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Abstract

Inspection of tissues using a light microscope is the primary method of diagnosing many 

diseases, notably cancer. Highly multiplexed tissue imaging builds on this foundation, enabling 

the collection of up to 60 channels of molecular information plus cell and tissue morphology using 

antibody staining. This provides unique insight into disease biology and promises to help with the 

design of patient-specific therapies. However, a substantial gap remains with respect to visualizing 

the resulting multivariate image data and effectively supporting pathology workflows in digital 

environments on screen. We, therefore, developed Scope2Screen, a scalable software system for 

focus+context exploration and annotation of whole-slide, high-plex, tissue images. Our approach 

scales to analyzing 100GB images of 109 or more pixels per channel, containing millions of 

individual cells. A multidisciplinary team of visualization experts, microscopists, and pathologists 

identified key image exploration and annotation tasks involving finding, magnifying, quantifying, 

and organizing regions of interest (ROIs) in an intuitive and cohesive manner. Building on a 

scope-to-screen metaphor, we present interactive lensing techniques that operate at single-cell 

and tissue levels. Lenses are equipped with task-specific functionality and descriptive statistics, 

making it possible to analyze image features, cell types, and spatial arrangements (neighborhoods) 

across image channels and scales. A fast sliding-window search guides users to regions similar 

to those under the lens; these regions can be analyzed and considered either separately or as part 

of a larger image collection. A novel snapshot method enables linked lens configurations and 

image statistics to be saved, restored, and shared with these regions. We validate our designs with 

domain experts and apply Scope2Screen in two case studies involving lung and colorectal cancers 

to discover cancer-relevant image features.
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1 Introduction

Since the end of the 19th century, the diagnosis of many diseases - cancer in particular - 

has involved human inspection of stained tissue sections using a simple light microscope 

[19]. Histopathology in both research and clinical settings still involves microscopy-based 

inspection of physical slides but a rapid shift to digital instruments and computational 

analysis (scope to screen) is now underway [19]. Digital pathology [74] in a clinical setting 

focuses on the analysis of tissues stained with colorimetric dyes (primarily hematoxylin 

and eosin, H&E [67]) supplemented by single-color immunohistochemistry methods that 

use antibodies to detect molecular features of interest [52]. In research settings, recently 

developed high-plex imaging methods such as CyCIF [35, 36], CODEX [26], and mxIF [25] 

to measure the levels and sub-cellular localization of 20-60 proteins, providing single-cell 

information on cell identities and states in a preserved tissue environment. The resulting 

data are complex, involving multi-channel gigapixel images having 106 or more cells. 

Underdevelopment of analytical and visualization methods is a barrier to progress in digital 

pathology, explaining the continuing dominance of physical slides.

Jessup et al. Page 2

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Machine learning on high-plex tissue images has shown promise, particularly with 

respect to automated classification of cell types [16, 37], tissue morphologies [65], and 

cellular neighborhoods [40]. However, such data-driven approaches do not leverage hard-

won information known primarily to anatomic pathologists on which cell and tissue 

morphologies are significantly associated with disease outcome or response to therapy. A 

hundred years of clinical pathology has investigated many striking and recurrent image 

features whose significance still remains unknown. A critical need, therefore, exists for new 

software tools that optimally leverage human-machine collaboration in ways that are not 

supported by existing interfaces [11, 62].

Pathologists are very efficient at extracting actionable information from physical slides, 

frequently panning across a specimen while switching between low and high magnifications. 

They record key observations in notes and by placing dots on slides next to the key features. 

Digital software needs to reproduce this efficiency and functionality (including a ‘dotting’ 

function) while using visual metaphors to present associated data and using machine 

learning to find similar and dissimilar visual fields. Designing scalable visual interfaces that 

will work in the context of high-volume clinical workflows [47] and to high-dimensional 

research data represents a substantial challenge.

We addressed these challenges as a team of visualization researchers, pathologists, and 

cell biologists via a process of goal specification, iterative testing and design, and 

real-world implementation in a biomedical research laboratory. We make three primary 

contributions. (1) We demonstrate task-tailored, lens-centric focus+context technique, which 

enables intuitive interaction with large (ca. 100 GB) multi-channel images and linked 

multivariate data (Fig. 1). The lensing technique allows users to focus on different aspects 

of a region for close-up analysis while maintaining the surrounding context. We design 

novel domain-specific encodings in which features computed from the image (spatial 

cross-correlation or cell identity) can be accessed in conjunction with the image. (2) We 

integrate interactive real-time spatial histogram similarity search algorithms able to identify 

recurrent patterns across gigapixel multi-channel images at different resolutions. Integrated 

into the lens, this search guides analysts to regions similar to the one in focus, enabling 

exploratory analysis at scale. (3) We present a scalable system that combines lens and search 

features with interactive annotation tools, enabling a smooth transition from exploration 

to knowledge externalization. Analysts can save, filter, and restore regions of interest 

(ROIs) within the image space (along with underlying statistics of the filtered single-cell 

data, channel identities, and color settings) and export them for continued study. Two use-

cases demonstrate the applicability of our approach to patient-facing (translational) cancer 

research and point to future applications in diagnosis and patient care.

2 Related Work

The related work is three-fold. We first discuss large-scale image viewers as an enabler 

for our approach. We then summarize focus+context techniques in comparison to 

overview+detail and pan&zoom, with a focus on image data. Lastly, we compare ROI 

annotation approaches.
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2.1 Scalable Image Viewers For Digital Pathology

Many biomedical visualization systems focus on the display of large 2D imaging data and 

apply multi-resolution techniques such as image pyramids [10] to handle large data sizes 

at interactive rates. DeepZoom [44] hierarchically divides images into tile pyramids and 

delivers pieces as required by the viewer. Zarr [9, 45], a file format and library, abstracts 

this concept by providing storage of chunked, compressed, N-dimensional arrays. Viewers 

such as OpenSeadragon [3] and Viv [41] leverage these libraries and add GPU-accelerated 

rendering capabilities. On top of that, many solutions offer data-management, atlas, and 

analysis capabilities. OMERO PathViewer [11] is a widely used web-based viewer for 

multiplexed image data. As an extension to the data management platform OMERO, it 

supports a variety of microscope file formats. Online cancer atlases such as Pancreatlas [57] 

and Pan-Cancer [73] support data exploration with storytelling capabilities. Minerva Story 

[28, 55] is a new tool used to create atlases for the Human Tumor Atlas Network [56]. Other 

solutions focus on combining image visualization with analytics. Napari [62] is a fast and 

light-weight multi-dimension viewer designed for browsing, annotating, and analyzing large 

multi-dimensional images. Written in Python, it can be extended with analytic functionality, 

e.g., in combination with SciMap [51]. Other analytical tools focus on end-users, such as 

the open-source solutions histoCAT [58] and Facetto [33], and commercial tools such as 

Halo [30] and Visiopharm’s TissueAlign [6] supporting split-screen comparison for serial 

sections. Screenit [21] presents a design to analyze smaller histology images at multiple 

hierarchy levels. Similarly, ParaGlyer [50] is an analysis approach for multiparametric 

medical images that permits analysis of associated feature values and comparisons of 

volumetric ROIs by voxel subtraction. Somarakis et al. [63] offer comparison views with 

a focus on spatially-resolved omics data in a standard viewer. These tools feature multiple 

linked views for overview+detail exploration. In comparison, our solution focuses on 

interactive focus+context and rich annotation with contextual details displayed near the 

ROI and supports a neighborhood-aware similarity search on top of local image pixel and 

feature value comparison. Most viewers operate on much smaller datasets. Our viewer builds 

on Facetto [33] and Minerva [28, 55] and supports multi-channel and cell-based rendering 

with linked data at a scale few other solutions support. The main contribution of this paper, 

however, is the embedded interactive lensing technique for multivariate image data and its 

task-tailored features supporting the digital pathology workflow.

2.2 Focus+Context-based Image Exploration

Cockburn et al. [20] categorize interaction techniques to work at multiple levels of detail 

into focus+context (F+C), overview+detail (O+D), zooming, and cue-based views. F+C 

minimizes the seam between views by displaying the focus within the context, O+D uses 

spatial separation, zooming temporal separation [71], and cue-based methods selectively 

highlight or suppress items. Comparative studies show that F+C techniques are often 

preferred and allow for efficient and effective target acquisition [61] and steering tasks [27] 

in multi-scale scenarios. A common F+C technique is the lens [14], a generic see-through 

interface that lies between the application and the cursor. Tominski et al. [68, 69] present a 

conceptual pipeline for lensing consisting of selection (what data), the lens-function (filters, 

analysis), and a join operation with the underlying visualization (mapping, rendering). They 

further categorize into lens properties (shape, position, size, orientation), and into data 

Jessup et al. Page 4

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tasks, e.g., (geo)spatial analysis. Different lenses to magnify, select, filter, color, and analyze 

image data were proposed: Carpendale et al. [17] present a categorization of 1-3D distortion 

techniques to magnify in 2D uniform grids. Focusing on lens-based selection, MoleView 

[29] selects spatial and attribute-related data ranges in spatial embeddings and Trapp et 

al. present a technique for filtering multi-layer GIS data for city planning [70]. Similarly, 

Vollmer et al. propose a lens to aggregate ROIs in a geospatial scene to reduce information 

overload [72]. Flowlens [23] features a lens for biomedical application: to minimize visual 

clutter and occlusions in cerebral aneurysms. There are a few tools in digital histopathology 

with lensing capabilities. Vitessce [24], positions linked views around an image viewer [41] 

and includes a lens to show a predefined set of channels. However, by design, they do not 

focus on supporting a specific pathology process, nor does the lens support magnification, 

feature augmentation, comparison, or search.

2.3 Handling and Visualization of ROI Annotations

Different techniques exist to mark, visualize, and extract ROIs in images, but only a 

small subset is used in the digital pathology domain. QuPath [13], an extensible software 

platform, allows annotating histology images with free form selection tools and more 

advanced selection options like pixel-based nearest neighbors and magic wand, extending 

from the clicked pixel to neighboring areas with a threshold. Visopharm’s viewer [7] 

similarly provides different geometric shapes to annotate images. In Orbit [66] and Halo 

[30] users can define inclusion and exclusion annotations, organize them in groups, and 

train a classifier. Going beyond manual annotation, Quick-Annotator [43] leverages a deep-

learning approach to search and suggests regions similar to a given example. Similarly, Ip 

and Varnsesh [31] narrow down and cull out ROIs of high conformity and allow users to 

interactively identify the exceptional ROIs that merit further attention on multiple scales. 

We incorporate these ideas but instead apply a fast neighborhood-based histogram search 

running on multiple image channels in real-time to guide the user to similar areas in the 

viewport.

When large images are annotated on different scales it becomes challenging to navigate in 

an increasingly cluttered space. Some features might even be too small to be identifiable at 

certain zoom levels. Scalable Insets [34] is a cue-based technique that lays out regions of 

interest as magnified thumbnail views and clusters them by location and type. TrailMaps 

[75] proposes an algorithm to automatically create such insets (here bookmarks) based 

on user interaction and previously viewed locations. They also offer timeline- and category-

based groupings for a better overview and faster navigation. We choose a more familiar 

design to cater to the application domain needs and conventions but enhance our approach 

by supporting rich annotations that store not only geometry but also linked single-cell data 

and descriptive statistics. Closely related to our approach is the work by Mindek et al. [46] 

that proposes annotations linked to contextual information so that they remain meaningful 

during the analysis and possible state changes. We extend this idea with overview, search, 

and restoring capabilities integrated into focus+context navigation in large-scale multivariate 

images.
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3 Background: Multiplex Tissue Imaging

We analyze multiplexed tissue imaging data generated with CyCIF [35] but our visualization 

approach can be applied to images acquired using other technologies such as CODEX 

[26]. Images are segmented and signal intensity is measured at a single-cell level. Here we 

provide a brief overview of the process and data (Fig. 2).

Acquisition.

Multiplexed tissue imaging allows to analyze human tissue specimens obtained from 

patients for pathologic diagnosis. The approach used by the investigators, as described in 

our previous work [33]), involves iterative immunofluorescence labeling with 3-4 antibodies 

to specific proteins followed by imaging with a high-resolution optical microscope in 

successive cycles. This results in 16-bit four-channel image datasets for up to 60 proteins of 

interest (60 images), 30k x 30k in resolution, and often greater than 100GB in size, allowing 

for extensive characterization and correlation of markers of interest in large tissue areas at 

sub-cellular resolution.

Processing.

High-resolution optical microscopes have limited fields of view, so large samples are imaged 

using a series of individual fields which are then stitched together computationally to form 

a complete mosaic image using software such as ASHLAR [48, 49]. A nonrigid (B-spline) 

method [32, 42] is applied to register microscopy histology mosaics from different imaging 

processes [15], e.g., CyCIF and H&E. CyCIF mosaics can be up to 50,000 pixels in each 

dimension and contain as many as 60 channels, each depicting a different marker. Mosaic 

images are then classified pixel-by-pixel to discriminate cells using, e.g., a random forest 

[64], then individual cells are segmented [38]. Segmentation information is stored in 32-bit 

masks that define the cell ID for each pixel in a multi-channel image stack. Next, per-cell 

mean intensities are extracted for the 106 or more individual cells in a specimen. The 

processing steps are combined in an end-to-end processing pipeline named MCMICRO 

[59]. The resulting 16bit multi-channel images (≈100GB), 32bit segmentation (≈5GB), and 

high-dimensional feature data (≈2GB) are then ready for interactive analysis.

Terminology and Data Characteristics.

Our datasets contain (1) a multi-channel tissue image stack with 1-60 channels in OME-

TIFF format [2], (2) a segmentation mask also in TIFF format, and (3) a table of extracted 

image features in CSV format (Fig. 2). Each image channel in the multi-channel image 
stack represents data from a distinct antibody stain and is stored as an image pyramid (in the 

OME-TIFF) for efficient multi-resolution access. These channels can result from different 

imaging processes (e.g., CyCIF and H&E). A segmentation mask labels individual cells 
in each tissue specimen with a unique cell ID. Similar to each image channel, the mask is 

stored in pyramid form. A CSV file stores single-cell features (columns) for each cell (row). 

These features consist of extracted mean intensity values per image channel for that cell, x 

and y position of the cell in image space, and its cell ID.
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4 Domain Goals and Tasks

This project is rooted in a collaboration with physicians and researchers in the Department 

of Pathology and the Laboratory of Systems Pharmacology (LSP) at Harvard Medical 

School. Four experts in the domain of digital histopathology participated in the project. 

The team consists of two pathologists, two computational biologists, and four computer 

scientists. The overall goal of our collaborators is to characterize the features of tumors 

including cell types & states, their interactions, and their morphological organization in the 

tumor microenvironment.

Pathologists

are physicians who diagnose diseases by analyzing samples acquired from patients. 

Anatomic pathologists specialize in the gross and microscopic examination of tissue 

specimens. They characterize cell and tissue morphology using light microscopy, and 

molecular features using immunohistochemistry and immunofluorescence. The pathologists 

involved in this project engage in research and have expertise in imaging, computational 

biology, and defining the role of diverse cell states in shaping and regulating the tumor 

microenvironment.

Computational and Cell Biologists

complement expertise in biomedical science with skills in technical fields including 

mathematics, computer science, and physics. Multiplexed immunofluorescence experiments 

involve collection of primary imaging data which is used for a wide variety of complex 

computational tasks including image registration and segmentation, and extraction of 

numerical feature data, as well as downstream analyses of cell states, spatial statistics, and 

other phenotypes. Biologists interpret aspects of cell morphology and marker expression, but 

pathologists complement these analyses with greater depth of experience with human tissue 

morphology and disease states.

Visualization Experts.

By contrast, the computer scientists provide expertise in visualization and visual data 

analysis. They work in close collaboration with the aforementioned investigators to provide 

novel analytics prototypes that perform a variety of analysis tasks and can be integrated 

into research studies and laboratory IT infrastructure. To understand domain goals, the 

visualization experts in this study participated in weekly meetings focused on image 

processing, biomedical topics, and on iterative goal-and-task analyses for the proposed 

approach. The collaboration with the LSP started in 2018 with Facetto [33].

In Fall 2020, this team began working together to develop advanced tools that cater to 

visual exploration, inspection, and annotation. We followed the design study methodology 

by Sedlmair et al. [60]. This methodology describes a setting in which visualization experts 

analyze a domain-specific problem, design a visualization approach to solving it, validate 

their design, and reflect on lessons learned.
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4.1 Tasks and Challenges—In weekly sessions, we identified a workflow (Fig. 3) 

of consecutive tasks (T1-T6) leading from image exploration and close-up inspection of 

regions to annotation and extraction of patterns.

T1. Explore Multimodal, Highplexed Image and Feature Data in Combined Setting:  A 

pivotal task is rapid navigation and visualization of multi-channel images. Pathologists 

normally operate by moving slides physically on a microscope stage and switching between 

view magnifications levels. They depend on a seamless visual experience to diagnose 

diseases or conditions. Challenge: Image analysis must not only provide seamless pan & 

zoom, but also switching between channels of different image modalities. Existing solutions 

do not scale beyond 4 to 5 channels. They also lack on-demand rendering, blending of 

multiple channels, and ways to highlight and recall ROIs.

T2. Close-up ROI Analysis:  Once a region of interest is found in the tissue specimen, 

experts focus and zoom in on the area for close-up inspection and measurement, without 

losing the spatial context of e.g., a tumor region’s surrounding immune cells. Challenge: In 

addition to interactive rendering of different resolution levels in a combined space, experts 

need to focus and measure without losing proportions and larger context. Panning and 

zooming between overview+detail and individual marker channels requires a large amount 

of mental effort as either context or details are lost [34].

T3. Regional Comparison of Image Markers:  For a region in focus, cell biologists need 

to relate and compare between different marker expressions (e.g., DNA, CD45, Keratin) 

of different image modalities (CyCIF [35, 36], H&E [67], CODEX [26], mxIF [25], etc.), 

encoded in individual image channels. Challenge: Whole-slide switching between channels 

can lead to losing focus and change blindness due to different morphological structures.

T4. Relate to Spatially Referenced Single-Cell Expressions:  Besides looking at the raw 

image, experts analyze extracted singe-cell marker values and their spatial statistics in (A) 

image and (B) high-dimensional feature space. Of special interest is cell density in the 

tissue, counts and spatial arrangements of cell-types, and distributions of marker intensities. 

For each of these descriptive statistics, it is important to relate regional phenomena to 

statistics of the whole image. Challenge: Providing complex spatially referenced information 

in proximity while dealing with a dense cellular image space and catering to highly specific 

domain conventions.

T5. Find Similar Regions:  Analyzing a whole slide image is timeconsuming. Often 

the cancer micro-environment consists of repetitive patterns of cell-cell interactions and 

morphological structures across channels that pathologists annotate and compare to each 

other. Challenge: Finding and guiding users to such structures in an interactive fashion on 

different spatial scales and across image dimensions.

T6. ROI Annotation and Summaries:  A common pathology task concerns the manual 

delineation of tumor mass and other structures on the digitized tissue slide, known as 

region annotation. These annotated regions need to be extracted, semantically grouped, 

and summarized in a structured way for collaboration and examination. Challenge: The 
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annotation process must be integrated seamlessly with the analysis so that experts can 

extract, group, and refine patterns along the way.

5 Approach

We used the tasks of Section 4 to guide the design and implementation of Scope2Screen, 

playing the translator role put forth in the design study methodology by Sedlmair et al. 

[60]. Fig. 1 offers an overview of the user interface. After importing the data, analysts 

can explore (Fig. 1) the image by activating a set of different channels (A) with distinct 

color configurations and adjustable intensity ranges. The selections are then rendered in a 

combined view (B) for interactive panning and zooming (T1). Using a virtual lens (C), users 

can focus, magnify, and measure regions of interest for close-up analysis (T2). By toggling 

image channel combinations inside and outside of the lenses, one can regionally compare 

different combinations of marker expressions (T3). Other lens filters link to underlying 

single-cell data, offering descriptive statistics about marker distributions and cell counts 

and types (T4). Using a search-by-example approach, the tool guides users to regions with 

similar patterns as those in scope (T5). To save and extract a region, analysts can take 

snapshots that save the ROI together with relevant notes (Fig. 1 D), current settings, and 

interior single-cell data for the region (T6). Annotated areas can be filtered and exported to 

share with collaborators and to recall for further examination. In the following sections, we 

introduce the corresponding techniques and features (F1-F6) and discuss design decisions to 

enable these tasks.

5.1 Scalable Image Exploration (F1)

We designed Scope2Screen for interactive exploration and multi-scale visualization (T1) 
of resection specimens (Sec. 3). To make the viewer scalable for high-resolution data, 

we decided to leverage image pyramids [10] to load only sections of the image for a 

given viewport and zoom level. To enable flexible exploration of image channels and to 

visualize data in the viewport, the viewer operates in two multi-resolution rendering modes: 

channel-based and cell-based. Channel-based rendering maps intensity values of selected 

image channels to color. It then computes a mixed color value for each pixel in the viewport. 

Cell-based rendering leverages a layered segmentation mask that indexes each pixel to a 

cell. This way, each cell can be colored individually to visually express selections, cell 

types, etc. Both rendering modes operate at interactive rates, allowing users to pan & zoom, 

select regions, and to color and mix channels in real-time. These rendering modes cater 

to our experts’ needs to analyze on tissue and single-cell level. Sec. 6 gives details on the 

implementation of our system.

5.2 Lensing Features for Multivariate Image Data

Conveniently, the principal technology of the microscope, the lens, is highly adaptable. To 

enable close-up analysis (T2) of ROIs and to connect the optical and digital experiences for 

users, we introduced a digital lens designed to imitate the familiar experience of inspecting 

through an eyepiece. To support the requirements of our collaborators, we equip the lens 

with features (Fig. 4,5), ranging from magnification and channel filters (F3) to descriptive 

single-cell statistics (F4).
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5.2.1 Magnification and Measuring (F2)—Our users rely on being able to toggle 

quickly between high and low magnification powers as part of an established workflow for 

considering a region of interest up-close, as a localized arrangement of cells, and incontext, 

as part of a larger tissue sample (T2). Within the virtual viewer, this zoom-level interchange 

can be challenging to control. Constraining magnification to the lens’s boundary (Fig. 5) 

while maintaining the contextual overview then becomes a convenient strategy for handling 

simultaneous focal analysis. Because the magnifying lens (Fig. 5 A), when active, occludes 

part of the image space, we experimented with a common spatial manipulation to create a 

faux-spherical representation: the fisheye (B). However, distortion is a troubling approach 

for experts who make evaluations based on morphology, leading us to introduce a hybrid 

plateau model (C) that maintains the original composition within the central area of the lens 

using a standard zoom and only compresses the periphery to seamlessly transfer into the 

context without occlusion. The scale of an ROI (in microns) is closely tied to magnification 

inter-pretability. Users consider area-based standards for clinical validation as part of their 

inspection methodology. Visible axes around the lens allow for a quick understanding of 

scale (Fig. 1 C). Additionally, this embedded conversion capability between digital and 

physical units is a useful tool for extended functionalities that emulate related user tasks 

(e.g., cell prevalence counting and density analysis).

5.2.2 Channel Analysis (F3)—To address regional comparison of channels (T3) that 

represent data from the same modality (e.g., CyCIF), other modalities (e.g., H&E [67]), and 

across different planes (e.g., slide sectioning), we iterated over different designs and finally 

settled on the following features.

The first lens feature allows users to quickly isolate each selected channel individually for 

improved views of a distinct channel (Fig. 4 A) in focus while keeping the multi-channel 

setting in the context. The second feature combines multiple channels in the scope (Fig. 4 B, 

Fig. 9) while the context can keep a distinct setting (Fig. 1). We specifically designed this 

setting for semantically dependent channels such as RGB images for H&E staining. It also 

addresses our experts’ needs to analyze spatial relations of a set of independent channels, 

for example, from specific immune markers in a region of interest, while keeping globally 

a different set of more general cancer and stromal markers. Addressing early feedback from 

our experts, we added the capability to equip the lens with multiple sets of such channel 

combinations (Fig. 9) in advance or add them during analysis. These sets can be quickly 

toggled during exploration to investigate different biological questions, e.g., focusing 

on immune reactions, or tissue architecture. To overcome occlusion, we chose to offer 

two solutions leveraging temporal and spatial separation. Firstly, we introduce adjustable 

interpolation controls allowing to blend seamlessly from the overlaying lens-image to the 

underlying global channel combination. This transition helps to visually align and keep track 

of often very different structures in different channel combinations. To further reduce change 

blindness, a split-screen lens juxtaposes a second lens instance in proximity, which displays 

(copies) the occluded part in the original global channel setting (Fig. 4 C). This allows for 

side-by-side comparison.
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5.2.3 Feature Augmentation (F4)—Our multiplex image data (Sec. 3), often 

comprises up to 60 channels. While three channels can guarantee non-overlapping (RGB) 

colors, adding even more channels makes visual decoding for analysts mentally challenging 

and increasingly inaccurate. Additionally, color encodings of quantitative data are often 

hard to gauge [39]. Instead, to enable quantitative analysis of selected regions, we chose 

to augment the image space with descriptive statistics of the extracted single-cell data (T4) 
using more abstract visual encodings (Fig. 4 D-F). We developed three task-tailored lens 

settings showing marker distributions, density reports, and cell types and counts. With every 

update of the lens position on screen, the back-end queries the in-memory CSV table (Sec. 

3) for cells in the lens’s area and returns cell Id values along with the requested statistics, 

which are then processed and rendered into different charts. To speed this up, we execute 

spatial range queries with a ball-tree index structure [22]. This yields a run time complexity 

of O(n log n).

Single-Cell Histograms.: To analyze marker distribution in a selected region, we compute 

binned histograms of the single-cell aggregates (see CSV table, Sec. 3) for selected 

channels. We present these histograms (Fig. 4 D) in proximity to the focus area for quick 

look-ups. We decided to arrange the histograms in a vertical layout to ease comparison. 

According to our domain collaborators, absolute comparison of individual markers is 

statistically not meaningful as the signal-to-noise ratio changes per cycle and stain in 

the imaging process (Sec. 3). Instead, they are interested in a relative comparison of the 

distributions. We use a log2 transformation to make these skewed marker distributions 

comparable, followed by a cut-off of the 1st and 99th percentile to remove outliers. Fig. 

1 (C) shows the lens operating in this setting. To further analyze where cells lie in that 

spectrum, we chose to offer a brush functionality. The user can filter a range (min-max) in 

the histogram, which highlights cells in the lens matching the updated single-cell marker 

values.

Radial Chart.: Additionally to histograms, we provide an overview of all markers by 

arranging their mean values in a radial layout in proximity to the lens (Fig. 4 E). This 

decision allows for a more compact representation of the multivariate single-cell data. When 

we first showed this to our collaborators, they missed a reference to compare the region of 

interest to global image statistics. In a second design iteration, we thus encoded arithmetic 

means for the whole tissue. The histograms show these whole-slide references as orange 

bins (background) and the radial plot encodes the information as a polyline.

Cell Types and Counts.: Our collaborators want to validate results of cell-type 

classification and clustering [16, 37] and set them into spatial context to expressions in the 

image channels. We color-code cell boundaries by detected cell types, using the cell-based 

rendering mode. This mode utilizes the segmentation mask to retrieve which pixel is linked 

to which cellId (Sec. 5.1). The colored boundaries (Fig. 4, right) allow to display the data 

at its spatial image position and still see the channel colors. As classification often strongly 

depends on the expressions in a few channels, users can pick matching channel colors and 

check if the pattern spatially aligns with the cell types. To ease quantification in the localized 

region, we also provide an ordered list of cell types and counts near the lens. Counts are 
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encoded as bars that dynamically adapt while hovering over the data. Users can switch 

between two orderings: Locked cell type positions allow to observe increasing or decreasing 

presence of specific types; ranking by count is preferred to spot the most prominent cell 

types in the focus region.

5.3 Finding Similar Regions (F5)

Once identified, a region of interest often serves as a reference point to find similar areas 

within the image (T5). Examples for repetitive patterns are, e.g., tumor-immune boundaries 

or germinal centers where mature B cells proliferate, differentiate, and mutate their antibody 

genes. To find similar regions, we chose to provide a method operating directly on the image 

to align as close as possible with the visual perception (see Fig. 6). We consider regions 

similar if they have a similar intensity distribution. To compare a region to all possible areas 

in an image, we employ a sliding-window strategy that compares histograms of regional 

marker intensity distributions across the image. To trigger the search, the HistoSearch lens 

can be placed over the pattern of interest in the image. HistoSearch is equipped with a slider 

to set a contour threshold, allowing for fine-tuning of what’s considered similar. The applied 

integral histogram method [53, 54] makes it possible to employ even an exhaustive search 

process in real-time. We adapt and extend a Python implementation [5]. Our method works 

in four steps (Fig. 6, 1-4):

Step 1: A box- or circle-shaped region (the lens area) is extracted, and a histogram of its 

greyscale values is computed (Fig. 6, Step 1).

Step 2: For each pixel in the whole channel image, a histogram of the greyscale values 

surrounding (lens radius) the pixel is computed. Semantically, this means that we take into 

account spatial neighborhood information and not simply compare pixel by pixel (Fig. 6, 

Step 2).

Step 3: The local histogram for the region surrounding each pixel in the image is 

then compared to that of the lens using Chi-square distance. We apply Porikli’s integral 

histogram [54], which recursively propagates histogram bins of previously visited image 

areas using values from neighboring data points instead of repetitively executing the full 

histogram computation. This is then compared to the lens histogram using Chi-square 

distance (see Eq. 1) for two arrays X and Y with N dimensions across all channels C. This 

leads to a similarity map with a similarity value for each pixel in the image (Fig. 6, Step 3).

1
c ∑

c = 1

C
∑
i = 1

N
((xi − yi)2 ∕ (xi + yi)) (1)

Step 4: We use marching squares [53] to detect contours in the similarity map and extract 

these contours as polygons that we render on screen (Fig. 6, Step 4).

Step 2 and 3 can be computed for multiple channels. To not lose information, we compute 

each channel’s similarities separately and then aggregate them to a combined similarity 

map. Similar to our multi-resolution rendering strategy (Sec. 5.1), we execute the histogram 
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search algorithm on the fly on the respective TIFF-file layer (Sec. 3) that aligns with the 

current zoom level. Fully zoomed out, the aggregation level is higher; while zoomed in, 

we process the highest resolution but for a smaller image area. The approach can also be 

employed in full resolution to the whole image (Sec. 5.4).

5.4 Descriptive ROI Summaries (F6)

When using a light microscope, a pathologist often ‘dots’ whole slides with a pen to indicate 

ROIs for later examination. We introduced a digital “dotter” to represent this approach but 

with extended support for annotation (T6) during exploration (Fig. 7). The lens functions as 

a camera lens that can snapshots whenever an ROI is in focus.

Our collaborators currently narrate image annotations to data stories for examination, 

teaching and outreach of their research [55]. The link to analysis results is often lost as 

annotations must be manually recreated in the used tools. To maintain analytic provenance, 

we developed a novel rich snapshot method that not only saves the image area under the 

lens but also stores all associated data: a list of active image channels in focus and in the 

peripheral context, channel colors, and range settings, the linked single-cell data in scope, 

and textual annotation such as title and a more detailed description pathologists and cell 

biologists can add.

These rich snapshots are available as thumbnails in the Dotter panel (Fig. 7 C) and are 

interactively linked to overlays within the viewport. Inside the panel, the user can save, 

delete and load ROIs from a database. Names and descriptions can be edited and referenced 

as tags for filtering results. It is important to our users to be able to quickly recall and restore 

the snapshots for further analysis and fine tuning, but also to return to ROIs in their original 

context. Thus, by clicking on thumbnails, the viewer navigates back to the coordinates and 

zoom level of the overlay. By clicking on the overlay’s marker icon, we fully restore the 

lens, along with its global view setting, i.e. active channels, range and color mappings for 

the context (Fig. 7 D). This workflow facilitates hand-offs between colleagues who benefit 

from shared evaluation.

To extend the search for an ROI in the Dotter panel, users can use HistoSearch (Sec. 5.3) 

to find regions alike in the whole image space (other than the viewport during interactive 

analysis). We render these annotations as image-overlays but as soon as the user picks up a 

region, we restore the lens, and the user can alter the region as needed.

6 Architecture and Implementation

Scope2Screen is an open-source web-application (available here: [4]) with a back-end 

Python server built on Flask and a Javascript frontend. The server’s restful API allows 

to retrieve image and feature data and to steer analytics and is easily extendable with new 

methods and corresponding API endpoints. The frontend is built using Bootstrap, D3.js, 

and OpenSeadragon (OSD) [3], a web-based zoomable image viewer, which we extend 

significantly.
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We developed a lensing library that supports a subset of the interactive features of 

Scope2Screen as a generic plugin [1] for OSD. The library relies on a hidden viewer that 

provides access to both in-view and out-of-view image data to support controlled rendering 

within the lens, along with other complementary features. Our application utilizes and 

extended lensing’s logic with additional features (Sec. 5.2).

Scope2Screen also builds on Facetto [33] but makes improvements to the architecture. 

Instead of preprocessing OME-TIFF [2] image stacks to DeepZoom [44] we now read 

chunks (cropped 2D arrays of the respective layer in the image channel/mask) on-the-

fly from layered OME-TIFFs to render it in the viewport at multiple resolution levels, 

depending on the current zoom setting. We rely on Zarr [45], a format for the storage 

and handling of chunked, compressed, N-dimensional arrays. The client-side rendering is 

hardware accelerated. It relies on WebGL [8] shaders from Minerva [28, 55] and supports 

Facetto’s channel and cell-based rendering modes (Sec. 5.1) for both the lens (focus) and the 

whole viewport (context). To access and filter the linked single cell feature (CSV) data more 

dynamically and at scale, we moved data processing and ball-tree [22] indexed querying 

(Section 5.2.3) to the back-end so that the client only loads requested pieces (in lens or 

viewport), aligning with our multi-resolution rendering strategy.

7 Use Cases

We applied Scope2Screen to study two cancer datasets that we acquired from sections of 

lung and colon cancer using CyCIF [35]. Immediately adjacent sections were H&E stained 

[67] and used to evaluate tissue morphology. We carried out the analysis together with our 

collaborators over zoom using a Pair-Analytics approach [12]; we steered the tool guided 

by the domain collaborators. This method is advantageous because it pairs Subject Matter 

Experts (SME) with expertise in a domain with Visual Analytics Experts (VAE) who have 

the technical expertise in the operation of VA tools but lack contextual knowledge.

7.1 Use Case 1: Colorectal Cancer

Tumors are complex ecosystems of numerous cell types arranged into recurrent 3D 

structures. However, the patterning of specific tumor and immune cell-states is poorly 

understood due to the difficulty of mapping high-dimensional data onto large tissue sections. 

In use case 1, two pathologists and one cell biologist analyzed a human colorectal carcinoma 

(CRC1) from the Human Tumor Atlas Network (HTAN) (PMID 32302568) to explore 

tumor and immune cell interactions.

Data: CRC1 is a human colorectal adenocarcinoma that was serially sectioned at 5um 

intervals into 106 sections. 24-marker CyCIF was performed on every 5th section. 

Every adjacent section was stained with H&E. CyCIF and H&E images were registered 

and stitched, and single-cell segmentation and fluorescence intensity quantification were 

performed using MCMICRO [59]. Cell types were defined by expression of lineage- & 

state-specific markers. Here, we analyze one CyCIF and an adjacent H&E image. The data 

included 40 CyCIF channels and 3 (RGB) H&E channels encompassing 1.28 mio cells in a 

field 26,139 x 27,120 pixels (8,495 x 8,814 microns) in size (87.66 GB).
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Analysis: We began the analysis with a low magnification overview of the CyCIF images 

using DAPI (blue), keratin (white), and aSMA (red) channels in the whole viewport. In 

combination, these channels illuminated pathologically-relevant structures of the tissue, 

including the morphology of nuclei (DAPI), abnormal epithelial cells (keratin), and 

muscular layers (aSMA) (Fig. 8 A, B). A second channel defined immune populations 

including CD4+ helper T cells (red), CD8+ cytotoxic T cells (green), and CD20+ B cells 

(white) to analyze immune interactions with tumor and adjacent normal regions (Fig. 8 C).

For each marker, we defined an upper and lower color mapping range using the channel 

range sliders (Fig. 1 A). The low-magnification view revealed a small region of tumor 

budding cells (≤ 1mm2), a phenomenon in which infiltrating single tumor cells or small 

clusters of cells (≤ 4) appear to “bud” from the tumor-stromal interface at the invasive 

margin, correlating with poor clinical outcomes (Fig. 8 D). We used the standard lens 

magnifier to focus analysis on the budding region while maintaining spatial context.

To further explore spatial patterns of marker expression, we activated the “single-cell radial 

chart”. It provides a dynamic display of the mean single-cell expression levels of all CyCIF 

markers within the lens and the global mean of the markers across the entire image for 

comparison. This enabled the experts to see that tumor and immune cells in the several 

regions, including the budding region, were positive for PD-L1, a protein that suppresses the 

activity of cytotoxic CD8 T cells, which is often clinically targeted by antibody therapies. 

To capture images and associated single-cell data of these ROIs for subsequent review of 

immune interactions and tumor features, we took snapshots and annotated the areas ’PD-L1 

rich region’ (Fig. 8 E) for later analysis.

We next used the split-screen lens (Fig. 4 C) to view H&E and CyCIF images side-by-side. 

Using this tool, pathologists validated the alignment of H&E and CyCIF channels acquired 

from adjacent sections to compare histologic and molecular features. They identified areas 

in the H&E images with marked chronic inflammation (lymphocytes and macrophages) 

in the peri-tumoral stroma for further evaluation. Direct comparison of the H&E and 

CyCIF data in these tissue regions using the split-screen lens allowed the pathologists 

to characterize lymphocyte aggregates with predominantly cytotoxic CD8+ T cells in peri-

tumoral stroma (Fig. 8 E), as well as clusters of CD20+ B cells and CD4+ helper T cells 

forming ‘tertiary lymphoid structures’ (TLS). Direct comparison of H&E and CyCIF data 

in this manner allowed for targeted molecular characterization of immune populations such 

as lymphocytes which is not possible with H&E alone (Fig. 8 F). To compare the marker 

intensity value distributions more precisely, we switched to the ‘lens histogram’ (Fig. 4 

A) and compared the results with the ‘cell-type’ lens within each region to assess marker 

expression with the results of the automated cell type classifier.

Based on review of the images, the pathologists used the Dotter’s ‘snapshot’ function 

to annotate three immunologically distinct regions (described above), three tumor regions 

with distinctive histomorphology (glandular, solid, and mucinous regions), and adjacent 

normal colonic mucosa. Using the ‘similarity search’ on the normal mucosal region (Fig. 

6, top), we identified areas with similar histologic features, confirmed by pathologist 

inspection, embedded within the tumor mass which were not readily apparent on initial 
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low-magnification review of the H&E images, validating the utility of the search method. 

We saved these findings to our database for subsequent retrieval.

Feedback: Although we worked with our collaborators in weekly sessions over several 

months, we received additional comments on design improvements and future features 

within the 2-hour analysis session. They found the normal lens magnification the most 

useful. The fisheye lens was problematic for review of tissue images due to distortion 

of cell morphology and tissue architecture, which may complicate the interpretation of 

important pathologic features such as nuclear shape. This aligns with earlier feedback 

motivating the design of the plateau lens, which they confirmed as a helpful improvement. 

One pathologist also suggested to equip the lens with different predefined filter settings 

to be able to quickly toggle for different analysis tasks. While both the radial chart and 

histograms were well received, they asked to highlight under- or over-represented marker 

values more prominently. The histograms were described as easier to read and should be 

extended to represent non-active image channels as well. They also asked for a) a heatmap 

that color codes marker correlation, and b) the ability to define channel combinations 

inside the lens on-the-fly, not only in pre-configuration. A recurring piece of feedback 

during the session was to add more descriptive statistics such as bin sizes in the histogram, 

ratios of cell populations, and ways to precisely define intensity ranges by value. The 

proximity of single-cell data to the inspected area and the H&E channel comparison, which 

is limited or non-existent in other tools, were described as particularly useful. The ability to 

simultaneously inspect and mark different regions of the tumor was perceived as a promising 

area for further development.

7.2 Use Case 2: Lung Adenocarcinoma

Lung adenocarcinoma is a common subset of lung cancer that, in later stages, often does 

not respond to chemotherapy. Immunotherapy has shown great promise, but patient response 

varies according to each tumor’s specific microenvironment. To assess why only certain 

patients respond, one needs an in-depth understanding of the tumor and immune landscape. 

Together with two biologists, we apply Scope2Screen to explore the immune reactions in 

lymphocyte structures.

Data: Using t-CyCIF, we have prepared a dataset of human lung adenocarcinoma wedge 

resection. The image data consists of 38 channels, each with a resolution of 39,843 x 29,227 

pixels (12,949 x 9,499 microns) and 118.43 GB in size containing 534,677 segmented cells. 

The data is enriched with cell-type classification from a deep immune profiling of the tumor 

microenvironment.

Analysis: We began the analysis with the whole tissue in the viewport and activated the 

DNA channel for a general overview of the tissue architecture. Addressing the feedback 

from Use Case 1, we equipped the lens with a set of four predefined channel combinations, 

designed to investigate the tumor’s immune response from a high level to detail.

The first channel combination (Fig. 9 A) consisted of basic cell markers and was designed 

to assess overall tissue composition. Lung cells are marked by TTF-1, which enabled the 
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detection of the aberrant tumor morphology in the upper region of the sample. The lens 

magnifier allowed the biologists to see that the tumor is heavily infiltrated with immune cells 

(marked by CD45 and Vimentin). We then switched to a second channel combination for 

immune cell markers (Fig. 9 B) to further investigate the types of immune cells infiltrating 

the tumor. This revealed dense aggregates of immune cells, mainly composed of a core 

of B cells, surrounded by T cells, which are known tumor-associated tertiary lymphoid 

structures (TLS). Lens magnification allowed our experts to quickly detect, mark and further 

characterize the large number (10-12) of TLS’s in this lung specimen. By switching to a 

third channel composition customized for TLS markers (Fig. 9 C), we inspected each TLS 

more closely (see Sec. 7.1 for a closer description).

We used the Dotter’s snapshot capability and placed landmarks as we reviewed the TLS’s. 

We measured the TLS size using the ruler functionality (1,200 microns on average). We 

activated the cell type lens equipped with immune and cancer type classifications which 

showed B cells in the center (Fig. 4 F, Fig. 9 C) surrounded by epithelial lung cells. The 

cell biologists also used this setting to check the dataset segmentation, which they rated as 

very accurate. While focusing on one of these TLS, we activated HistoSearch to find areas 

with similar marker patterns, successfully identifying the other TLS areas. Surprisingly, in 

some TLS the HistoSearch detected the structure’s outer rim but not its center. Using the 

magnifier to zoom into these regions, we noted a distinctly higher level of B cell marker 

CD20. We focused the lens on this area and magnified for close-up inspection. To better 

understand the marker distribution in this region, we switched the lens function to the radial 

distribution chart (Fig. 4 B), revealing a high Ki67 and PCNA concentration, markers for 

cell proliferation and growth.

Subsequently, we switched to the fourth channel group to compare lymphocyte markers 

across a TLS (Fig. 9 D). We activated the histograms and moved the lens outside of a TLS 

towards the lung epithelial cells, recognizing TTF-1 positive tumor cells. Some of these 

were MHC-II positive. By shrinking the lens scope to single-cell size, we compared the 

TTF-1 cells, finding that cells with MHC-II expression are non-proliferative. This suggests 

that transient MHC-II expression is coupled with entry into a non-proliferative state.

Feedback: While users were able to make meaningful observations throughout the 

evaluation, their commentary indicated two categories of improvements. Channel views 

and statistical views could be merged so users do not have to rely on rapid memory 

recall required for toggling filters. For example, simultaneous access to the single-cell 

marker intensity distribution would have been helpful to monitor non-selected markers for 

early exploration of broad immune cell lineages. Acknowledging that our tools do not 

support a wide range of unanticipated biological questions, the absence of tools for spatial 

analysis stalled certain leading lines of inquiry. Measuring the degree of cell proliferation 

around immune cell clusters would have been an important next step for our users, who 

recommended that we prioritize the introduction of supporting algorithms and visualizations 

for spatial correlation.
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8 Hands-On User Study and Questionnaire

To further evaluate the intuitiveness and usefulness of Scope2Screen’s interactive interfaces 

and lens features, we conducted hands-on user studies in which three of our four domain 

collaborators (that were involved in goal specification, iterative testing and design, and 

use-cases), two biologists and one pathologist, steered the tool, gave thinkaloud feedback, 

and additionally filled out a questionnaire.

Study Setup.

The sessions were conducted via Zoom with one subject matter expert (SME) at a time 

and two members from our visualization team. Scope2Screen was installed on a remote 

machine to which the experts had access. We used a “think aloud” approach [18] as an 

opportunity for users to share feedback from their own interaction with the application. We 

recorded video and audio. The users worked sequentially through a list of Scope2Screen’s 

features before freely exploring with the features practiced, following regions of biological 

interest. Sessions took between 70 and 90 minutes. They then filled out a questionnaire 

rating the usefulness of individual features with a 5 bin Likert scale (strongly agree to 

strongly disagree).

Study and Feedback.

At first, the experts were asked to make use of global viewer features such as toggling image 

channels, panning & zooming, and setting color ranges. Overall, they rated the application 

interface as intuitive and accessible (strongly agree, agree, and neutral). All agreed that 

focus+context improved exploration over a pure O+D approach and strongly agreed that 

the lens magnifier is helpful for observing local regions. Aligning with use-case feedback, 

the experts preferred the normal magnifier and found the plateau lens helpful to overcome 

distortion of the fish-eye but less intuitive. The pathologist preferred the circular shape for 

exploration and the rectangular lens for snapshots. All experts agreed that the snapshot 

capabilities were extremely helpful but in some situations, the overlay can occlude areas 

underneath, hence functionality to show or hide them is needed. The dotting panel and 

annotation capabilities were used intermittently during evaluation and were rated helpful 

(2x strongly agree, 1x agree). The selection and combination of distinct channels (Section 

5.2.2) within the lens achieved the same rating. One expert mentioned that these were 

especially beneficial for checking biases in assigned cell types, and two experts suggested 

to provide means to store channel combinations and color settings of the lens for repetitive 

analysis tasks. Most liked of these features was the split-screen lens to relate, e.g, CyCIF 

to H&E data, and to validate alignment (3x strongly agree). The feature-augmentation 

lenses (Section 5.2.3) were also rated to be helpful (1x agree, 2x strongly agree). The 

linear histograms were preferred over the radial chart as they were easier to comprehend, 

but one expert mentioned that the radial chart provided a good relative overview of the 

distribution and might lead to unexpected discoveries. Another comment proposed that 

showing numbers, in addition to the visual encoding, would be helpful. Using the cell type 

lens, one expert said that the tooltip, similar as provided for the histogram and radial chart, 

should supplement the local cell type counts with cell type counts from the whole tissue in 

order to aid comparison and give context. It should further be possible to hide cell types. 
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Lastly, users agreed that similarity search results (Section 5.3) align with a visual similarity 

impression, with slightly more conservative feedback (2x agree, 1x neutral), mostly due to 

the nature of the sensitivity threshold, which requires repetitive fine-tuning depending on 

the underlying image area. This could be improved with parameter optimization. One expert 

commented that “what is considered similar” depends on the morphological or molecular 

questions in focus, and hence the lens could be equipped with additional similarity methods. 

Overall, the experts found the tool “easy to learn and use” (2x agree, 1x strongly agree).

9 Conclusion and Future Work

We present a design study aimed at supporting single-cell research into the composition, 

molecular states, and phenotypes of normal and diseased tissues, a rapidly growing area of 

basic and translational biomedical research, as well as pathologists studying human tissues 

for the purpose of diagnosis and disease management. Our Scope2Screen system supports 

fluid interactivity based on familiar microscopy metaphors while enabling multivariate 

exploration of quantitative and image data using a lens. Throughout the design process and 

expert feedback, we identified three key areas in which current work could be most usefully 

extended.

Combining Vision and Statistics:

According to our experts, visual needs tools for presenting numerical data alongside image 

data. In many cases, generation of the numerical data is not the problem: computational 

biologists are familiar with scripting and statistical tools for deriving single-cell data from 

images (via segmentation) and linking it to external sources (e.g., genomic data) but the 

information is most useful alongside the original images. Pathologists in particular need 

to combine deep knowledge of tissue architecture with quantitative data. However, most 

visual tools do not offer sufficient flexibility, and scripts or notebooks (e.g., Jupyter) lack 

the interactive visual exploration. We intend to extend Scope2Screen to support scripted 

statistical queries integrated with lensing.

High-dimensional Features on the Horizon:

Recent development in digital imaging such as the ability to measure spatial distribution 

of RNA expression will result in data with thousands, not dozens, of dimensions. 

Mapping such data into the image space while extracting relevant information will require 

dimensional reduction techniques and suitable visual representations of found features so 

that only the most relevant or explanatory data are presented. Very high-resolution 3D 

microscopy of tissues is also being integrated with the high-plex 2D data described here 

and this will require appropriate visual metaphors for moving between resolutions and data 

modalities.

Scalability across Datasets:

Our use cases demonstrate uses for Scope2Screen in the analysis of a single dataset stored 

locally. However, digital histology is expected to transition to the analysis of multiple 

datasets accessed via the cloud. While Scope2Screen scales to a large set of images, it 

does not yet support analysis and annotation of image collections or work interactively with 

Jessup et al. Page 19

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Docker-based image analysis pipelines. Adding this functionality will close the gap from 

data exploration and analysis to generation of machine-assisted interpretative data reports for 

research and clinical applications including interactive publication via tools such as Minerva 

[28, 55].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Scope2Screen offers (A) Channel & color selection for multi-channel rendering. (B) A 

WebGL-based viewer capable of rendering 100+GB sized high-plexed and high-resolution 

(≥ 30k × 30k) image data in real-time. (C) Interactive lensing for close-up analysis - the lens 

shows a multi-channel immune setting that is different from the global context highlighting 

basic tissue composition. (D) Dotter panel - stores and organizes snapshots of annotated 

ROIs to filter, restore, navigate to the image location.
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Fig. 2: 
Our histological tissue image data consists of a multi-channel image stack, a segmentation 

mask, and extracted tabular marker intensity values (arithmetic mean) for each cell. The 

tabular data is linked via cell ID and X,Y position.
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Fig. 3: 
The pathological workflow starts with exploratory navigation in the image (T1). ROIs 

are magnified, measured, and analyzed (T2) by switching and combining image channels 

(T3) and investigating single-cell marker statistics (T4). Identified regions often appear in 

patterns across the image. Finding such similar regions (T5) can ease manual search. ROIs 

are then annotated (T6). These steps build an iterative process where annotations are refined, 

and further areas are explored. The ROIs are stored or exported to discuss with colleagues or 

for examination.
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Fig. 4: 
Top: Settings for channel analysis: (A) Single channel option, out of three in the context. (B) 

Multi-channel lens. (C) Split-screen lens enabling juxtaposed comparison of the same area 

with different multi-channel settings (here CyCIF-DNA and H&E-RGB). Bottom: Feature 

augmentation: (D) Single-cell histograms for detailed vertical comparison of selected cell 

marker distribution (channel-based rendering); (E) Radial single-cell plot a for compact 

summary of cell marker distribution; (F) Segmentation, cell types and counts showing 

classification results.
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Fig. 5: 
Magnification options: (A) normal magnifier; (B) fisheye, introducing distortion with 

an interpolated spherical shape; (C) plateau with 75% preserved resolution and 25% 

compressed interpolation. High-resolution image quality within the zoom area is achieved 

by accessing image data from more detailed layers in the image pyramid.
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Fig. 6: 
HistoSearch allows to find regions similar to those covered by the lens, taking into account 

activated channels. Top: HistoSearch is applied at different scales to find mucosal regions. 

The search works in two settings, for the current viewport (computation time ≈ 1 second for 

Full HD) and for the whole image in the highest resolution. Bottom: The spatial histogram 

similarity search consists of four steps (Sec. 5.3 for details).
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Fig. 7: 
The rich snapshot and annotation process. (A) During close-up analysis, the user focuses on 

an ROI and takes a snapshot. (B) The snapshot is annotated with title and description. (C) 

The Dotter panel links snapshots to the image space (left). Lens-settings such as channel 

combination and colors are preserved. (D) Annotated regions can be reactivated as lenses to 

explore further or fine-tune.
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Fig. 8: 
Use Case 1. Rich snapshots capture ROIs and important insights: (A) Broad population; (B) 

Healthy tissue; (C) Immune cell rich; (D) Tumor budding ; (E) Tumor suppression; (F) H&E 

- lymphocyte.
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Fig. 9: 
Use Case 2, Multi-channel lenses in 4 settings: (A) ‘Basic Cell Typing’ shows tissue 

composition - stromal, immune, and cancer cells. The dense structure is a result of tumor 

growth in the lung; (B) ‘Immune Cell Typing’ distinguishes between immune and non-

immune cells for a broad overview of immune regions (orange); (C) ‘Lymphocytes and 

TLS’ combines CD-channels reveal distinct immune types, e.g., cytotoxic T cells attacking 

the cancer; (D) ‘Lymphocyte Phenotyping’ for finer distinction, showing proliferating B-

cells for antibody production (in blue).
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