and 3 domains). We incorporated the concept of shared and reused 

binding surfaces by sharing energy potentials across PBD families, implicitly creating 

an energetic lingua franca for this type of macromolecular interaction. Energy potentials 

were learned, not prescribed (only the notion of reuse was assumed) and were found to 

improve model accuracy, particularly in data poor domains. Incidentally, our PBD-ligand 

interaction model61 was fully differentiable but did not make use of neural networks. Models 

incorporating geometrically-aware neural networks and the concept of binding surface reuse 

are also showing promise59,62. A related approach, based on the simple idea that a protein’s 

active site uses the same set of atoms to bind diverse small molecules resulted in substantial 

advances in predicting protein-ligand interactions63.

When modeling biological networks, yet more specialized priors are possible. For example, 

joint modeling of transcriptional, proteomic, and phospho-proteomic time series data can 

be enhanced by imposing time separation between phospho-signaling and transcriptional 

regulation, as the former often occurs on a more rapid time scale than the latter, or by 

encouraging signaling cascades to terminate on a transcriptional change (which is implicitly 
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another form of time-scale separation). Such high-level knowledge can be combined with 

molecular data on specific signaling pathways (e.g., the structure of the MAPK kinase 

cascade) or transcription factor binding motifs (Figure 3b). In such a hypothetical model, 

the matrix of all possible protein-protein and protein-DNA interactions would be inferred, 

with some interacting pairs already pre-determined (e.g., from the literature or focused 

experimentation), and some merely encouraged or discouraged based on knowledge of the 

archetypical interactions they represent.

Data Priors

Most modeling in biology involves analysis of incomplete, noisy, and heterogeneous data. 

Incorporating priors that account for the data generation process are needed to minimize 

the effects of error and fuse disparate data types. Data normalization is another process that 

is ad hoc to a problematic degree. Data process invariably include adjustable parameters 

that are fit heuristically, typically one step at a time. Differentiable programming offers a 

fundamentally different approach: adjustable parameters can be optimized within a broader 

problem framework that involves evaluation of a hypothesis or prediction of outcome 

(e.g., cell state). Parameters of both the experimental and computational aspects of the 

model can then be jointly fit to maximize predictive power. Few examples of such joint 

learning have appeared, but pre-processing steps for microscopy-based imaging (e.g., image 

segmentation64 and classification65) already incorporate learning elements. This is not a 

“glamorous” application of ML but it will prove to be one of the more consequential areas 

for differentiable programming if it can make y the connection between data and models 

more accurate, robust and informative.

Random error is present in all real-world data and most molecular measurements are 

also subject to poorly understood systematic error. Physics-based error modeling is 

common in structural biology and high-resolution optical microscopy, domains in which 

enough is known about the measurement process and the range of expected physical 

phenomena that many types of uncertainty can be quantified and modelled. While this 

approach is in principle transferable to other biological assays,66,67 sophisticated error 

models are relatively rare in biomedical research, usually because the underlying physical 

processes are not sufficiently understood. In this case, simple parametrizations of the 

error may be possible, e.g., when normalizing high-throughput RNA-seq measurements. 

However, the approach can be extended to describing the physical processes underpinning 

experimental assays. This is important when the biophysical quantity being sought, such as 

a disassociation constant, derives from an indirect measurement. For example, experimental 

characterization of protein-protein affinity involves a variety of analytical methods that 

measure different physical parameters (e.g., on or off rates, equilibrium binding, heat 

emitted or required for binding, inhibition of activity, competition between substrates, etc.) 

Both simple and complex equations exist to describe the relationship between experimental 

observables and underlying biophysical parameters and these equations can be incorporated 

into differentiable programs. Backpropagating through these equations during optimization 

makes it possible to estimate unknown parameters in a robust manner, because the 

optimization is jointly accounting for all aspects of the model. Even when simple analytical 

formulas are unavailable, recent progress in incorporating ordinary differential equation 
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solvers within neural networks68 suggests the feasibility of encoding elementary mass action 

rate laws as differential equations within differentiable programs69.

Illustrative Vignettes

To illustrate the concepts described above we consider two situations in which the 

building blocks of end-to-end differentiable biology are combined to address complex and 

significant research questions. The first vignette illustrates how prior biological knowledge 

can be reflected in the architecture of a bespoke ML model; the second focuses on data 

homogenization in the context of protein-protein interactions.

Protein Structure Prediction

The goal of protein structure prediction is to construct models that maps protein sequence 

(a variable-length string of discrete symbols) to the tertiary structure of the protein 

(variable-length sequence of 3D coordinates). Recent ML-based approaches make use of 

both phenomenological priors and pattern recognizers. In principle, off-the-shelf pattern 

recognizers such as recurrent neural networks can perform this mapping but in practice, 

achieving high performance has required leveraging features of protein geometry learned 

from 70 years of solving and analyzing protein structures (Figure 4a).33,51,70 For example, 

the knowledge that protein backbones are covalently bonded polypeptide chains with nearly 

fixed bond lengths and angles but sequence-dependent torsion angles71.

There exists a one-to-one mapping between torsion angles and 3D coordinates using known 

(differentiable) mathematical transformations72. To predict a 3D structure, it is sufficient 

to predict torsion angles from the amino acid sequence and optimize model parameters to 

maximize agreement between predicted and known angles. Fixing bond lengths and angles 

is a seemingly simple addition to an ML model but it has an important effect on learning 

efficiency and accuracy and it also helps ensure that local protein geometry is almost always 

correct.

Unfortunately, a purely local approach of this type—trained and judged exclusively by 

the accuracy of predicted torsion angles—performs poorly because minor local errors 

accumulate to generate large errors at the level of a complete protein. A better approach 

involves conversion of local torsion angles to 3D protein coordinates as part of the modelling 

process itself using parameters that maximize agreement between predicted and known 

coordinates from the Protein Data Bank. Here too we are faced with a choice. The 

simplest loss function penalizes deviations between predicted and known coordinates, e.g., 

by averaging the sum of their differences. However, this is not translationally or rotationally 

invariant. A loss function that is defined in terms of distances, for example one that averages 

the sum of differences of inter-atom distances between predicted and known structures, 

circumvents this problem.

Designing a custom loss function also permits more sophisticated treatments of protein 

structure data, which frequently suffers from missing (disordered) side-chain atoms and 

stretches of sequence, in large part because unstructured domains are integral to protein 

function. Eliminating such proteins from consideration reduces the amount of training data 
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by up to 50% and may also bias it. A custom loss function can ignore unresolved atoms or 

residues, penalizing only well-resolved parts of structures, making available for training all 

but a dozen of the ~100,000 unique structures in the Protein Data Bank73 (Figure 4a).33 The 

approach can be adapted to predict structures from individual protein sequences, without 

using any explicit co-evolutionary information, a valuable capability for protein design.53

More generally, the use of chemical and geometric that has historically been a key 

advantage of physics-based modeling is now available in a data-driven, learnable setting. 

This was leveraged in AlphaFold251 which uses specialized forms of (Transformer-based) 

attention74,75 to reason over multiple protein sequence alignments, thereby implicitly 

learning the idea of co-evolution and perhaps also phylogeny.76 Transformers have the 

ability to learn from local and remote features, a powerful capability in structure prediction 

in which residues distant in the primary sequence interact directly in the folded protein 

to stabilize it. AlphaFold2 also refines protein structures in 3D space in a rotationally and 

translationally-invariant matter, leveraging recent efforts in differentiable programming to 

add features of physical space as constraints (Figure 4b). This has led to the speculation 

that attention and symmetry are essential features of AlphaFold2, explaining its remarkable 

performance.50 We anticipate that it will be possible to add other aspects of protein 

chemistry in future years, further increasing the performance of ML algorithms while also 

making them more interpretable.

Homogenizing Protein-Protein Interaction Data

We illustrate the use of differentiable programs for data fusion with a model that 

learns protein-protein interaction (PPI) affinities from diverse types of experimental data 

collected using different methods at different times (Figure 5). The sheer diversity of 

PPIs, particularly those involving peptide-binding domains such PDZ domains77 and their 

peptidic ligands, makes it highly unlikely that more than a small fraction of affinities can 

all be ascertained experimentally. Instead we must work from distinct types of information 

(we discuss four below), each incomplete and involving a different measurement method. 

“Quantitative binding data” involve direct measurement using quantitative biophysical 

methods such as surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), or 

peptide arrays. These are the most quantitative but limited types of data. A second source 

of data are acquired from cell extracts using affinity purification mass spectrometry78,79 

(pull-down assays) or in vivo using yeast two-hybrid assays80 (“high throughput binding 

data”). These data cover an increasing proportion of the proteome but are neither direct (two 

proteins that pull down together can both bind a third protein) nor particularly quantitative. 

A third type of data involves functional interactions inferred from genetic or over-expression 

studies81; these data are numerous but the least direct. A fourth type of data comprises 

high-resolution co-complex structures of individual PPIs to use for training or validation of 

biophysical hypotheses inferred by ML.

Our goal is to use the entirety of available data to create a model that predicts equilibrium 

association constants (Ka) of as many PPIs as possible using a differentiable model with 

two components: (i) an energy function that maps inputs (pairs of protein sequences) to 

predicted Ka and (ii) a set of data homogenizers that map raw experimental data to a form 
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that can be compared to predicted Ka values; the latter is relevant to the current discussion 

on data fusion. We start with a key assumption: namely that the number of distinct 

experimental conditions or assay types is much smaller than the number of individual 

measurements and that we know which assay gave rise to each data point. We begin by 

homogenizing quantitative binding data from methods for which the same set of equations 

maps a measured value to Ka; we allow for variation in scaling and other parameters by 

permitting the mapping equations to have different and unknown parameter values. The 

entire model is then jointly optimized so that parameters in the data homogenizers maximize 

the performance of the energy function (used to predict PPI affinities). A more complex 

version of this scenario, in which experiments are different but still describable by known 

equations (e.g., ITC vs. SPR) are handled with assay-specific transformation equations.

Homogenization is more difficult when the relationship between biophysical parameters and 

measured features are not describable in equations known a priori (e.g., if it is unknown 

whether binding data involve competition between substrates). If we assume that at least one 

member of a family of equations can map raw values to reported affinities, the homogenizer 

can be constructed to draw from the family of equations as needed, for example by 

formalizing the mapping as a convex mixture of equations whose weights are penalized 

using a sparsemax82 penalty. Alternatively, a general purpose map such as a Gaussian 

process83 can be used with range and monotonicity constraints that reflect universal aspects 

of protein-protein binding biophysics without assuming a specific functional form for the 

conversion of measured values to binding constants.

In the foregoing examples, the model can be optimized by penalizing deviation between 

predicted and data-derived Ka values on a continuous landscape of parameter values because 

the data-derived quantities have precise values. This is not true for binary interactions 

obtained from high-throughput binding data. These data typically involve a call of binding 

or not binding based on a statistical test. It is reasonable to assume that positive PPIs have 

a Ka higher than some presumed but unknown threshold, but the absence of interaction may 

or may not be interpretable in biophysical terms (it might reflect either a true absence of 

binding or a technical error in the measurement). Direct comparison between predicted Ka 

values and binary data is therefore not possible, but binary data can be used by estimating 

detection thresholds. To accomplish this we define a loss function that penalizes predictions 

in which the Ka is below the positive threshold for positive PPIs and when applicable, 

above the negative threshold for negative PPIs; in other cases, no penalty is imposed. This 

results in a one-sided loss function for binary (high-throughput) data and a two-sided loss 

for quantitative data. If the detection thresholds are unknown but can be assumed to be fixed 

within any given assay or experimental condition, they can be treated as parameters and fit 

jointly with the rest of the model.

The last class of data to consider involves indirect interactions, which in extant PPI 

databases covers a large variety of possible assays including epistatic genetic interactions, 

patterns of gene or protein co-expression across tissue or cell types, and evolutionary 

conservation. While a positive score does not demonstrate physical interaction between 

proteins, it is positively correlated with it. We formulate this transformation process as a 

binary assessment of interaction with a single unknown positive threshold. Predicting low 
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affinities for indirect PPIs is not penalized, but predicting high affinities is encouraged. The 

(learned) detection threshold depends on the strength of the statistical correlation and is 

therefore correct only in expectation, not for individual measurements. If the correlation is 

high however, the model may be able to extract meaningful information. On the other hand, 

if the correlation is low, the learned threshold will get set to a very high number, in which 

case no information is extracted and the model is unaffected.

A key feature of the approaches described above is that parameters of the data homogenizer 

are learned jointly with those of the energy function. This runs the danger of unwanted 

interaction between the parameters used to homogenize data and those being learned by 

the energy function, leading to degenerate solutions in which performance is misleadingly 

high simply because all homogenization parameters are set to zero. To avoid such problems, 

constraints must be imposed on the data homogenizer: parameters must be non-zero and 

fall within meaningful ranges based on prior knowledge (for example single-domain PPI 

affinities will fall in the nanomolar to micromolar range). More generally, a hierarchical 

approach to learning the two sets of parameters (sometimes called “meta learning”) is 

usually the most robust. In this case, an inner backpropagation loop fits parameters of 

the energy potential to a training set while an outer backpropagation loop fits parameters 

of the data homogenizers to a validation set, and the entirety of the process is assessed 

through a second validation set. Such metaparameter fitting has been successfully used in 

other applications84,85. Under these circumstances two validation sets are needed to avoid 

overfitting. As is true in all ML applications, careful selection of training, test, and validation 

datasets is important.

Differentiable Programming as a Framework for Functional Genomics

The last decade has seen a dramatic increase large datasets characterizing whole genomes, 

transcriptomes, metabolomes, and proteomes and new technologies are extending this to 

differences in space (e.g., spatial transcriptomics)86 and time87. The analysis of such 

functional genomic data aims to better understand cell signaling, development and disease 

but dramatic increases in instrumentation and data have not, in general, been matched by 

commensurate increases in our understanding of biological systems. This gap stems in 

part from the lack of analytical frameworks to integrate different data types, make use 

of complex and irregular prior knowledge, and extract useful insights from the resulting 

mixture. Differentiable programming promises to provide much needed new tools.

Integrating Multi-Omic Data

By definition, multi-omic biology involves multiple types of data, typically spanning 

different classes of biological entities (e.g., mRNA and protein abundance) and different 

ways of measuring the same entity (e.g., RNA sequencing vs. microarrays). In principle, 

such data provide rich and complementary views of a biological system but they are 

typically related in complex ways (e.g., mRNA is used to generate proteins but the levels 

of the two are not well correlated)88 and involve incongruous quantities that are not directly 

comparable (e.g., protein expression vs. gene amplification). When tackling such data, 

off-the-shelf ML methods face three major obstacles that cannot be simultaneously resolved: 
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generation of interpretable models, capture of epistatic or multi-step causal effects, and 

incorporation of prior knowledge. For example, the most interpretable models for identifying 

the molecular origins of differential drug responses in cell lines 89,90 are linear regressions 

mapping multiple input features, e.g., gene expression levels to drug response. The relative 

weighting of input features is often used to score a gene’s importance91 but what does 

it mean when the weight associated with a mutation in one gene is twice as large that 

associated with the expression level of a second gene? Biological mechanism is necessarily 

obfuscated in such approaches in an attempt to achieve data fusion. Furthermore, linear 

models do not capture epistasis in the input space, such as the combined effects of having a 

mutant allele and a change in expression of the same gene. Off-the-shelf nonlinear models, 

such as deep neural networks, make a different tradeoff. By virtue of their nonlinearity, they 

can capture complex epistatic effects but they are less interpretable: it is difficult to know 

what a weighted mixture of gene expression and allelic variants means in a mechanistic 

sense, and even less so when this mixture has been non-linearly transformed. Finally, in 

both linear and nonlinear models, the use of prior knowledge is largely restricted to feature 

engineering (or feature selection), for example using gene set enrichment analysis (GSEA), 

in which genes previously observed to co-vary are used to reduce the dimensionality 

of a dataset involving many genes or proteins into a smaller set of grouped features.91 

Unfortunately, this type of feature engineering cannot capture the richness and nuance of 

accumulated biological knowledge and it is itself often hard to understand.

One way to combine different data types while incorporating prior knowledge, and – ideally 

– revealing causality is to use mechanistic models such as systems of ordinary differential 

equations (ODEs) and related formalisms grounded in chemical reaction theory. A key 

advantage of these models is that they are both interpretable and executable.92 However, 

while conventional ML-based approaches are in a sense too flexible, since they allow ad 
hoc integration of disparate quantities, ODE-type models suffer from the opposite problem 

of being time consuming to create and have difficulty incorporating diverse types of data 

without careful pre-processing into a common set of units (e.g., molecules per cell). We 

propose that differentiable programming serve as a bridge between the ML and ODE 

paradigms. Differentiable programs have the ability to incorporate mechanistic models, 

including ODE models based on reaction theory, with black box pattern recognizers: 

ODE solvers can themselves be made differentiable and optimized through within existing 

autodiff frameworks68. In fact, development of new ODE-based primitives is a very active 

area of ML research93. Pattern recognizers can also be used to tackle aspects of a problem 

that are too complex to be modelled mechanistically, or whose details are irrelevant to the 

mechanistic question under study, while maintaining a mechanistic approach to the salient 

aspects of a problem. Integration of ML and ODE frameworks allows for joint optimization 

of all aspects of the model by backpropagating through the dynamic simulation itself. For 

example, training an ML model to predict protein stability and binding affinity based on 

genetic variation would conventionally be done separately from optimization of an ODE 

model whose parameters are products of the former. Training of a joint model can also 

capture emergent properties of the system not explicitly encoded in its parameters69.

The ability to mix and match model components based on different mathematical 

formalisms facilitates integration of prior knowledge in a far deeper way than traditional 
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feature engineering, which largely involves pre-processing of input data. Differentiable 

programming enables knowledge incorporation at multiple levels of abstraction. At the 

most basic level, well established properties about biological systems can be “hard coded” 

into differentiable programs, for example known transcription factor binding sites in a 

model of transcriptional regulation. These models can be parameterized in a way such that 

they are partially learned, e.g., for transcription factors with unknown motifs, and partially 

fixed based on biological data94. A prior might also impose time-scale separation between 

regulatory factors, model discrete events in time with recurrent architectures,95 or sample 

rate parameters from a probability distribution based on known enzymology96. Facilitating 

this, so-called probabilistic programming extensions have emerged for essentially all 

major autodiff frameworks97,98, allowing probabilistic primitives to be stochastically 

backpropagated through during model optimization. Finally, prior knowledge can be 

reflected in the learning process, such as “curriculum learning” techniques in which easier to 

fit data points are presented early in training to learn simpler patterns before more complex 

data are learned compositionally.

Integrating Irregularly Shaped Data

A parallel challenge is the irregular nature (incompleteness) of most biological data. One 

common scenario involves joint learning from data sets that were generated independently 

with a focus on similar but not identical questions. In this scenario “inputs” are likely to 

vary with the data set, for example the subset of genes whose expression levels have been 

measured, as will the “outputs” —e.g., IC50 or fraction of cells killed for the effects of 

drug perturbation.99 One approach to combining such data is to consider only quantities and 

measurement methods that are common to all data sets, but this results in loss of usable 

data. Implicitly, a tradeoff is being made between the number of data points retained and the 

richness and diversity of measurements being utilized for each data point. Differentiable 

programming can help integrate irregularly shaped and partially overlapping data sets 

despite limitations in data imputation techniques100 through the use of learned latent spaces. 

In this approach raw input features are mapped to rich internal latent spaces with the ability 

to extract complex multi-way interactions (i.e., epistatic effects) between raw input features.

For regularly shaped data a single latent space is typically used. With irregularly shaped 

data, the key concept is creation of a compositional latent space made up of subspaces 

shared between data sets. For example, if two data sets measure the levels of partially 

overlapping sets of proteins, three latent spaces can be learned; one for the shared proteins 

and two for the proteins unique to each data set. Predictions based on inputs present in 

either data set can then be based on a composite latent space formed by stitching together 

the shared latent space with a data set-specific one. When multiple data sets are used, 

with more complex overlapping patterns, correspondingly more complex arrangements of 

latent spaces can be constructed. In this way, information sharing is enabled at a granular 

level; latent representations of input features common to all data sets are learned using all 

data sets, maximizing data utilization, while representations of input features specific to 

individual data sets are only used in making predictions for these data sets, maximizing 

the breadth of input feature utilization. On the output side, missing data can be generally 

treated as described in the protein structure vignette: for any given data point, custom loss 
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functions are constructed to ignore contributions that arise from components of the output 

that are unavailable, while retaining contributions that arise from available components. This 

approach also serves to maximize information utilization at the level of model output or 

prediction.

Recent and Upcoming Developments

Self-supervised Representation Learning

Automatic learning of useful representations of input data is a defining characteristic of 

deep learning and marks the shift from feature engineering to architecture engineering. Most 

representation learning is done implicitly within a supervised learning framework in which 

the prediction task drives pattern recognizers to identify aspects of the input most relevant 

for accurate prediction. This requires inputs and labelled outputs (corresponding to the 

prediction task), which can be difficult to obtain. Self-supervised learning is an alternative 

approach for learning that does not require labelled outputs, unlocking the potential of very 

large unlabeled data101. It relies on artificial learning tasks, for example the imputation 

of randomly masked regions in the input, which, when combined with the information 

bottleneck present in learnable models having limited parameters, induces models to be 

compressive, i.e., to identify recurrent input patterns that efficiently capture the data. We 

and others have used self-supervised learning to induce representations of protein sequence 

from very large sequence databases102-106, and once learned, applied them to unrelated 

downstream tasks, including protein design107 and prediction of protein structure53,108 and 

function109-111. Similarly, learning representations for sets of homologous proteins found in 

multiple sequence alignments112 was used as an auxiliary learning task in AlphaFold251. 

Beyond protein sequences, the structures of organic chemical compounds represent a 

massive source of unlabeled data113, and self-supervised learning approaches are now being 

applied in chemical applications114-118, including protein-ligand binding.

Generators

Generative models, the most prominent of which are generative adversarial networks119 

variational autoencoders120, normalizing flows121, and diffusion models122, use neural 

networks to learn a generative model of data: that is, a model able to generate new data 

points. These approaches have garnered headlines due to the ultra-realistic quality of the 

images they can synthesize for use in computer-animated film and deepfakes.123 Such 

models have also found applications in biology and chemistry, including generation of new 

molecules124-126 and macromolecular sequences127-129, and imputation of RNA-seq data130. 

A key feature of generative methods is the ability to capture higher-order correlations 

within individual samples, for example the consistency of gender or skin color across a 

face, overcoming the problem of blurry samples caused by implicit averaging in maximum 

likelihood models. This capability can be useful for biological systems with missing or 

unknown elements, potentially including biological networks, for which it is desirable to 

generate specific instantiations of a network (e.g., physiologically relevant combinations of 

correlated protein concentrations) as opposed to averaged network states that do not reflect 

the ground truth of any individual cell or cell type.
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Simulators

Simulators can be used to generate synthetic data as a substitute for real data when training 

ML models and can even be integrated within differentiable programs as fixed or learnable 

components. Simulators also find application in testing models, by direct analogy with 

other types of synthetic data. Examples of the first approach include realistic simulated 

driving environments (e.g., games) for training autonomous vehicles131, and highly accurate 

quantum chemistry models, such as coupled clusters and density functional theory132, used 

to generate synthetic data for training neural network-based force fields133,134. Such models 

can predict molecular properties at nearly the same accuracy as the high-level theories but 

with orders of magnitude less computation time135. While differences between real and 

synthetic data can be difficult to bridge, as no simulation can perfectly replicate reality, there 

have been many impressive successes, particularly in robotics136.

Examples of the second approach include so-called inverse graphics applications in which 

simulated 3D worlds are visualized using a differentiable rendering engine and augmented 

with neural networks that learn a mapping from rendered 2D images back to the underlying 

3D structures137. In protein folding, the method of contrastive divergence138 has been used 

to fold small proteins using a (non-learnable) molecular dynamics simulator coupled to a 

learnable forcefield139, and more recently, differentiable and learnable Langevin dynamics 

simulators have been coupled to a learnable energy-based model to do the same74,140,141. 

The incorporation of simulations within a learning framework enables the inference of much 

richer objects, including for example the trajectory of protein motion or the kinetics of 

molecular binding events.

Probabilistic Programs

Bayesian models are particularly useful for capturing uncertainty; they include Bayesian 

nonparametric142 approaches that capture models with a potentially infinite number of 

parameters. With the rise of deep learning, hybrid approaches combining neural networks 

with Bayesian modeling have proliferated143. Moreover, the advent of autodiff frameworks 

with probabilistic programming capabilities such as TensorFlow Probability97 and Pyro98 

have made it easier to build bespoke probabilistic models. Such frameworks combine the 

best of probabilistic programming, i.e., a concise way of constructing Bayesian models 

having complex interdependencies between random variables, with modern neural networks, 

using stochastic generalizations of automatic differentiation. Such models will likely play 

an important role in capturing uncertainty and causality of measurements and natural 

phenomena in the future.

Non-Differentiable Learning

This perspective focuses on end-to-end differentiable modelling in biology because 

differentiable programming has shown the greatest promise in building bespoke models 

of complex natural phenomena. However, just as convexity ultimately proved to be an overly 

limiting constraint on learnable mathematical models, it may well be that differentiability 

will prove to be similarly limiting, especially in applications involving discrete reasoning. 

Many old and new approaches to learning go beyond differentiable programming, including 

ones dating back to the genesis of the AI field. One of the most promising current 
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directions is reinforcement learning144, which involves learning agents that perform 

actions in real or simulated environments. Training of such agents often, but not always, 

involves discrete non-differentiable actions. Reinforcement learning, when combined with 

differentiable pattern recognizers, has proven effective in simulated environments such as 

game playing145,146, as well as in burgeoning applications in chemistry such as organic 

synthesis49,147 and RNA design148. We expect that as these methods mature and migrate to 

real-world applications, their importance in the life sciences will continue to grow.

Obstacles and Opportunities

Several challenges remain before end-to-end differentiable programming will be broadly 

adopted in biomedicine. First, the steps that comprise the “art” of modeling, from 

formulating a problem, mathematically encoding the correct priors, building pattern 

recognizers, and selecting training, test and validation data do not yet permit automation. 

The need for scientific intuition and data wrangling remain unchanged. Second, many 

entities in biological systems, including molecules, networks, and dynamical reactions, are 

structurally richer than the data types used in most contemporary ML research, particularly 

in large corporations, resulting in a need for more algorithmic development of differentiable 

programming frameworks. Data availability is a challenge as are labelled datasets for 

supervised learning. However, deep learning can be as data efficient as so-called shallow 

approaches149 and bespoke differentiable models are more, rather than less, data efficient 

than conventional ML models because they use prior knowledge to extract more information 

from data. Mathematical machinery for representing complex input modalities such as graph 

neural networks150,151 also makes more data types available for learning.

The requirement that all model components be made differentiable can be difficult to 

reconcile with the fundamentally discrete nature of biological entities such as DNA and 

protein sequence, particularly in a generative context in which algorithms are tasked 

with designing new biological constructs. Recently, ML researchers have made major 

strides in inventing differentiable versions of discrete concepts including sentences152 

and mathematical statements153, computational data structures such as stacks, queues, 

and lists154, computational processes such as sorting155, recursion156, and arithmetic 

logic units157 as well as physical objects such as molecules158. Further development of 

differentiable primitives is a general challenge in ML with major implications for natural 

science.

As computing demands continue to grow, in some cases exponentially159 a large gap has 

appeared between resources available to academic and industrial labs. For academia to 

remain meaningfully competitive in ML, particularly with large-scale models, renewed 

national or multi-institutional investments in computing power and software engineering 

must be made, by direct analogy with the efforts that have made traditional supercomputing 

widely available. We believe that this is a worthwhile investment for governments and 

corporations because academic research remains essential in undergraduate and graduate 

education and is published and available for reproduction and improvement. There is no 

guarantee that this will also be true of industrial research.
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There is legitimate concern that ML models can be difficult to understand and this has given 

rise to calls for “intelligible” or “interpretable” ML models and systems.160. Interpretability 

in the context of models typically revolves around our ability to understand the relationship 

between inputs and outputs.161 A problem arises because presence of large numbers of 

learned parameters in differentiable programs obscures their meaning. In some clinical 

applications this might not be an issue, but the goal of most scientific research is not just 

to predict outcomes from a set of inputs but to generalize conclusions in terms of physical 

and chemical principles. However, the incorporation of physical principles in differentiable 

models not only improves performance, it also increases intelligibility.

In conclusion, differentiable programming and other forms of deep learning are growing 

rapidly in sophistication and scope and they promise to accelerate research in multiple 

areas of experimental and molecular biology – not just protein structure prediction. Bespoke 

differentiable models are well suited to fragmentary, confounded and noisy data. In general, 

they are not displacing a previous generation of mechanistic or physics-based models 

but instead merging with such models while also tackling a wealth of topics that have 

historically proven computationally intractable.
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Figure 1: Deep Learning Revolution.
Improvements in prediction accuracy driven by deep learning over the last decade in (a) 
image recognition tasks8, (b) speech recognition9,10, (c) quantum chemical calculations162, 

and (d) protein structure prediction163. Human baselines based on expert curators are shown 

as dashed blue lines.
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Figure 2: Neural Network Primitives.
A powerful set of neural network building blocks makes it possible to build learnable models 

that encode a variety of inductive priors. Convolutional networks model regular grids such 

as images or sequences, inducing local structure and limited forms of spatial invariance 

such as indifference to shifts in images. They are generalized by group-equivariant networks 

that operate on arbitrary point clouds and induce local and global structure as well as 

more general spatial invariances including rotational and translational shifts, important 

in molecular applications. Recurrent networks model sequences with repeating dynamics 

such as time series, music, or the actions of a computational agent. Relational or graph 

networks reflect highly structured objects with rich interrelationships such as phylogenetic 

trees. Attention networks on the other hand essentially assume no underlying structure and 

are capable of inferring arbitrarily complex relationships, including long-range interactions 

that have historically been difficult to capture with conventional mathematical models. 

This ability has been crucial to the development of accurate methods for protein structure 

prediction. These primitives can be combined to yield even more complex combinations, for 

example group-equivariant attentional networks74.
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Figure 3: Differentiable Programming Fuses Principles-based and Data-driven Modeling.
(a) Three types of primitives underlie the emerging field of differentiable biology: (i) 

biological pattern recognizers that perform mappings too complex to be interpretable, 

such as predicting the DNA binding motif of a transcription factor from its structure, 

(ii) phenomenological priors that encode existing biological knowledge, such as known 

signaling pathways, and (iii) data priors that capture the data acquisition process, for 

example the physical process underlying mass spectrometry. (b) In conventional modeling, 

principles-based and data-driven approaches are used largely independently. Differentiable 

programming makes it impossible to build bespoke systems that intermingle the two types of 

approaches in a manner that best reflects the desired modeling task.
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Figure 4: Protein Structure Prediction Vignette.
(a) A minimal end-to-end differentiable system33 for protein structure prediction accepts 

a variable-length protein sequence and processes it recurrently, implicitly learning sequence-

torsion patterns (pink underlines indicate purely data-driven processes that do not rely on 

prior knowledge). These learned patterns are then converted sequentially into 3D coordinates 

using known (fixed) equations for converting sequences of torsion angles to Cartesian 

coordinates (blue underlines indicate purely knowledge-based processes that do not utilize 

learning.) After the final structure is produced, a rotationally- and translationally-invariant 

error metric computes its deviation from an experimental structure, feeding this information 

back into the learning loop. (b) A more advanced system for protein structure prediction, 

based on reported features of AlphaFold2, would accept multiple sequence alignments of 

protein sequences, using attention to reason over individual sequences and residues in the 

alignment. Based on learned sequence-structure patterns, an initial set of 3D coordinates are 

predicted then refined using attention mechanisms that operate directly on the 3D structure 

and that are equivariant to both translations and rotations. The predicted structure is then 

assessed using multiple error metrics which are fed back into the learning loop.
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Figure 5: Protein-Protein Interaction Vignette.
An integrated system for data homogenization and prediction of protein-protein binding 

affinity is illustrated. The system accepts sequences of two proteins (top) that are fed 

to a learned energy model to quantitatively predict their disassociation rate. To train the 

model, multiple data types with varying degrees of precision, directness, and physical 

characterization are used (bottom). Depending on the data type, a different data homogenizer 

(D.H.) is used to bring all data modalities into congruence. For quantitative data, 

conventional double-sided loss functions are used to train the model whenever its predictions 

deviate from the ground truth. For binary data, one-sided and potentially learnable loss 

functions are used (see main text) to only penalize predictions that are clearly in conflict 

with the ground truth. The entire model, including the parameters of the energy model 

and the data homogenizers, is trained jointly using an inner loop for the energy model 

and an outer loop for the data homogenizers to ensure correct training behavior. A key 

assumption of the model is that the number of distinct experimental conditions and assays 

is substantially smaller than the number of distinct data points (right). Otherwise, the model 

is non-identifiable. Throughout the illustration green indicates raw data, blue indicates terms 

coming from principles-based modeling, and pink indicates learnable quantities.
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