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MITI minimum information guidelines for highly 
multiplexed tissue images
The imminent release of tissue atlases combining multichannel microscopy with single-cell sequencing and other 
omics data from normal and diseased specimens creates an urgent need for data and metadata standards to 
guide data deposition, curation and release. We describe a Minimum Information about Highly Multiplexed Tissue 
Imaging (MITI) standard that applies best practices developed for genomics and for other microscopy data to 
highly multiplexed tissue images and traditional histology.
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Highly multiplexed tissue imaging 
using any of a variety of optical 
and mass-spectrometry-based 

methods (Supplementary Table 1) combines 
deep molecular insight into the biology 
of single cells with spatial information 
traditionally acquired using histological 
methods, such as hematoxylin and eosin 
(H&E) staining and immunohistochemistry 
(IHC)1. As currently practiced, multiplexed 
tissue imaging of proteins involves 20–60 
channels of two-dimensional (2D) data, 
with each channel corresponding to a 
different antibody or colorimetric stain 
(Fig. 1). Multiple inter-institutional and 
international projects, such as the Human 
Tumor Atlas Network (HTAN)2, the Human 
BioMolecular Atlas Program (HuBMAP)3 
and the LifeTime Initiative4, aim to combine 
such highly multiplexed tissue images with 
single-cell sequencing and other types of 
omics data to create publicly accessible 
atlases of normal and diseased tissues. Easy 
public access to primary and derived data 
is an explicit goal of these atlases and is 
expected to encompass native-resolution 
images, segmented single-cell data, 
anonymized clinical metadata and treatment 
history (for human specimens), genetic 
information (particularly for animal models) 
and specification of the protocols used to 
acquire and process the data. Given the 
imminent release of the first atlases, an 
urgent need exists for data and metadata 
standards consistent with emerging 
Findable, Accessible, Interoperable, 
and Reusable (FAIR) standards5. In this 
commentary, we establish the Minimum 

Information about Highly Multiplexed 
Tissue Imaging (MITI) standard and 
associated data-level definitions; we also 
discuss the relationship of MITI to existing 
standards, practical implementations and 
future developments.

Scope and target audiences
MITI covers biospecimen, reagent, data 
acquisition and data analysis metadata, 
as well as data levels for imaging with 
antibodies, aptamers, peptides, dyes and 
similar detection reagents (Supplementary 
Table 1). The standard is also compatible 
with images based on H&E staining, 
low-plex immunofluorescence (IF) and IHC. 
A working group is currently extending 
MITI to cover subcellular-resolution 
imaging of nucleic acids using methods 
such as MERFISH6. Although conceived 
with today’s 2D images in mind (typically 
involving 5–10-μm-thick sections of fixed 
or frozen specimens), MITI accommodates 
three-dimensional (3D) datasets acquired 
using confocal, deconvolution and 
light-sheet microscopes7. MITI has been 
established as its own organization with 
its own GitHub repository, governing 
structure and procedures for proposing and 
incorporating revisions. The definition of 
MITI is available in the machine-readable 
YAML format (https://github.com/
miti-consortium/MITI) along with other 
relevant information. MITI has also been 
implemented in practice (https://github.com/
ncihtan/data-models) and used to structure 
metadata available via the HTAN data portal 
(https://htan-portal-nextjs.vercel.app).  

However, MITI is independent of HTAN or 
any single research consortium.

Highly multiplexed imaging is derived 
from methods such as IHC and IF that are 
in widespread use in preclinical research 
using cultured cells and model organisms, 
and in clinical practice with human tissue 
specimens. Many standards and best 
practices have been established for these 
types of data (Supplementary Table 2), 
but high-plex imaging presents unique 
challenges: images are expensive to collect 
and can be very large (up to 1 TB in size), 
specimens are often difficult to acquire 
and may have data use restrictions, and 
accurate clinical and genomic annotation 
is a necessity. Recent interest in highly 
multiplexed tissue imaging has been 
driven by applications in oncology, largely 
due to the importance of the tumor 
microenvironment in immuno-editing and 
responsiveness to immunotherapy, but the 
approach is broadly applicable to studying 
normal development, infectious disease, 
immunology and other topics. HuBMAP3, 
for example, is using high-plex imaging 
to study a range of normal human tissues. 
MITI is also relevant to studies with model 
organisms, and data tables have already 
been created to store data from genetically 
engineered mouse models (GEMMs) in a 
standardized manner.

Multiplexed imaging also promises 
to influence the pathological diagnosis 
of diseases, which is rapidly switching to 
digital approaches8. For over a century, 
histological analysis of anatomic specimens 
(from biopsies and surgical resection) has 
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been the primary method to diagnose 
diseases such as cancer9, and this remains 
true today, despite the impact of gene 
sequencing. Multiplexed tissue imaging 
promises to augment such conventional 
pathological diagnosis with the detailed 
molecular information needed to specify 
the use of contemporary precision therapies. 
This is therefore an opportune time to 
seek alignment of research and diagnostic 
approaches by establishing public standards 
able to take full advantage of the detailed 
molecular information revealed by emerging 
imaging methods.

existing standards and approaches
The Human Genome Project, the Cancer 
Genome Atlas (TCGA)10 and similar 
large-scale genomic programs have 

developed several approaches to data 
management that are of immediate relevance 
to tissue atlases. The first is the concept of 
“minimum information” metadata, which 
has been employed in microarrays (the 
MIAME standard)11, genome sequences 
(MIGS)12 and biological investigation in 
general (MIBBI)13. The second is the idea 
of “data levels” (https://gdc.cancer.gov/
resources-tcga-users/tcga-code-tables/
data-levels), which specify the extent of data 
processing (raw, normalized, aggregated or 
region of interest, corresponding to data 
levels 1–4) and access control. Access control 
is required because even anonymized 
DNA sequencing data pose a risk of 
re-identification14. As a result, the database 
of Genotypes and Phenotypes (dbGaP), the 
US National Cancer Institute (NCI) Genome 

Data Commons (GDC)15 and the US Federal 
Register (79 FR 51345) control access to 
primary sequencing data (so-called level 1 
and 2 sequencing data) based on policies 
set by a data access committee. Higher-level 
genomic data, which are generally 
more consolidated, involve information 
aggregated from many patients and pose 
little or no re-identification risk, can be 
freely shared16 (Fig. 2). When datasets are 
combined, they acquire the most stringent 
restriction applied to any constituent 
element. Although we are not aware of 
any policies addressing the anonymity 
of histological images, consultation with 
our Institutional Review Boards (IRBs, or 
ethics committees) has led us to conclude 
that public release of tissue images does 
not constitute a risk to patient privacy. 
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Fig. 1 | the steps in a canonical multiplexed tissue imaging experiment and the associated metadata. In a typical workflow, samples collected from patient 
biopsies and resections or from animal models are formaldehyde fixed and paraffin embedded or frozen, and are then sectioned and mounted onto either 
a standard glass microscope slide (for cycIF, mIHc, IMc, MELc or mxIF), fluidic chamber (for cODEX) or specialized carriers (for MIBI). clinical and 
biospecimen metadata (extracted from clinical records, for example) are linked to all other levels of metadata via a unique ID (Biospecimen ID). Data are 
acquired using cyclical or noncyclical staining and imaging methods, and both reagent and experimental metadata (consisting of antibody, reagent and 
instrument metadata) are collected. In both cyclic and noncyclic methods, sections undergo preprocessing, antigen retrieval and antibody incubation, and 
images are acquired. In cyclic imaging methods, fluorophores or chromogens are inactivated or removed and additional antibodies and/or visualization 
reagents are applied and data acquisition repeated. channel and instrument metadata capture these essential details.
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MITI data levels are nonetheless consistent 
with the existing GDC and dbGaP practice 
whereby data intended for unrestricted 
distribution are classified as level 3 and up. 
In the case of images adhering to the MITI 
standard, level 3 data have been subjected to 
quality control and some degree of human 
annotation, making them more useful in 
a shared environment than raw images. 
We anticipate that IRBs and government 
agencies will in the future provide further 
guidance on the sharing of datasets 
that combine clinical history, sequence 
information and tissue images; MITI will be 
adapted to accommodate such guidance.

The MITI standard also draws 
extensively on image formats developed 
for cultured cells and model organisms 
and on a wide variety of open-source 
software tools (Supplementary Table 3). 
Noteworthy among these are the Open 
Microscopy Environment (OME) TIFF 
standard17 and the BioFormats18 approach to 
standardization of microscopy data. MITI 
field definitions are harmonized with the 
QUality Assessment and REProducibility for 
Instruments and Images in Light Microscopy 
(QUAREP-LiMi)19 effort, the Resource 
Identification Initiative20 and antibody 
standardization efforts by the Human 
Protein Atlas21 and are also compliant with 
the recently developed Recommended 
Metadata for Biological Images initiative22. 
Metadata on model organisms (particularly 

GEMMs and patient-derived xenografts 
(PDXs)) are aligned with existing standards, 
many developed for genomic information 
(see Supplementary Table 2 for a full list of 
antecedent resources). Well-curated clinical 
information is essential for the interpretation 
of data from human specimens, but 
standardizing such information has 
proven to be a major challenge in the past, 
for example in TCGA23,34. Thus, HTAN 
and other current NCI projects focused 
on human specimens are emphasizing 
standardization of clinical metadata, and the 
MITI standard is designed to closely align 
with the GDC Data Model24 in this regard 
(Supplementary Tables 5 and 6).

All imaging methods generate data 
that comprise a sequence of intensity 
values on a raster; multispectral imaging 
simply adds new dimensions to the raster. 
The cameras that collect H&E and IHC 
images from bright-field microscopes 
or high-plex images from fluorescence 
microscopes generate rasters; ablation-based 
mass-spectrometry imaging (for example, 
multiplexed ion beam imaging (MIBI) 
and imaging mass cytometry (IMC)) is 
also raster based. As currently defined, 
MITI specifies that raster images should 
be stored in the OME-TIFF 6 standard, 
but OME formats are currently being 
migrated to a set of next-generation file 
formats (collectively called OME-NGFF)25 
to improve their scalability and performance 

in the cloud. MITI will be updated to align 
with these new formats as they come into 
general use. Another area of translational 
and clinical research in which imaging is 
commonly encountered is radiology, which 
is almost entirely digital, and which uses 
data interchange standards governed by the 
Digital Imaging and Communications in 
Medicine (DICOM) standard (https://www.
dicomstandard.org/). DICOM has recently 
been extended to accommodate both 
radiology data and OME-TIFF standards26. 
The NCI’s ongoing program to create an 
Imaging Data Commons27 is expected to 
be based on this dual standard, or on a 
successor using OME-NGFF. MITI is, or  
will be, compatible with these foundational 
data standards.

In highly multiplexed tissue imaging, 
antibodies either are conjugated to 
fluorophores directly or via oligonucleotides 
or are bound to secondary antibodies  
(Fig. 1, Supplementary Table 4). Images are 
then acquired serially, one to six channels 
at a time, to assemble data from 20–60 
antibodies. In ablation-based methods, 
antibodies are labeled with metals and 
vaporized with lasers or ion beams, after 
which they are detected by atomic mass 
spectrometry (Supplementary Table 4). In 
all cases, the raw output of data acquisition 
instruments comprises level 1 MITI data 
(Fig. 2), analogous to the level 1 FASTq files 
in genomics.

Biospecimen 
metadata

a MITI data levels 1 and 2 (access may be limited): b MITI data levels 3–5 (unrestricted access):

Level 1 data:
Raw image tiles
.tiff, .svs, .ims, .czi, .mcd,
.rcpnl, .dicom, .nd2, .xdce, etc.

Level 2 data:
Assembled, multi-
channel images
.ome.tif

Level 3 data:
Quality controlled, assembled 
images, segmentation masks
.ome.tif

Level 4 data:
Spatial feature table
.fcs, .csv, .h5ad

Level 5 data:
Data models
Annotated images
MINERVA stories

1
2
3
4
5
6
7

Fig. 2 | MItI data levels and formats. Data levels specify the extent of data processing and, in the case of sequencing data, whether access requires the 
approval of a data access committee. In common practice, data at levels 3 and up are freely shared. Primary data arising from microscopes and data acquisition 
instruments correspond to level 1 data. Because the raw image data acquired from one slide usually consist of separate image fields, possibly from proprietary 
formats, they are processed to correct for uneven illumination and other instrumentation artifacts and assembled into a single multichannel image in the 
OME-TIFF format (level 2 data). OME-TIFF image mosaics undergo quality control (including artifact removal, channel rejection and evaluation of staining 
quality) to generate full-resolution, assembled and curated level 3 image data; segmentation algorithms generate one or more label masks that also comprise 
level 3 data. The great majority of users will want to access these level 3 images. Each label mask (for example, nuclei, cytoplasmic regions, whole cells, 
organelles, etc.) is used to compute quantitative features, such as the mean signal intensity, spatial coordinates of individual cells and morphological features, 
which are stored as level 4 spatial feature tables (where rows represent single cells and columns the extracted cellular features); these data are suitable for 
analysis using the dimensionality reduction and visualization tools used for other types of single-cell data (for example, UMaP plots). Spatial models computed 
from images and spatial feature tables or by direct application of machine learning to images, as well as images annotated by humans, comprise level 5 data.
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Whole-slide imaging is required for 
clinical applications28 and also necessary 
to ensure adequate power in preclinical 
studies29. However, resolution and field of 
view have a reciprocal relationship—with 
respect both to optical physics and to the 
practical process of mapping image fields 
onto the fixed raster of a camera (or ablating 
beam). Whole-slide images of histological 
specimens8 must therefore be acquired by 
dividing a large specimen into contiguous 
tiles. This usually involves acquisition of 
~100–1,000 tiles by moving the microscope 
stage in both the x and y dimensions, 
with each tile being a multidimensional, 
subcellular-resolution TIFF image. Tiles are 
combined at subpixel accuracy into a mosaic 
image, in a process known as stitching. 
When high-plex images are assembled from 
multiple rounds of lower-plex imaging, 
it is also necessary to register channels to 
each other across imaging cycles and to 
correct for any unevenness in illumination 
(so-called flat-fielding)30. Stitched and 
registered mosaics can be as large as 50,000 
× 50,000 pixels × 100 channels and require 
~500 GB of disk space. They correspond 
to level 2 MITI data and represent 
full-resolution primary images that have 
undergone automated stitching, registration, 
illumination correction, background 
subtraction and intensity normalization and 
have been stored in a standardized OME 
format. The level of processing is analogous 
to that of BAM files, a common type of level 
2 data in genomics.

Level 3 data represent images that have 
been processed with some interpretive 
intent, which may include (i) full-resolution 
images following quality control or artifact 
removal, (ii) segmentation masks computed 
from such images, (iii) machine-generated 
spatial models and (iv) images with human- 
or machine-generated annotations. Level 
3 MITI data are roughly analogous to level 
3 mRNA expression data in genomics. 
However, whereas many users of genomic 
data only require access to processed level 3 
and 4 data, which are usually quite compact, 
quantitative analysis of tissue images adds 
a requirement for full-resolution primary 
images so that images and computed 
features can be examined in parallel31. Level 
3 MITI data are intended to be the primary 
type of image data distributed by tissue 
atlases and similar projects.

Assembled level 3 images are typically 
segmented to identify single cells31, which 
are quantified to produce a ‘spatial feature 
table’ that describes marker intensities, 
cell coordinates and other single-cell 
features. The level 4 data in spatial feature 
tables are a natural complement to count 
tables in single-cell sequencing data (for 

example, from scRNA-seq, scATAC-seq 
or scDNA-seq) and can be analyzed using 
many of the same dimensionality reduction 
methods (for example, PCA, t-SNE and 
U-MAP)32 and online browsers such as 
cellxgene (Supplementary Table 3)33. These 
types of tabular data are all examples of 
‘feature observation matrixes’, which are 
themselves being standardized across 
domains of biology to improve their utility 
and intercompatibility. Level 5 MITI data 
comprise results computed from spatial 
feature tables or primary images. Because 
access to terabyte-size full-resolution 
image data is impractically burdensome 
when reading a manuscript or browsing a 
large dataset, a specialized type of level 5 
image data has been developed to enable 
panning and zooming across images using 
a standard web browser35. In the case of 
level 5 images viewed with MINERVA 
software, the aim is to exploit functionality 
and concepts similar to those in Google 
Maps or electronic museum guides. The 
inclusion of digital docents with images 
makes it possible to combine pan and zoom 
with guided narratives that greatly facilitate 
comprehension of complex datasets and 
promote new hypothesis generation35.

For any metadata standard to be used, a 
balance must be struck between ease of data 
entry, which minimizes noncompliance by 
data generators, and level of detail, which 
must be sufficient for data retrieval, analysis 
and publication in a reproducible manner. 
Moreover, specification of a metadata 
standard is separate from the essential task 
of developing a practical and reliable means 
for capturing information needed to ensure 
adherence to the standard. Two approaches 
have proven most effective in addressing 
this requirement. One, exemplified by 
OMeta36, involves a relational database 
and web interface that data generators 
use to input necessary information in a 
controlled manner. Another approach, 
exemplified by MAGE-TAB37, involves a 
standardized format for collecting metadata 
via a series of structured documents, which 
are then used to populate web pages and 
databases38. As a practical test of MITI, 
we have implemented the latter approach 
in a JSON schema (https://github.com/
ncihtan/data-models) that also conforms 
to the design principles of SCHEMA.org. 
These principles focus on the creation, 
maintenance and promotion of schemas for 
structured data that are supported by major 
web search engines, thereby enhancing 
discoverability. In this TAB-like approach, 
the MITI standard is exposed to data 
collectors as Google Sheets with dropdowns 
representing controlled vocabularies and 
highlighting required or optional elements; 

many fields are automatically validated upon 
entry. These documents are ingested using 
SCHEMATIC (Schema Engine for Manifest 
Ingress and Curation; https://github.com/
Sage-Bionetworks/schematic), automatically 
linked to primary imaging data and stored 
as cloud assets. These implementations 
continue to evolve, and entirely different 
approaches are possible: nothing in a 
MITI-type standard constrains how data  
are collected.

Whereas many research agencies and 
countries have made a major investment in 
curating, storing and distributing genomic 
data, fewer repositories exist for primary 
image data. The Image Data Resource39 
maintained by the European Bioinformatics 
Institute (EBI) is an exception, but as the 
volume of image data grows, other means 
of data distribution will almost certainly 
be required. In the US, in the absence of a 
major public investment in data storage, the 
development of “requester pays”40 access 
to datasets is a promising development. 
The primary cost associated with the 
creation and maintenance of a dataset on 
a commercial cloud service involves data 
download, not data ingress and storage. In a 
‘requester pays’ model, a user seeking access 
to a dataset pays the cost of data egress 
directly to the cloud provider, making access 
both secure and anonymous (moreover, the 
cost of egress into another account on the 
same commercial cloud is low). Although 
this approach might appear to create an 
impediment to research, the actual cost 
of egress is quite low (currently, about US 
$100/TB) compared to any form of data 
acquisition, and a key goal is to avoid a 
tragedy of the commons in which frequent, 
duplicate downloads overwhelm the system. 
A combination of a MITI implementation 
on a cloud service (as described above) with 
‘requester pays’ cloud access will also make 
it possible for individuals to distribute very 
large FAIR image datasets at relatively low 
cost. Such an approach does not obviate the 
need for public investments, such as those 
being made by the EBI, but it does represent 
a practical way forward for democratizing 
the release of standardized data—some 
of which can then be incorporated into 
publicly supported resources. Regardless, 
the MITI standard described here is 
available for immediate use, without being 
affected by how access to the primary data is 
provisioned.

Public data and metadata standards 
have been essential for the success of 
genomics and other fields of biomedicine, 
but the creation of a new standard is no 
guarantee of successful adoption. An 
outpouring of effort 10–20 years ago led 
to the development of widely adopted 
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and well-maintained standards such as 
MIAME11, MIGS12 and MIBBI13, and 
these have been consolidated and further 
documented by the Digital Curation Center 
(https://www.dcc.ac.uk/), FairSharing.
org and similar projects. However, many 
other minimum information projects have 
been left unattended41, and it remains 
unclear whether existing metadata 
adequately conform to user needs42. The 
development of MITI and of the initial 
HTAN implementation enjoys NCI support 
and is expected to become part of the 
NCI Cancer Research Data Commons27, 
helping ensure its viability. However, 
individuals and organizations are invited 
to join in the further development of MITI 
and should make contact via the image.
sc forum or submit pull requests (that is, 
requests for inclusion in the MITI ‘code 
base’ at https://github.com/miti-consortium/
MITI). Because high-plex tissue imaging 
is in its infancy and MITI has attracted 
the great majority of developers of existing 
high-plex tissue image acquisition methods, 
it represents a solid beginning for what 
will need to be an evolving standard. By 
having its own repository and governance 
structure, independent of any particular 
research program or constituency, MITI 
also conforms with other requirements of 
successful open standards43.

data availability
The detailed specification of the guidelines 
outlined in this manuscript are available at 
https://github.com/miti-consortium/MITI 
and https://www.miti-consortium.org/.

Code availability
The detailed specification of the guidelines 
outlined in this manuscript are available at 
https://github.com/miti-consortium/MITI 
and https://www.miti-consortium.org/. ❐
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