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INTRODUCTORY PARAGRAPH

Despite initial responses1-3, most melanoma patients develop resistance4 to immune 

checkpoint blockade (ICB). To understand the evolution of resistance, we studied 37 

tumor samples over 9 years from a metastatic melanoma patient with complete clinical 

response to ICB followed by delayed recurrence and death. Phylogenetic analysis revealed 

co-evolution of 7 lineages with multiple convergent, but independent resistance-associated 

alterations (RAAs). All recurrent tumors emerged from a lineage characterized by loss of 

chromosome 15q, with post-treatment clones acquiring additional genomic driver events. 

Deconvolution of bulk RNAseq and highly-multiplexed immunofluorescence (t-CyCIF) 

revealed differences in immune composition amongst different lineages. Imaging revealed 

a vasculogenic mimicry phenotype in NGFR-High tumor cells with high PD-L1 expression 

in close proximity to immune cells. Rapid autopsy demonstrated 2 distinct NGFR spatial 

patterns with high polarity and proximity to immune cells in subcutaneous tumors versus 

a diffuse spatial pattern in lung tumors, suggesting different roles of this neural crest

like program in different tumor microenvironments. Broadly, this study establishes a 

high-resolution map of the evolutionary dynamics of resistance to ICB, characterizes a 

de-differentiated, neural crest tumor population in melanoma immunotherapy resistance, and 

describes site specific differences in tumor-immune interactions via longitudinal analysis of 

a melanoma patient with an unusual clinical course.

Immune checkpoint blockade (ICB) has revolutionized cancer therapy across multiple 

solid tumor types. While 40-45% of patients with metastatic melanoma respond to PD-1 

blockade1-3, the majority succumb due to primary, adaptive, or acquired resistance4. A 

diverse set of resistance mechanisms have been identified including beta-catenin activation5, 

PTEN loss6-8, loss of antigen presentation machinery9,10, impaired interferon gamma 

responsiveness9,11, genome instability and aneuploidy12,13, cell-cycle dysregulation14, 

and phenotype selection15-17. How these mechanisms emerge, interact, and contribute 

to resistance within patients remains poorly understood. Longitudinal tumor samples 

enable study of the time-course of response, shedding light on tumor heterogeneity18, 

tumor evolution, and acquired resistance. Previous studies have demonstrated intratumoral 

heterogeneity in many solid tumor types including melanoma19-23, and some studies have 

sequenced tumors longitudinally to examine evolution of resistance to chemotherapy24,25, 

targeted therapy26, and immunotherapy10,13. We generated a unique dataset of 37 

longitudinally collected tumors to investigate the evolution of ICB resistance from a 

responder to ICB with eventual recurrence and death from disease across 9 years including 

the primary tumor, metastatic recurrence, pre-treatment, on-treatment, post-progression, and 

rapid autopsy time points. While previous efforts have focused on sequential tumor analysis 

in ICB27,28 with limited modalities (e.g. immune markers, microenvironment) or spans 

a limited clinical timeframe, our study represents the largest and most in-depth study of 

tumor and microenvironmental evolution of an individual across all phases of his melanoma 

treatment from diagnosis to rapid autopsy. We performed whole-exome sequencing (WES), 

RNA-seq, and highly-multiplexed protein immunofluorescence (t-CyCIF; Methods, Fig. 1, 

Supplementary Table 1). The patient’s clinical course is detailed in Fig. 1a.
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Phylogenetic analysis integrating single nucleotide variants and copy number alterations 

(Methods) demonstrated a common tumor ancestor with a mutational spectrum consistent 

with UV damage, 618 shared mutations, driver hotspot mutations in IDH1 (p.R132C) and 

MAP2K1 (MEK1; p.E203K), and mutations in the cancer driver genes CTNNB1 (β-catenin; 

p.R582W) and ARID2 (p.P1664S)) (Extended Data Fig. 1, and Extended Data Fig. 2). 

No driver mutations in BRAF, NF1, or NRAS/HRAS/KRAS were detected. All tumors 

shared loss of heterozygosity (LOH) in segments of chromosome 3q, 6q, 9, 10, and 20 

(Extended Data Fig. 3), which spanned tumor suppressors (CDKN2A/B; PTEN), interferon

gamma pathway genes (IFNGR1; JAK2), and the chromatin remodeler gene ARID1B. 

Analysis revealed the co-existence and evolution of seven lineages at therapy onset, each 

having distinct genomic features (Fig. 1ab, Extended Data Figs. 3-5, Supplementary Fig. 

1), including whole genome doubling, loss of allelic chromosomal segments, and gains 

of mutational clusters, with the most recent common ancestor being the primary tumor. 

Lineage 0 (n=1) was characterized by a genome doubling of the original primary clone 

in a recurrent lesion observed nearly four years later. All other lineages descended from 

a non-genome doubled subclone with 10 additional mutations. Lineage 1 (n=8 tumors) 

exhibited substantial spatial and temporal heterogeneity with the most recent common 

ancestor (MRCA) the common ancestor of Lineages 1–6 without additional distinguishing 

copy number alterations or mutations. Lineage 2 (n=4) included one pre-treatment tumor, 

was characterized by an early LOH of part of chromosome 2q, followed by a genome 

doubling event in 3/4 tumors in the lineage. Lineage 3 (n=16) included bowel and brain 

early recurrences and all subsequent treatment-resistant lesions and was characterized by an 

allelic chromosome 15q deletion. Lineage 4 (n=3) was limited to the head and neck and 

shared a cluster of 9 distinct acquired mutations. Lineage 5 (n=2) was found at one time 

point (D29) co-located spatially and was characterized by partial allelic loss of chromosome 

19q. Lineage 6 (n=2) spanned two skin lesions on (chin: D27; left groin: D92) with 6 

distinct acquired mutations. The relationships between the MRCA of each lineage are shown 

in Fig 1b and highlight the diversity and continued evolution of melanoma within a single 

patient.

Across all lineages, we observed multiple genomic RAAs. Nearly all tumors (33/37) had a 

homozygous deletion in PTEN (Supplementary Table 1) arising from a common LOH of 

chromosome 10 with a focal deletion of a ~500KB region overlapping PTEN. In 19 tumors 

PTEN was examined via immunohistochemistry (IHC) and all were negative including two 

tumors without PTEN homozygous deletion (Supplementary Fig. 2), suggesting multiple 

routes to a PTEN-null phenotype. Post-treatment resistant lesions arose out of lineage 

3, distinguished by regional loss of 15q, including B2M required for MHC-I antigen 

presentation10. Notably, we found four independent whole genome duplication events: (1) 

in the common ancestor of three tumors (T4, T9, T10) in lineage 2 prior to ICB, (2) twice 

in lineage 3 (small bowel metastasis and brain metastasis independently) distinguishing the 

post-treatment resistant tumors from earlier tumors in the lineage, and (3) in lineage 0 prior 

to ICB. Tumors with genome doubling had evidence of increased chromosomal instability 

with higher aneuploidy29, which has been associated with immunotherapy resistance12 

(Mann-Whitney p<0.001) (Extended Data Fig. 6).

Liu et al. Page 4

Nat Med. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



“Early” resistant lesions (small bowel [R1, D1028] and brain metastasis [R2, D1169]) 

showed accumulation of multiple genomic alterations associated with immunotherapy 

resistance: PTEN loss, 15q deletion (including B2M), and genome doubling, as well as 

additional driver alterations (e.g. CDKN2A homozygous deletion). “Late” resistant tumors 

(R3.1, R3.2 and autopsy tumors) descended from the small bowel (R1, D1028) clone with 

CDKN2A homozygous deletion, and demonstrated additional LOH of Chr11, including a 

frequently deleted region in melanoma30 including DNA damage sensor and response genes 

ATM and CHEK1 and epigenetic regulator KMT2A (Fig. 1c, Supplementary Fig. 3).

Tumors evolve in parallel with their microenvironment (TME), and tumor mutational status 

provides only a partial picture. Therefore, we characterized the TME using deconvolution of 

bulk RNAseq using single-cell derived signatures of immune cell subsets17 and analysis of 

cyclic multiplexed immunofluorescence (t-CyCIF) (Methods). Relative to a large cohort of 

aPD-1 treated melanoma patients31, these tumors had a low overall immune score (Extended 

Data Fig. 7), consistent with t-CyCIF imaging demonstrating that most tumors were 

immunologically “cold” with low levels of immune cells in the TME (Fig. 2a). Immune 

scores derived from RNAseq and corresponding immune cell proportions inferred using t

CyCIF correlated well (Supplementary Fig. 4). We next examined the association of lineage 

with specific immune cell subsets. Despite relatively few samples for each lineage, we 

detected a statistically significant overall association of lineage with expression of a CD4+ 

T cell and regulatory T cell signatures (ANOVA p = 0.018, BH FDR q = 0.09 (adjusted for 

10 immune signatures), both, Fig. 2b). Comparing tumors in the resistant lineage (Lineage 

3) vs other lineages, we observed a trend of lower CD4+ and CD8+ T-cell signature scores 

(Fig. 2c) with the notable exception of CD4+ regulatory T-cells being higher in Lineage 3, 

consistent with the hypothesis of a more immunosuppressive environment in the resistant 

lineage. However, with data from only 3 tumors in Lineage 3, these observations were 

mostly not statistically significant. Examining changes in the TME over time (Fig. 2d), we 

observe higher levels of CD8+ T effector and CD4+ Foxp3− T helper cells in the immediate 

post-IO initiation period (D27-62) compared to the later IO period (D76-109), particularly in 

the tumor border regions (Fig. 2e, Extended Data Fig. 7b-d, Extended Data Fig. 8).

We also performed a hallmark cancer geneset analysis, using single sample GSEA32 

of hallmark cancer genesets33 (Methods) to characterize activity levels in samples and 

association with lineage and time. No individual genesets were statistically significantly 

associated with lineage or time after multiple hypothesis correction (Supplementary Fig. 

5a-c), but PCA dimensionality reduction suggested clustering of Lineage 2 tumors driven in 

part by increased immune activity (Supplementary Fig. 5de).

We then examined the relative spatial orientation and arrangement of tumor and immune 

cell subsets across tumors using t-CyCIF (Supplementary Table 1, https://www.cycif.org/

data/liu-lin-2019/). We observed vascular-pattern networks comprised of non-endothelial 

lined neural-crest-like (NGFR-High) tumor cells consistent with vascular mimicry (Fig. 3a, 

Supplementary Fig. 6)34, a pattern previously associated with an aggressive and therapy 

resistant phenotype15,16,35. Clustering of single-cell t-CyCIF data (Fig. 3b, Methods) 

showed a distinct PD-L1 high NGFR-High tumor cell cluster (Fig. 3c, Extended Data Fig. 

9a), and spatial enrichment analysis (Methods) showed cluster enrichment in proximity to 
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immune cells (Fig. 3d). At the time of late recurrence, the patient was enrolled on a trial 

of intralesional TLR9 agonist plus anti-PD1, and we collected paired pre-treatment and 

post-treatment (Day 1849 and 1862) biopsies for direct intra-tumoral comparison of the non

responsive target tumor (Fig. 3e). t-CyCIF demonstrated post-treatment increase in immune 

infiltrate accompanied by an increase in the NGFR-High, PD-L1+ tumor population (Fig. 

3f, Extended Data Fig 9b), with expansion of CD8+ T cells and non-lymphocytic immune 

cells (CD45+/CD3d–) as a proportion of the immune infiltrate (Fig. 3g, Fisher’s exact p 

< 0.001 for both)). Finally, single-cell RNAseq of the post-treatment tumor biopsy (Fig. 

3h) confirmed the presence of an NGFR-High tumor population, and gene-set enrichment 

analysis (GSEA, Methods) revealed enrichment of hypoxia, immune-stimulatory and 

immunoregulatory genesets (TNFalpha/TGFbeta), EMT, and P53 pathways in NGFR-High 

tumor cells, while gene sets involving oxidative phosphorylation, cell cycle checkpoints, and 

MYC targets were enriched in the NGFR-Low cells (Fig. 3i). Separate single-cell RNAseq 

of the brain metastasis confirmed differential enrichment of these pathways between NGFR

High and NGFR-Low tumor cells (Supplementary Fig. 7, Supplementary Table 2).

To compare differences in tumor and tumor-microenvironment between different tumor sites 

at the same time-point, we performed t-CyCIF on 11 rapid autopsy samples (Fig. 4a) and 

focused on differences in the tumor and microenvironment across the most represented 

metastatic sites: lung (n=4) and subcutaneous (n=4) metastases. There were no differences 

in NGFR-High tumor cell proportion or CD8+ cytotoxic or CD4+ T helper populations 

between lung and subcutaneous sites, but there were higher frequencies of Ki67+ tumor cells 

in the lung compared to subcutaneous tumors (p = 0.003, Fig. 4b). Despite no quantitative 

differences in NGFR-High tumor cell populations between lung and subcutaneous metastatic 

sites, we observed two different spatial patterns: (1) concentration of NGFR-High cells in 

the periphery of tumor adjacent to immune cells in subcutaneous metastases; and (2) a more 

diffuse NGFR-High tumor cell distribution throughout the tumor in lung metastases (Fig. 

4c,d). Using metrics of polarity and entropy to quantify these observations (Methods), we 

found that NGFR-High tumor cells had higher polarity and lower entropy in subcutaneous 

vs lung locations (t-test p = 0.032, p = 0.030 respectively, Fig. 4e). Consistent with 

potentially distinct roles in immune cell response and pseudovascularization, there was a 

closer spatial relationship between NGFR-High tumor cells and cytotoxic and T helper cells 

in subcutaneous tumors compared to tumors in the lung (p < 8.2 X 10−11, Fig. 4f).

In this study, we report tumor-intrinsic and immune evolutionary dynamics in a 

melanoma patient treated with ICB. Using molecular and protein characterization of 37 

longitudinal tumor samples we deduced the branched evolutionary structure, mapped the 

timing of immune escape, analyzed the immune microenvironment, and demonstrated 

phenotypic selection for a less differentiated, NGFR-High program in tumor cells. Seven 

genomic lineages were inferred, suggesting significant tumor heterogeneity at the start of 

therapy36 and persisting through initial therapy. Multiple RAAs were identified, including 

PTEN loss6-8, genome doubling with increased aneuploidy12,13, and loss of antigen

presentation9,10. Post ICB, early recurrences demonstrated acquisition of multiple resistance 

alterations, arising out of the lineage with 15q deletion (including B2M) that harbored a 

PTEN homozygous deletion and additional genomic alterations, including genome doubling 

and biallelic CDKN2A loss. This supports the concept of immune pruning of susceptible 
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clones37,38, propagation of clones with intrinsic (and multiple) immune-evasive adaptations, 

and suggests the insufficiency of any single alteration to intrinsically support survival and 

outgrowth. Notably, the clone comprising the early brain metastasis was an evolutionary 

dead-end, with no subsequent recurrence after resection and radiation, while the early 

bowel metastasis clone was the ancestor to all subsequent resistant metastases (including 

brain metastases at rapid autopsy), supporting the possibility of disease eradication with 

aggressive treatment of oligometastases.

This patient’s clinical course is unusual, with a long interval between primary tumor 

and first metastasis, followed by rapid tumor growth and heterogeneous responses to 

ICB, and abrupt clinical complete response for which the trigger is unknown. Preceding 

complete response was initiation of CTLA-4 checkpoint inhibitors and palliative radiation 

suggesting the contribution of an abscopal effect. Additionallly, the features leading to the 

resistant clone arising from Lineage 3 (with chromosome 15q LOH including B2M) are not 

completely characterized. While RNAseq analysis suggests decreased MHC-I expression in 

Lineage 3 tumors (T-test p = 0.01, Extended Data Figure 10a), there is not complete loss via 

t-CyCIF with continued tumoral HLA-A protein expression. An alternate hypothesis is that 

mutations on the deleted segment of chromosome 15q generated immunogenic neoantigens. 

We see evidence of decreased expression of genes coding neoantigens in Lineage 3 tumors 

and over time (Extended Data Figure 10b). Finally, early recurrences occurred after steroid 

treatment for autoimmune nephritis followed by indolent disease progression for 2 years 

transitioning to later recurrence of more aggressive, rapidly therapy refractory disease, 

suggesting that causes of persistence of the resistant clone and subsequent progression are 

multifactorial.

Prior studies have defined an NGFR-High program within a subset of melanoma cells in 

association with dedifferentiation35, increased invasiveness and decreased proliferation16, 

and demonstrated that functional relevance to targeted therapy resistance15,39,40 and 

immunotherapy in vitro/in vivo41. However, a more granular assessment of the NGFR-High 

phenotype within ICB-treated patients has not been demonstrated. Here, we find that 

the melanoma NGFR-High state is characterized by high PD-L1 expression and close 

spatial association with immune cells, suggesting a role in tumor-immune interactions, 

consistent with recent in-vitro studies demonstrating resistance to T-cell killing in NGFR

High tumor cells41. We observe enrichment of hypoxia pathways in NGFR-High tumor cells 

and cytoarchitecture consistent with vascular mimicry34,42, suggesting a potential role in 

increasing circulation to the tumor34, regulating immune cell entry43, and nominating these 

cells as targets for therapeutic intervention. Our analysis describes distinct NGFR-High 

tumor cell distribution patterns in lung versus subcutaneous metastatic sites, potentially 

reflecting site-specific heterogeneity in tumor-immune interactions.

Whether the evolutionary dynamics of this patient’s tumor reflect the broader cohort 

of melanoma treated with ICB must be assessed in larger cohorts representing all 

melanoma genotypes and reflecting the breadth of clinical heterogeneity; however, this 

study provides molecular insight into the development of immunotherapy resistance and 

integrates longitudinal sequencing and imaging approaches to thoroughly define tumor 

and immune cell interactions. Further efforts are ongoing, including integrating analysis 
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of plasma/PBMCs44,45 in parallel with deep molecular analysis of the tumor, potentially 

affording a less invasive means of tumor/immune assessment longitudinally; and integration 

of additional modalities (e.g. epigenetic sequencing) at different scales (bulk, single-cell) to 

dissect longitudinal intra-patient heterogeneity. We anticipate that clinically contextualized, 

longitudinal multimodal molecular analyses to dissect changes in the tumor- and tumor 

microenvironment under therapy will enable deeper understanding of the evolution of 

resistance and tumor heterogeneity and improve outcomes by identifying novel targets and 

informing rational combination therapies.

METHODS

PATIENT SAMPLES

IRB approval was obtained prior to study enrollment and written informed consent was 

obtained from the patient for the collection of tissue and blood samples and use of 

medical imaging for research and genomic profiling, as approved by the Dana-Farber/

Harvard Cancer Center Institutional Review Board (DF/HCC Protocol 11-181). Response 

was assessed using modified RECIST 1.1 criteria, and restaging scans were performed at 

least every 3 months to assess response and progression.

Clinical History and Sample Context—A 67-year-old man with stage IIB nodular 

melanoma treated with wide excision and negative sentinel lymph node biopsies recurred 

2.5 years later, and staging PET-CT images showed widespread disease including lymph 

node, lungs, subcutaneous, and visceral lesions. He enrolled in a phase 2 trial of sequential 

ICB15 and received nivolumab then ipilimumab then maintenance nivolumab. After 6 cycles 

of nivolumab, he had heterogeneous response to ICB (RECIST 1.1, PD: −17%) with overall 

rapid progression. He continued to progress over 4 cycles of ipilimumab and underwent 

palliative radiation of bone metastases. Coinciding with maintenance nivolumab (Day 182), 

he experienced an abrupt, precipitous response. Restaging scans (Day 221) demonstrated a 

partial response (RECIST 1.1, −45%) with continued disease regression. He completed 2 

total years of ICB with excellent radiographic response (Day 753, RECIST 1.1, −73%), and 

was considered a complete clinical responder (only residual scar on imaging). Three months 

after trial completion (Day 831), he developed autoimmune nephritis requiring high-dose 

steroids. Six months later (Day 1015), imaging revealed an isolated jejunal metastasis that 

was resected. Five months later, imaging demonstrated a new occipital brain lesion that was 

resected (D1169) with post-operative radiation therapy. He then did well with no recurrence 

until a year and a half later when he had widespread metastatic recurrence. He resumed 

nivolumab, but progressed on therapy. He transitioned to a clinical trial of anti-PD1 therapy 

+ TLR9 agonist (Day 1850) but progressed. Despite subsequent radiation, carboplatin and 

paclitaxel, the patient died of his disease approximately 1 year after metastatic recurrence 

and almost 6 years from initiation of ICB.

Multiple rounds of palliative resection of subcutaneous lesions were performed during the 

early on-treatment phase of his clinical course and ultimately biopsies from 37 tumors 

underwent molecular characterization from the original primary (n=1), pre-treatment (n=3), 

on-treatment (n=18), and post-treatment progression (n=15) time points, spanning 9 years.
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DNA/RNA Extraction and Exome Sequencing—DNA extraction, whole exome 

library prep and sequencing was performed for samples as previously described25,46. Slides 

were cut from FFPE blocks and examined by a board-certified pathologist to select high

density cancer foci and ensure high purity of cancer DNA. Biopsy cores were taken from 

the corresponding tissue block for DNA/RNA extraction. DNA and RNA extraction was 

performed using Qiagen AllPrep DNA/RNA Mini Kit (#51306), and stored at −20 degrees 

Celsius. Whole exome capture libraries were constructed from 100ng of DNA from tumor 

and normal tissue after sample shearing, end repair, and phosphorylation and ligation to 

barcoded sequencing adaptors. Ligated DNA was size selected for lengths between 200-350 

bp and subjected to exonic hybrid capture using Illumina library preps. The sample was 

multiplexed and sequenced using Illumina HiSeq technology. The Illumina exome uses 

Illumina’s in-solution DNA probe based hybrid selection method that uses similar principles 

as the Broad Institute-Agilent Technologies developed in-solution RNA probe based hybrid 

selection method47,48 to generate Illumina exome sequencing libraries.

Total RNA was assessed for quality using the Caliper LabChip GX2. The percentage of 

fragments with a size greater than 200nt (DV200) was calculated using software. An aliquot 

of 200ng of RNA was used as the input for first strand cDNA synthesis using Illumina’s 

TruSeq RNA Access Library Prep Kit. Synthesis of the second strand of cDNA was 

followed by indexed adapter ligation. Subsequent PCR amplification enriched for adapted 

fragments. The amplified libraries were quantified using an automated PicoGreen assay.

200ng of each cDNA library, not including controls, were combined into 4-plex pools. 

Capture probes that target the exome were added, and hybridized for recommended time. 

Following hybridization, streptavidin magnetic beads were used to capture the library-bound 

probes from the previous step. Two wash steps effectively remove any nonspecifically bound 

products. These same hybridization, capture and wash steps are repeated to assure high 

specificity. A second round of amplification enriches the captured libraries. After enrichment 

the libraries were quantified with qPCR using the KAPA Library Quantification Kit for 

Illumina Sequencing Platforms and then pooled equimolarly. The entire process is in 96-well 

format and all pipetting is done by either Agilent Bravo or Hamilton Starlet.

Pooled libraries were normalized to 2nM and denatured using 0.2 N NaOH prior to 

sequencing. Flowcell cluster amplification and sequencing were performed according to 

the manufacturer's protocols using either the HiSeq 2000 v3 or HiSeq 2500. Each run was 

a 76bp paired-end with a dual eight-base index barcode read. Data was analyzed using the 

Broad Picard Pipeline which includes de-multiplexing and data aggregation.

Quality Control and Variant Calling—Initial exome sequence data 

processing and analysis were performed using a customized version of 

the Getz Lab WES analysis pipeline (https://portal.firecloud.org/#methods/getzlab/

CGA_WES_Characterization_Pipeline_v0.1_Dec2018/) at the Broad Institute. After 

alignment from the Broad Picard Pipeline, BAM files were uploaded into the Terra 

infrastructure (https://app.terra.bio) which managed intermediate analysis files executed by 

analysis pipelines.
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Out of an initial 44 samples (43 tumor + 1 blood normal), all passed coverage (> 50x 

mean target coverage) and contamination estimation49 (< 5%) thresholds except the primary 

tumor (T1, D-1381, 34x mean target coverage, 13% contamination), which we kept due to 

its importance in phylogenetic analysis. We removed 6 tumors due to low tumor purity (< 

10% tumor cells and no matched mutations in significantly mutated genes50,51), yielding 37 

total tumor samples + 1 matched blood normal for analysis. Supplementary Table 1 shows 

sequencing characteristics.

The MuTect algorithm52 was applied to identify somatic single-nucleotide variants in 

targeted exons. Strelka53 was applied to identify small insertions or deletions. Alterations 

were annotated using Oncotator54. Filters were applied to detect and remove known artifacts 

and germline variants, including DNA oxidation during sequencing55.

Copy Number Variants—Total copy number alterations for individual tumors were 

inferred using adaptations of a binary segmentation algorithm56,57 (CapSeg) comparing 

fractional exon coverage for tumor segments to a panel of normal samples, generating 

exomic segments and segment copy number. Copy number data were inspected visually and 

manually for focal amplifications and deletions, and genes were annotated with Oncotator54. 

For allelic copy numbers, heterozygous SNPs were identified and integrated with the binary 

segmentation algorithm (Allelic CapSeg), and further adjusted for tumor purity and ploidy58. 

We then called allelic amplifications and deletions, following previously described criteria59 

integrating segment focality and the revised allelic copy number.

Purity and Ploidy—Purity and ploidy was estimated using the ABSOLUTE algorithm58, 

which integrates variant allele frequency distributions and copy number variants to estimate 

absolute tumor purity and ploidy and infer cancer cell fraction (CCF), the proportion of 

cancer cells in the sample which contain each mutation. Post-purity and ploidy corrected 

allelic segments were used to estimate allelic copy number estimates.

Aneuploidy Calculation—We used an adaptation of the weighted Genome Instability 

Index29,60 to calculate a measure of genomic aneuploidy for each sample. First, we used 

the allelic segment output to determine the median genomic allelic copy number (e.g. 1 

for non-genome doubled samples and 2 for genome doubled samples), semantically the 

50th percentile of allelic copy number for base pairs across the genome. Then, to calculate 

genomic aneuploidy, we estimated the proportion of the genome with a different allelic copy 

number from this median.

PHYLOGENETIC ANALYSIS

Two complementary approaches were taken to perform phylogenetic analyses: PyClone61 

and PhylogicNDT62.

A comprehensive list of all called point mutations and small insertion-deletions found in 

any tumor sample was generated. For each tumor sample, the number of alt and reference 

reads, estimated CCF, and purity and ploidy corrected minor and major copy number at 

each mutation locus was generated. PyClone61 (V0.13.1), a Bayesian clustering method 

for grouping mutations into clonal structures accounting for tumor purity and allelic copy 
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numbers, was then used to generate clusters of mutations and their estimated CCF for 

each sample given the described mutation inputs and tumor purity. The following default 

parameters were used:

base_measure_params: {alpha: 1, beta: 1}

beta_binomial_precision_params:

prior: {rate: 0.001, shape: 1.0}

proposal: {precision: 0.01}

value: 1000

concentration:

prior: {rate: 0.001, shape: 1.0}

value: 1.0

density: pyclone_beta_binomial

init_method: disconnected

num_iters: 10000

31 clusters were inferred. After filtering for clusters with more than 3 mutations, 23 clusters 

remained (Extended Data Fig. 4a). Three informative patterns emerged:

1. Clusters with CCF ~1 in all tumors (C2, C4, C5): Three clusters representing a 

total of 548 mutations were found at >= 0.6 CCF in all samples (Supplementary 

Fig. 5a), and likely collectively represent the ancestral clone.

2. Clusters with CCF ~0 in most tumors and ~1 in a few tumors (C26, C16, C10, 

Supplementary Fig. 1df, Extended Data Fig 4c), suggesting a common ancestor 

for tumors containing these clusters.

3. Clusters with CCF ~1 in most tumors and 0 in a few tumors (C22, C14, C8, 

Extended Data Fig. 4b, Supplementary Fig 1ce), with mutations found in the 

same chromosomal segment, suggesting a common ancestor with deletion of the 

chromosomal segment containing the cluster mutations for tumors with inferred 

CCF of 0.

Hierarchical clustering was then performed using seaborn’s clustermap method21-23 (default 

clustering using Euclidean distance and the Nearest Point Algorithm for linkage between 

clusters) (Extended Data Fig. 5a), and seven lineages were inferred. Reassuringly, CNVs 

(which were not used to generate the lineages) were consistent with the inferred lineages, 

e.g. lineage 3 was inferred by lacking C14 composed of 20 mutations in chromosome 15q 

(Extended Data Fig. 4b), and all tumors in this lineage had a corresponding 15q LOH 

(Extended Data Fig. 3). Similarly, lineage 5 lacks C8 composed of 11 mutations in a 

segment of chromosome 19q (Supplementary Fig. 1e), which is inferred lost in the tumors 
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in lineage 5 (Extended Data Fig. 3). The four tumors (T4, T9, T10, T12) in Lineage 2 

shared loss of chromosome 2q mutations (Supplementary Fig. 1c) and had an inferred partial 

deletion of chromosome 2q. Three of these tumors (T4, T9, T10) also shared additional 

acquired mutations as well as a genome doubling event.

In parallel, we used PhylogicNDT62 to reconstruct the phylogeny of metastases from DNA 

sequencing data and inferred cell fractions. PhylogicNDT implements a multidimensional 

Dirichlet process to jointly estimate the cell population structure and genetic phylogency 

across all samples, taking copy number profiles, purity values, and joint mutational calls. In 

our case, we used the posterior distribution on CCF values associated with each mutation 

(taking into account purity, copy number profiles using ABSOLUTE58). PhylogicNDT 

Cluster and BuildTree was run on data from selected subsets of samples with the following 

default parameters: -rb -ni 2000, --seed 0.

Tumors lineages defined by the PyClone/hierarchical clustering approach were reproduced 

in the phylogenetic tree(s) inferred by PhylogicNDT (Supplementary Fig. 8ab). The inferred 

phylogenetic structure of tumors within each lineage is shown in Supplementary Fig. 8c. We 

extracted the inferred mutation patterns characterizing the MRCA of each lineage, and we 

used these ancestral patterns to infer the history of early lineage divergence (Fig. 1b)

IMMUNE DECONVOLUTION FROM BULK TRANSCRIPTOMIC SEQUENCING

For RNA-seq, we utilized RSEM63 to quantify TPM, FPKM, and RPFKM levels with 

bowtie264 as the mapper and hg19 as reference genome using default mapping parameters.

We inferred overall expression (OE) of 13 immune cell signatures derived from 

single-cell RNAseq in melanoma samples as previously described17: an overall 

immune cell signature (‘IMMUNE’), a general T-cell signature (‘T.CELL’), B-cell 

signature (‘B.CELL’), different T cell lineages and functional subgroups (‘T.CD4’, 

‘T.CD8’, ‘T.CD4.TREG’, ‘T.CD8.NAIVE’, ‘T.CD8.CYTOTOXIC’, ‘T.CD4.NAIVE’, 

‘T.CD8.EXHAUSTED’,’ T.CD4.EXHAUSTED’,), NK cells (‘NK’), and macrophages 

(‘MACROPHAGE’). Briefly, genes in these signatures were derived by examining genes 

most distinct to those cell types compared to all other cells in the single cell samples in an 

unbiased fashion with subsequent expert curation. Overall expression was determined as an 

averaged normalized score of genes within each geneset; for each tumor, gene expression is 

scored based on its normalized expression within the cohort of tumors. Details of signature 

derivation and scoring and code is available as previously described17.

NEOANTIGEN INFERENCE

Neoantigen prediction was run using Polysolver65 to determine the patient’s HLA types 

from the blood normal sample. Neoantigen predictions were made using NetMHCPan 4.066 

from called mutations in each tumor, and a threshold for binding affinity of < 500nM, within 

the framework of the pVAC-seq67 pipeline.
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MULTIPLEXED IMMUNOFLUORESCENCE

Formalin fixed and paraffin embedded (FFPE) slides were cut at 5 μm thickness and 

mounted on a glass slide at the Pathology Core of Massachusetts General Hospital. Due 

to the extension of sample collection across treatments of the patient, FFPE samples were 

processed in 3 batches, as indicated in Supplementary Table 1. We used a recently described 

method, tissue cyclic immunofluorescence (t-CyCIF) for multiplexed immunofluorescence 

(MxIF)68. In t-CyCIF, single-cell resolution imaging of multiple antigens on the same 
FFPE slide is achieved by an iterative process that includes staining, image acquisition 

(and storage) and inactivation of fluorophores, which encompasses a cycle. This cycle is 

repeated until all images are registered, and signal intensities are stacked for individual 

cells for proteins of interest. Briefly, dewaxing, rehydration and pre-staining were performed 

on a Leica Bond RX automated stainer using settings described in Lin et al69. Blocking 

was performed using Odyssey blocking buffer (LI-COR, Cat. 927401). To determine 

non-specific binding, FFPE were stained with three secondary antibodies conjugated 

with Alexa-647 anti-mouse (Invitrogen, Cat. A-21236), Alexa-555 anti-goat (Invitrogen, 

Cat. A-21432) and Alexa-488 anti-rabbit (Invitrogen, Cat. A-11034), followed by nuclear 

staining using Hoechst 33342 (Life Technologies, Cat. H3570). For t-CyCIF, fluorophore

conjugated antibodies binding to S100 (Abcam, Cat. 207367), MITF (Abcam, Cat. 3201), 

MHC Class I (Abcam, Cat. 199837), CD3 (Dako, Cat. A0452), phospho-RB (Santa Cruz, 

16670) and Ki67 (CST, Cat. 11882) (Supplementary Data Table 3) were diluted in Odyssey 

blocking buffer, and incubated for ~12 hours at 4°C in a moisture chamber, followed by 

washing in 1x PBS four times. Additional antibody information and dilution used can be 

found in Supplementary Table 3. Following imaging, fluorophores were inactivated in 4.5% 

H2O2 and 24 mM NaOH in PBS for 1 hour at RT in the presence of white light and 

washed four times in 1x PBS. Imaging was performed on a CyteFinder slide scanning 

fluorescence microscope (RareCyte Inc. Seattle WA) using a 10X objective (for batch 1) and 

20X objective (for batch 2&3). Background subtraction was performed using the previously 

established rolling ball algorithm (with a 50-pixel radius) in ImageJ68. To obtain intensity 

values for single cells, images were segmented using a previously described69 Watershed 

algorithm based on nuclear staining by Hoechst 33342. To generate virtual hyper-stacked 

images, the transformed coordinates were applied to images from four channel imaging of 

each CyCIF cycle. The region of interest was defined as tissue with positive S100 staining 

and immediately adjacent normal tissue. Single-cell intensity distributions are shown as log 

mean intensity values (x-axis) and cell count (y-axis). Additional details on used scripts and 

protocols can be found on http://www.cycif.org/.

GATING AND CLUSTERING OF SINGLE-CELL DATA USING MULTIPLEX 
IMMUNOFLUORESCENCE

Single cell data for given markers were gated using a 1D Gaussian mixture model, with 

the first mode considered as the negative population and the rest as the positive population. 

Expert manual inspection and adjustment was then applied in order to fine tune and/or 

correct gate values. An example of 1D GMM gating can be found in Supplementary Fig. 

9. Single cell clustering was done by Gaussian mixture model (GMM) using the EMGM 

function in Cyt package70. Briefly, each CyCIF sample’s single-cell intensity data were 

first normalized by shifting and rescaling the 1st and 99th percentiles of each marker to be 
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5000 and 30000 RFU respectively. Then, the inverse hyperbolic sine (asinh) function in Cyt 

was applied. For GMM clustering, several K values (from 6 to 15) were tested, and K was 

chosen based on concordance with visible clusters in a t-SNE visualization. The markers 

used in clustering were S100, MITF, AXL, CD45, Vimentin, SMA, Catenin and NGFR. 

10,000 cells from each sample were used.

IDENTIFICATION OF TUMOR REGIONS

A board-certified dermatopathologist (C.G.L.) reviewed the t-CyCIF images and defined 

the invasive margins (IMs) of each sample. To heuristically define which cells belonged to 

intra-tumor regions, we first defined tumor cells as the S100-High cells in a 2-component 

GMM of the tumor marker (S100) intensities in each sample. Then, a K-nearest-neighbor 

classifier (KNN) was trained on cells’ XY-coordinates to predict whether cells were tumor 

cells, for K=25. Cells that this classifier predicted to be tumor cells were then defined to be 

in the intra-tumor regions. MATLAB code is in supplemental materials/methods.

SPATIAL ENRICHMENT ANALYSIS

Each spatial enrichment curve is defined for a tumor population (NGFR-High or MITF

High tumor cells from clustering) and a target population (e.g. immune cells). The curve 

represents the ratio of CDF curves for 1) pairwise distances between a chosen tumor 

population and a target population, and 2) pairwise distances between a random tumor 

population and the target population. Random tumor population was defined by randomly 

labeling an equal number of tumor cells as the chosen tumor population. Each curve was 

computed by averaging results for 300 instances of random tumor populations, from a 

10,000-cell subsample per tissue sample. Technically separated tissue pieces on the same 

slide were treated as distinct tissue samples. Differences between groups of curves were 

evaluated by fitting all curves in a group to an exponential, and comparing fit parameters 

with a Z-test. Fitting and confidence intervals were computed in MATLAB with fit(), using 

the Trust-Region algorithm with a manual initialization. Tumor population was defined as 

GMM clusters 3,4,6,9,11 and the immune population was GMM cluster 1 (from Fig. 3b) 

for the analysis in Fig. 3d, and the tumor and immune populations defined by gating for the 

analysis in Fig. 4f.

SPATIAL MORPHOLOGY ANALYSIS OF ENTROPY AND POLARITY

Single-cell CyCIF data was used to obtain the coordinates of particular cell types (e.g. 

NGFR+). Then, density plots of cell coordinates were converted to grayscale images on 

which Shannon entropy was computed using the MATLAB entropy() function. In order to 

account for the global distributions and shapes of individual tumors, cell type entropy was 

normalized by the entropy of tumor cells (S100+).

For the polarity calculation, single cell coordinates were translated to place the centroid 

of all cell coordinates at the origin. Polarity of a specific cell type was defined as the net 

displacement of all its cells’ coordinate vectors v i, normalized by cell-type count N and the 

scale L of each tissue sample (minimum between X or Y range of coordinates):
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Polarity =
(∑i vı) ⋅ (∑i vı)

NL .

IMMUNOHISTOCHEMISTRY

Tissue sections were deparaffinized, rehydrated, and blocked with 3% hydrogen peroxide. 

All were stained on Bond 3 automated immunostainer (Leica Microsystems, Bannockburn, 

IL, USA) and Dako Autostainer (Dako Corporation, Carpinteria, CA) using EnVision 

(Dako) staining reagents. Sections were incubated for 60 min with PTEN (BioCare 

Medical), or NGFR (BD Biosciences) and ERG (Abcam) and were then incubated with 

the EnVision+ Dual Link (Dako) detection reagent for 30 min. Sections were washed and 

treated with a solution of diaminobenzidine and hydrogen peroxide (Dako) for 10 min, and 

after rinsing, a toning solution (DAB Enhancer, Dako) was used for 2 min to enrich the final 

color.

SINGLE CELL RNASEQ PROCESSING AND ANALYSIS

Fresh tumor sample was collected after surgery and was dissociated within half an hour 

using the human tumor dissociation kit (Miltenyi Biotec; 130-095-929) on the gentleMACS 

Octo Dissociator (Miltenyi Biotec; 130-095-937). For the neck sample, single cell libraries 

were prepared with Chromium Single Cell 3’ library kits using v2 chemistry (10x 

Genomics) according to the manual. For the brain sample, single cells were sorted into 

wells based on CD45 and CD3 markers or absence thereof via FACS, and lysed in a buffer 

containing free dNTPs and oligo(dT)-tailed oligonucleotides with a universal 5'-anchor 

sequence, and processed in accordance with the standard Smart-seq2 protocol. Transcripts 

from each cell were reverse transcribed in each droplet (neck) or well (brain) and barcoded 

cDNA were amplified in bulk. The resulting gene expression libraries were profiled by 

NextSeq 500 and/or NovaSeq 6000 system (Illumina).

Sample demultiplexing, barcode processing, alignment, filtering, and UMI counting were 

performed using the Cell Ranger analysis pipeline (v3.1) for the neck sample. For 

the brain sample the cumulus/smartseq2/7 workflow on Terra (https://portal.firecloud.org/?

return=terra#methods/cumulus/smartseq2/7) was used for preprocessing and alignment, with 

the GRCh38_ens93filt reference. Downstream analyses were performed in R using the 

Seurat71 package (v3.1.0) and in python with the scanpy package (v 1.4.4.post1)72.

For each cell, two quality control metrics were calculated: (1) the total number of genes 

detected and (2) the proportion of UMIs contributed by mitochondrially encoded transcripts. 

Cells in which fewer than 200 genes were detected and in which mitochondrially encoded 

transcripts constituted greater than 20% of the total library were excluded from downstream 

analysis, yielding an expression matrix of 8,669 cells by 17,697 genes for the 10X neck 

sample, and 652 cells by 33,538 genes for the Smart-seq2 brain sample. Each gene 

expression measurement was normalized by total expression within the corresponding cell 

and multiplied by a scaling factor of 10,000. Mean and standardized variance values were 

calculated for each gene across all cells, and a subset of 5,000 highly variable genes 

was selected for principal components analysis (PCA). Following PCA, Uniform Manifold 
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Approximation and Projection (UMAP) was performed on the first 30 principal components 

using default parameters. Unsupervised clustering using the default graph-based algorithm 

implemented in Seurat (resolution parameter 0.2) identified 9 distinct clusters (for the neck 

sample) and 8 clusters (for the brain sample) (Supplementary Fig 7). For classification of 

cell populations, differential expression analysis was performed between each cluster and 

all other cells using a Wilcoxon rank sum test. Clusters of malignant cells were identified 

using InferCNV with PTPRC+ cells as a reference population. Dimension reduction was 

performed on this subset of 7,844 malignant cells using PCA and UMAP as described 

above. Scoring of single cells with NGFR program signatures from previous literature was 

performed using the VISION R package16,73,74.. In the brain sample, 220 malignant cells 

were characterized. In both samples, cutoffs for NGFR-High tumor cells (based on NGFR 

program signatures) were chosen to be concordant with high NGFR single gene expression 

within that sample, and performed a GSEA comparing NGFR-High tumor cells thus defined 

to NGFR-Low tumor cells.

For pre-ranked GSEA, differential expression analysis was performed between NGFR-High 

and NGFR-Low cells using a Wilcoxon rank sum test, and log2(fold change) was selected 

as a ranking metric. Preranked GSEA was performed using a curated collection of gene sets 

consisting of sets from the Hallmark collection in the MSigDB database75.

Extended Data

Extended Data Figure 1. Mutation Load and Mutations in Significant Melanoma Genes.
221 nonsynonymous clonal mutations were found in all tumors, including hotspot mutations 

in IDH1 (p.R132C) and MAP2K1 (p.E203K), and additional missense mutations in cancer 

driver genes CTNNB1 (p.R582W) and ARID2 (p.P1664S).
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Extended Data Figure 2. Mutational Spectrum Profile of Common Ancestor.
489 common single nucleotide variants (including non-coding mutations) found in all 

tumors with mutations called individually in each sample are represented in their 

tri-nucleotide context; this mutational spectrum has cosine similarity of 0.965 with 

the ultraviolet DNA damage signature (Signature 7; https://cancer.sanger.ac.uk/cosmic/

signatures). A similar analysis with 548 common ancestor mutations inferred jointly by 

PyClone generates similar results with cosine similarity of 0.962 to the UV signature (not 

shown).

Extended Data Figure 3. Copy Number Alterations by Lineage and Tumor.
Each bar represents a tumor, with numbers indicating chromosomes and copy number 

alterations indicated by shade. Red arrows indicate the chromosomal segment loss of 

heterozygosity with corresponding loss of mutations in that segment that characterize the 

lineage, i.e. 2q for Lineage 2, 15q in Lineage 3, 19q in Lineage 5. Genome doubling is 

indicated by *.
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Extended Data Figure 4. Inferred Lineage-Defining Mutational Clusters and Cancer Cell 
Fractions by Tumor.
(a) Inferred Mutational Clusters and Cluster Cancer Cell Fraction by Tumor. Mutational 

clusters representing subclones and the proportion of cancer cells in each tumor sample with 

each mutational cluster was inferred using PyClone. The x-axis shows each tumor, the y-axis 

is the proportion of cancer cells in each sample containing the cluster, and the legend (n=xx) 

refers to the number of mutations for each inferred cluster. Only clusters containing more 

than 3 mutations were included (9 clusters excluded) in subsequent analyses. (b) Mutational 

Cluster Defining Lineage 3. This pattern demonstrates the loss of mutations in a common 

ancestor of the seventeen tumors in Lineage 3 (T11, T21, the early escape lesions (R1 and 

R2) and late-emerging resistant lesions (R2 and R3.2) and the post-autopsy lesions). These 

mutations are all found in chromosome 15, with a corresponding LOH in chromosome 

15q. (c) Mutational Cluster Defining Early Resistant Small Bowel Metastasis. This cluster 

represents the acquired mutations shared between the small bowel metastasis (R1) and the 
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other late resistant tumors which also share a bi-allelic CDKN2A deletion. 2/4 mutations 

were inferred to have multiplicity of 2, and 2/4 multiplicity of 1, consistent with a unique 

genome doubling event just prior to the emergence of this tumor in lineage 3, and present 

in all subsequent resistant tumors. These mutations were manually reviewed and showed 

no evidence of artifact, although MYO7A is detectable at a lower level in P4 than the 

subsequent resistant tumors.

Extended Data Figure 5. Hierarchical Clustering of Mutational Clusters CCFs and Copy 
Number Alterations define concordant tumor lineages.
Top: Hierarchically clustered heatmap of inferred cancer cell fractions (CCFs) for each 

mutation cluster (columns) for each tumor (rows), demonstrating 7 different lineages. 

Bottom: Hierarchically clustered heatmap of large copy number alterations (columns) for 

each tumor (rows), demonstrating concordance with lineages derived from mutational 
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clusters. Complete allelic deletions are dark blue, and copy number gains and losses are 

light blue.

Extended Data Figure 6. Aneuploidy in Genome-Doubled vs. non-Genome-Doubled tumors.
Aneuploidy here is defined as the proportion of the genome with copy number gain or loss 

(compared to the “baseline” allelic copy number, which is 1 for non-genome doubled tumors 

and 2 for genome doubled tumors). (a) Allelic copy number ratios for a representative 

non-genome doubled tumor (T13 from lineage 1, upper), and a genome-doubled tumor (R1, 

the jejunal metastasis from lineage 3, lower). The x axis is the genome (chromosomes in 

increasing number), and y represents the relative inferred copy number at that genomic 

location. (b) A different representation of the inferred allelic copy from T13 and R1 

demonstrating increased aneuploidy in the genome-doubled tumor. (c) The genome doubled 

tumors (n=19) had evidence of chromosomal instability, with higher proportion of genome 

with aneuploidy (two-sided Mann-Whitney p=2.2e-07, Methods) compared to non-genome 
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doubled tumors (n=18) (upper panel). Late resistant tumors (D1500+) had the higher 

aneuploidy compared to all other tumors, (lower panel). Boxplots: box limits indicate the 

IQR (25th to 75th percentiles), with a center line indicating the median. Whiskers show the 

value ranges up to 1.5 × IQR above the 75th or below the 25th percentiles, with outliers 

beyond those ranges shown as individual points

Extended Data Figure 7. Tumor Immune Microenvironment.
(a) Tumors from the patient (n=20) had lower overall immune signature score compared to 

a large cohort of PD-1 treated melanoma patients (n=121) (MWW nominal two-sided p = 

0.036); . (b) overall Immune signature scores in tumors biopsied within the first 120 days 

after immunotherapy initiation decreased after initiation of immune checkpoint blockade 

(linear regression p = 0.020). (c) T cell signature scores in the same tumors decrease after 

initiation of immune checkpoint blockade (linear regression p = 0.008). (d) All immune cell 

signature scores in the same tumors and their association with time after treatment. Negative 
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coefficients are associated with a decrease in score with time after treatment. Boxplots: 

box limits indicate the IQR (25th to 75th percentiles), with a center line indicating the 

median. Whiskers show the value ranges up to 1.5 × IQR above the 75th or below the 25th 

percentiles, with outliers beyond those ranges shown as individual points

Extended Data Figure 8. Quantification of Selected Immune and Tumor Populations from 
CyCIF. Selected immune cell and NGFR-high subset proportions over time by spatial 
compartment.
(a) CD4+ Treg cells; (b) NGFR-high tumor cells. Error bars represent standard error of the 

mean (S.E.M.). Sample numbers for each days are: 1(day −62), 1(day −22), 4(day 4), 4(day 

39), 2(day 62), 3(day 76), 3(day 92), 1(day 109), 1(day 1028), 1(day 1849), 1(day 1862), 

10(day 2065).
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Extended Data Figure 9. Gaussian Mixture Modelling of CyCIF data.
(a) Heatmap demonstrating clusters of cells from Gaussian Mixture Model clustering 

characterized by a range of CyCIF quantitative fluorescence (Methods) from the 19 tumors 

in Batch 1. (b) Heatmap demonstrating clusters of cells from Gaussian Mixture Model 

clustering characterized by a range of CyCIF quantitative fluorescence (Methods) from the 

pre- and post-TLR9 + antiPD1 therapy tumors (Batch 2). (Top) There is a distinct NGFR-Hi 

tumor cell cluster, which is high in PD-L1 protein expression, a MITF-Hi/NGFR-lo tumor 

cell cluster, and an immune cell cluster. Several non-specific (i.e. non-NGFR-Hi, non-MITF

Hi) tumor cell clusters are also seen. (Bottom) There is a strong association between NGFR 

and PD-L1 expression among S100+ gated tumor cells (Pearson correlation coefficient r = 

0.66 and p-value = 0, calculated by the default function in MATLAB).
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Extended Data Figure 10. Expression of class I and class II MHC and of clonal ancestral 
neoantigens in lineage 3 and over time.
(a) MHC-I and −II scores were generated from bulk RNAseq and compared between 

Lineage 3 tumors (n=3) and other tumors (n=17). Scores for each sample were calculated 

using an averaged standardized z-score of 6 MHC-I genes (HLA-A, HLA-B, HLA-C, 
B2M, TAP1, TAP2) and 13 MHC-II genes (HLA-DMA, HLA-DMB, HLA-DOA, HLA
DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, 
HLA-DRA, HLA-DRB1, HLA-DRB5). (Left) Lineage 3 has lower MHC-I score compared 

to other tumors (t-test p = 0.01). (Right) Lineage 3 tumors do not have a statistically 

significant difference in MHC-II score compared to other tumors (t-test p = 0.13). (b) 

Expression of clonal ancestral neoantigens in lineage 3 and over time. Neoantigens were 

inferred using NetMHCPan with inputs of the patient’s HLA and mutations. 174 genes 

with clonal ancestral mutations that coded for neoantigens were identified, and their 

RNAseq expression (TPM) in each tumor calculated. Overall expression, Chr15 neoantigen 
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expression (i.e. the expression of the 3 genes with clonal ancestral mutations lost with LOH 

of Chr15 in Lineage 3 tumors), and the proportion of the overall neoantigen expression 

that Chr15 neoantigen genes represented were calculated. Left: Lineage 3 vs other tumors. 

Overall expression was not different, but there was a trend towards lower expression and 

proportion of expression of Chr15 neoantigen genes in Lineage 3 tumors. Right: Expression 

over time in the on-treatment time period (D27-D109). Overall neoantigen gene expression 

was not different by time, but Chr15 neoantigen gene expression and the proportion of 

Chr15 neoantigen gene expression trended towards decreasing with time.

Boxplots: box limits indicate the IQR (25th to 75th percentiles), with a center line indicating 

the median. Whiskers show the value ranges up to 1.5 × IQR above the 75th or below the 

25th percentiles, with outliers beyond those ranges shown as individual points
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Figure 1. Integrated Clinical Course and Phylogenetic Characterization of Longitudinal Tumor 
Biopsies
(a): Clinical Course (upper): Numbers on the timeline indicate days relative to initiation 

of immune checkpoint blockade (ICB). Above, PET-CT images taken at (1) time of initial 

metastatic recurrence pre-ICB treatment; and (2) completion of 2 years of ICB. Briefly, the 

patient was a 67-year-old man with stage IIB nodular melanoma treated with wide excision 

and negative sentinel lymph node biopsies that recurred 2.5 years later with widespread 

disease to subcutaneous lesions, lungs, lymph nodes, and visceral lesions. He was enrolled 

into a trial of sequential ICB15, and had a heterogeneous response with overall rapid 

progressive disease on initial 6 cycles of nivolumab and again on 4 cycles of ipilimumab and 

underwent palliative radiation of bone metastases. Coinciding with maintenance nivolumab 

(D182), he experienced an abrupt, precipitous response, completing 2 total years of ICB, and 

was considered a complete clinical responder. In the next year, he developed autoimmune 

nephritis requiring high-dose steroids, and subsequently had an isolated jejunal metastasis 

and occipital brain lesion resected. Two years later, he had widespread metastatic recurrence 

resistant to subsequent therapy, including re-trial of nivolumab, anti-PD1 therapy + TLR9 
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agonist, carboplatin and paclitaxel, and died of his disease approximately 1 year after 

metastatic recurrence. See Methods for full clinical course.

Phylogenetic Analysis from whole-exome sequencing (WES) (lower): Each dot 

represents a different tumor biopsy (with physical location on the figure above), and each 

colored line represents a tumor lineage with shared genomic alterations as indicated. We 

inferred 7 different tumor lineages (labelled 0 through 6) pre-existing at treatment initiation 

Phylogenies and lineages were inferred using point mutations and copy number events 

(Methods, Extended Data Figs. 4,5; Supplementary Fig 1)).

(b) Phylogenetic Relationships between Lineages: The most recent common ancestor 

(MRCA) for each lineage and their relationships was inferred . Distances are based on 

the number of different mutations, including gained and lost mutations (via deletion of 

chromosomal segments).

(c): Detailed Phylogenetic Relationships of Lineage 3: The phylogenetic relationships of 

tumors in the resistant lineage (Lineage 3) are depicted, with phylogenetic distance based on 

the number of gained and lost mutations.
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Figure 2. Analysis of Immune Microenvironment by Lineage and Time
Overall expression of immune cell signatures (from melanoma single-cell RNAseq17) 

was inferred in 20 tumors with bulk RNAseq transcriptomes and tested for association 

with lineage and time post-treatment. Concurrently, cyclic immunofluorescence (t-CyCIF) 

assessed proportion of immune cell subsets from digital imaging and cell classification 

(Methods).

(a) Representative digital imaging of cyclic immunofluorescence (t-CyCIF). Tumors 

from pre-treatment (D-22), on-treatment (D62), and post-treatment progression (D1028) 

highlight tumor cells (S100 or MITF, red), immune cells (CD45 or CD3d, green), and 

stromal cells (SMA, cyan).

(b) Expression of selected immune cell signatures by lineage. There was no statistically 

significant association between lineage and expression of overall immune cell signature 

(one-way ANOVA p = 0.35), but there was a statistically significant association with CD4 T 

cell and CD4 T regulatory cell signatures (one-way ANOVA p = 0.018, Benajmini-Hochberg 

FDR q = 0.09, both). Number of tumors per lineage: L1 (n=6); L2 (n=4); L3 (n=3); L4 

(n=3); L5 (n=2); L6 (n=2).
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(c) Overall expression of immune and T-cell signatures in resistant lineage (Lineage 
3) (n=3) vs others (n=17). Observed mean immune and T-cell signature scores were 

lower in Lineage 3 tumors (except CD4 T regulatory cells, which were higher). Results 

were generally not statistically significant given small sample except naive CD8 T cells, 

unadjusted two-sided T-test p = 0.004.

(d) Overall proportion of CD8+ (effector) and CD4+/FoxP3− (helper) T cells over time 
and region. Proportions of immune populations are shown from 34 tumors analyzed using 

t-CyCIF. Error bars represent standard error of mean (S.E.M.).

(e) Comparison of immune cell proportions in early vs late on-treatment time points. 

Early on-treatment (D27-62) (n=10) vs. late on-treatment (D76-109) (n=8) tumors compare 

CD8+ (effector) and CD4+/FoxP3− (helper) T cell proportions in intratumoral regions and 

at tumor border. P-values were calculated with unpaired, two-sided t-test and unadjusted for 

multiple hypotheses.

Boxplots: box limits indicate the IQR (25th to 75th percentiles), with a center line indicating 

the median. Whiskers show value ranges up to 1.5 × IQR above the 75th or below the 25th 

percentiles, with outliers beyond those ranges shown as individual points.
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Figure 3. Spatial and Immune Correlates of NGFR-High tumor cells
(a) t-CyCIF: vasculogenic mimicry of tumor cells. Cyclic immunofluorescence (t-CyCIF) 

of R3.2 (post-treatment lesion, D1862)

(b) t-CyCIF single cell dimensionality-reduction representation using t-Stochastic 
Embedded (t-SNE) algorithm. Cells from 19 tumors (D-55 through D1028) highlighting 

(counter-clockwise from top left): cells from different tumors; inferred clusters using 

Gaussian Mixture Models (GMM);tumor cells (S100+); immune cells (CD45+); MITF-High 

cells; NGFR-High cells.

(c) PD-L1 expression in NGFR-High tumor cells (n = 10386) vs. other tumor cells (n = 

124763; two-sided t-test p = 0.001, unadjusted).

(d) Spatial proximity: NGFR-High/MITF-High tumor cells to immune cells. Shaded 

regions cover two standard errors of log-fold enrichment of immune cells within a given 

radius. At < 1000um (~40-50 cell diameters), immune cells enrich in proximity to NGFR
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High tumor cells relative to all tumor cells, but not MITF-High tumor cells (exponential 

regression Z-test, p < 3x10−40).

(e) t-CyCIF from same tumor pre- (R3.1, D1849) and post- (R3.2, D1862) treatment 
with TLR9 agonist plus aPD-1. Immune cells (CD45 or CD3d, green), MITF-High tumor 

cells (red), NGFR-High tumor cells (NGFR and S100, yellow), and stroma (SMA, cyan).

(f) Proportion of NGFR-High S100+ tumor cells (p = 8.3991−323) and CD45+ 
immune cells (p = 5.1214−62) in pre-/post-treatment tumors (two-tailed Fisher’s exact, 
unadjusted).
(g) Immune cell composition in pre- & post-treatment tumors. Proportions of immune 

subsets inferred using t-CyCIF. There are post-treatment increases in proportion of CD8+ T 

cells (p= 4.614−76) and non-T cell immune cell subsets (p = 3.4725−43) (two-tailed Fisher’s 

exact, unadjusted).

(h) UMAP of single-cell RNAseq of tumor cells from R3.2 (post-treatment D1862). 
NGFR-High tumor cells highlighted using an NGFR-program signature.

(i) GSEA of NGFR-High vs. NGFR-Low tumor cells using Hallmark Genesets64. Each 

point represents a gene within a geneset. Results from R3.2 (post treatment, D1862) 

are shown and concordant with R2 (brain metastasis, D1169) (Supplementary Fig. 6, 

Supplementary Table 2).

Boxplots: box limits indicate the IQR (25th to 75th percentiles) with center line indicating 

median. Whiskers show value ranges up to 1.5 × IQR above the 75th or below the 25th 

percentiles, with outliers shown as individual points.

* p<0.05

** p<0.01

*** p<0.001
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Figure 4. NGFR-High Tumor and Immune Microenvironment by Metastatic Sites
(a) autopsy biopsies from metastases in lung (n=4), subcutaneous (n=4), brain (n=2), and 

adrenals (n=1).

(b) t-CyCIF quantification of tumor & immune populations. NGFR-High or Ki67+ 

tumor cells were calculated and percentage of positive cells (over all cells quantified) are 

represented as boxplot (left). CD8a+ (Cytotoxic T cells) and CD4+/FoxP3− (helper T cell) 

were quantified (right). Unadjusted p-values were calculated with two-sided t-tests between 

lung or subcutaneous sites.

(c) Macro-scale patterns of NGFR distribution in representative examples of lung and 

skin metastases. Red lines represent a NGFR-High tumor neighbor within 50um, blue lines 

indicate neighbor more than 50 um distant.

(d) Exemplar H&E and t-CyCIF images of tumors from different anatomic locations 
(Lung versus Subcutaneous). Right panel is 4-channel CyCIF images (blue: DNA, green: 

CD8a, CD4, red: NGFR), and left panel is the corresponding H&E.

(e) Polarity and Entropy of NGFR-High cells in lung versus subcutaneous metastases. 

We find higher polarity in the subcutaneous lesions (p=0.032) and higher entropy in the lung 

lesions (p=0.030) (two-sided t-test, unadjusted) (Methods).
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(f) Spatial association of NGFR-High tumor cells with immune cell populations. The 

log-fold enrichment of immune cells within a given radius of NGFR-High tumor cells 

relative to all tumor cells is shown for subcutaneous and lung lesions. Shaded regions 

cover two standard errors of the log-fold enrichment. Immune cells are enriched in the 

proximity of NGFR-High tumor cells in both lung and subcutaneous locations (exponential 

regression Z-test CD4+FOXP3+ (lung: p = 3.2 x 10−47; subcutaneous: p = 6.4 x 10−50); 

CD4+FOXP3− (lung: p = 5.5 x 10∓50; subcutaneous: p = 7.8 x 10−73); CD8+ (lung: p = 2.3 

x 10−66; subcutaneous: p = 3.4 x 10−96)). However, the subcutaneous samples had stronger 

enrichment of CD4+FOXP3− and CD8+ cells (exponential regression Z-test, CD8+: p = 8.2 

X 10−11; CD4+FOXP3−: p = 9.5 x 10−18) but not CD4+FOXP3+ cells (p = 0.85) compared 

to lung samples.

Boxplots: box limits indicate the IQR (25th to 75th percentiles), with a center line indicating 

the median. Whiskers show value ranges up to 1.5 × IQR above the 75th or below the 25th 

percentiles, with outliers shown as individual points
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