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Abstract

Synovial sarcoma (SyS) is an aggressive neoplasm driven by the SS18-SSX fusion, and 

characterized by low T cell infiltration. Here, we studied the cancer-immune interplay in SyS 

using an integrative approach that combines single-cell RNA-seq (scRNA-seq), spatial profiling, 

genetic and pharmacological perturbations. scRNA-Seq of 16,872 cells from 12 human SyS 

tumors uncovered a malignant subpopulation that marks immune deprived niches in situ and is 

predictive of poor clinical outcomes in two independent cohorts. Functional analyses revealed that 

this malignant cell state is controlled by the SS18-SSX fusion, repressed by cytokines secreted 

by macrophages and T cells, and can be synergistically targeted with a combination of HDAC 

and CDK4/6 inhibitors. This drug combination enhanced malignant cell immunogenicity in SyS 

models, leading to induced T cell reactivity and T-cell-mediated killing. Our study provides 

a blueprint for investigating heterogeneity in fusion-driven malignancies and demonstrates an 

interplay between immune evasion and oncogenic processes that can be co-targeted in SyS and 

potentially in other malignancies.

INTRODUCTION

Therapeutic strategies harnessing the cytotoxic capacity of the adaptive immune response to 

target tumor cells have radically changed clinical practice, but responses vary dramatically 

across patients and tumor types1,2. Studying malignancies with defined genetics and 

exceptionally low T cell infiltration levels could help provide clues to some of the immune 

escape mechanisms underlying lack of response to immune therapies.

One such cancer type is synovial sarcoma (SyS)3, an aggressive mesenchymal neoplasm 

that accounts for 10–20% of all soft-tissue sarcomas in young adults4. SyS tumors 

homogeneously express several immunogenic cancer-testis antigens (CTAs)5,6, which are 

recognized by circulating T cells in the peripheral blood of SyS patients5. Nonetheless, T 

cell infiltration remains exceptionally low in these tumors, suggestive of yet unidentified 

immune evasion mechanisms.

The cellular plasticity4, stem-like features7,8, and unique genetics of SyS may explain its 

escape of immune surveillance despite expressed immunogenic antigens. SyS is driven 

by the SS18-SSX fusion protein – where the BAF subunit SS18 is fused to SSX1, 

SSX2 or, rarely, SSX49. The BAF complex is a major chromatin regulator9, which can 

mediate resistance to immune checkpoint blockade in melanoma and renal cancer10,11. 

SSX genes are a family of CTAs involved in transcriptional repression12–15. The SS18-

SSX oncoprotein dysregulates chromatin architecture and transcriptional processes9,16–18, 

generating a spectrum of malignant cell phenotypes4, including mesenchymal spindle cells 

and epithelial-like cells (in biphasic tumors), suggestive of pluripotential differentiation or 

mesenchymal to epithelial transitions.
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The failure of clinical trials in SyS and lack of effective treatments for advanced disease, 

may partly stem from our partial understanding of this disease. Patients presenting 

with localized tumors undergo multi-modality therapy with surgery, radiation, and often 

chemotherapy; but despite this approach, almost half of patients will develop incurable 

metastatic disease, underscoring the need for new therapeutic strategies. Genomic studies 

of human SyS have either relied on bulk tissue profiling19,20 or on established cellular 

models9,16,17, masking important aspects of the tumor ecosystem. Because SyS is a rare 

tumor type, even concerted, large-scale sequencing efforts profiled only limited numbers 

of SyS tumors19–21. Only 10 SyS tumors were profiled by The Cancer Genome Atlas 

(TCGA)21 consortium, and other SyS-specific bulk gene expression cohorts were assembled 

from no more than a few dozen patients19,20.

To tackle this challenge we devised an integrative, data-driven approach that combined 

single-cell RNA-Seq (scRNA-Seq) and spatial profiling of human tumors with genetic and 

pharmacological perturbations in cellular models. First, we mapped the SyS ecosystem 

by scRNA-seq profiling of 16,872 cells from 12 human SyS tumors, along with spatial 

transcriptomic and multiplex immunofluorescence of tumors. We identify a malignant 

cellular state in all SyS tumors that is predictive of poor prognosis and immune evasion. 

The unique features of this cell state are driven by the SS18-SSX fusion, and repressed by 

immune cells, specifically through T cell- and macrophage-secreted cytokines. Modulating 

SS18-SSX targets and cell proliferation with a subcytotoxic combination of HDAC 

and CDK4/6 inhibitors selectively targeted this malignant cell state and increased the 

immunogenicity of SyS cells, resulting in enhanced T cell reactivity and T-cell-mediated 

killing in cell co-culture models. Taken together, our work provides a framework for 

studying fusion-driven tumors, uncovers a tight interplay between immune evasion and 

oncogenic processes, and suggests potential new therapeutic strategies for the management 

of SyS.

RESULTS

A SyS cellular map from expression and genetic features in tumor scRNA-seq

To comprehensively interrogate the SyS ecosystem, we used full-length22 and droplet-

based23 scRNA-Seq to profile 16,872 high quality malignant, immune, and stromal cells 

from 12 human SyS tumors (Fig. 1a,b, Extended Data Fig. 1a,b, Supplementary Table 1, 

Online Methods), including four biphasic, three poorly differentiated, and five monophasic 

tumors (clinical characteristics are provided in Supplementary Table 1).

We assigned cells to different cell types according to both transcriptional and inferred 

genetic features (Fig. 1b-g, Extended Data Fig. 1, Online Methods): (1) expression-based 

clustering and annotation of non-malignant clusters by canonical markers (Fig. 1c, Extended 

Data Fig. 1a, Supplementary Table 2); (2) detection of the SS18-SSX fusion transcripts24 

(Fig. 1d); (3) inference of copy number alterations (CNAs) from scRNA-Seq profiles25 (Fig. 

1e), which we validated in four tumors using bulk whole-exome sequencing (WES) (Fig. 

1g); and (4) similarity to bulk profiles of SyS tumors21 (Fig. 1f, Online Methods). The four 

approaches were highly congruent (Extended Data Fig. 1a; Supplementary Information).
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We assigned the cells to nine subsets (Fig. 1c): malignant cells, endothelial cells, Cancer 

Associated Fibroblasts (CAFs), CD8 and CD4 T cells, B cells, Natural Killer (NK) cells, 

macrophages, and mastocytes, and generated signatures for each (Supplementary Table 2, 

Extended Data Fig. 1d). Malignant cells primarily grouped by their tumor of origin, while 

non-malignant immune and stroma cells grouped by cell type (Fig. 1b,c), as observed in 

other tumors26–30. Malignant cells from each of the biphasic (BP) tumors (SyS1 and SyS12) 

clustered first according to their differentiation state into an epithelial and a mesenchymal 

BP cluster, and within each clusters into sub-clusters by patient (Fig. 1b,c, black, cyan and 

magenta dots, Online Methods).

Cellular differentiation programs and a core oncogenic program characterize synovial 
sarcoma cells

Interrogating the malignant cell profiles for gene programs, we identified three co-regulated 

gene modules consistent across multiple tumors (Fig. 2a-d, Supplementary Table 3, Online 

Methods). Two modules reflected the expected mesenchymal and epithelial cell states 

(Fig. 2b, Extended Data Fig. 2a; Supplementary Information), with canonical mesenchymal 

(ZEB1, ZEB2, PDGFRA and SNAI2) or epithelial (MUC1 and EPCAM) markers31,32 (P < 

1.55*10−10, hypergeometric test), and increase in antigen presentation and interferon (IFN) 

γ responses in epithelial cells (P < 8.49*10−6, hypergeometric test).

One subset of mesenchymal cells with a relatively low Overall Expression of the 

mesenchymal program (Online Methods) also expressed epithelial markers, suggesting a 

transition from a mesenchymal to an epithelial state, while another under-expressed both 

programs, suggesting a poorly differentiated state. These poorly differentiated cells were 

enriched with cycling cells (P = 2.44*10−60, mixed effects), suggesting they might function 

as tumor progenitors (Fig. 2e,f, Extended Data Fig. 2b,c). Diffusion map analysis identified 

differentiation patterns only in the biphasic tumors (Fig. 2g, Online Methods).

Both Principal Component Analysis (PCA)33,34 and Non-Negative Matrix Factorization 

(NMF)35,36 based approaches (Online Methods) revealed a novel module that was present 

in a subset of cells in each tumor, which we named the core oncogenic program (25.2–

84.7% cells per tumor, Fig. 2d,h, Extended Data Fig. 3). The program includes induction 

of genes from respiratory carbon metabolism (oxidative phosphorylation, citric acid cycle, 

and carbohydrate/protein metabolism, P < 1*10−8, hypergeometric test, Supplementary 

Table 3), and repression of genes in the TNF signaling, apoptosis, p53 signaling, and 

hypoxia pre-annotated gene sets (P < 1*10−10, hypergeometric test, Supplementary Table 3), 

including known tumor suppressors, such as p21 (CDKN1A) and KLF4. The program was 

expressed in a higher proportion of cycling and poorly differentiated cells (P < 2.94*10−4, 

mixed-effects, Fig. 2i), and was heterogeneous in tumors in situ (P < 1*10−10, combined 

probability test, Methods, Fig. 3a-c, Extended Data Fig. 3d).

To test the clinical relevance of these programs, we analyzed bulk expression profiles from 

two published cohorts19,20. Both the de-differentiation score (Online Methods) and the core 

oncogenic program were more pronounced in more aggressive, poorly differentiated SyS 

tumors (P = 4.30*10−6, one-sided t-test, Fig. 3d) and were associated with increased risk 

of metastatic disease (P = 2.7*10−3, Cox regression, Fig. 3e). In another cohort of 64 
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SyS tumors37, genes up-regulated in the core oncogenic program were frequently amplified 

by CNAs (P = 3.78*10−7, Mann–Whitney test), especially in metastatic/recurrent tumors 

(P = 2.65*10−8), and in the primary tumors of patients who developed metastases/local 

recurrences (P = 2.3*10−6).

Evidence of antitumor immune activity despite low immune infiltration

T cell infiltration is exceptionally low in SyS, but it is unknown whether the lack of 

antitumor immunity results from the inability of immune cells to recognize and respond 

to malignant cells, from active tumor-driven inhibition of immune cell infiltration into the 

tumor, or both. We set out to explore these hypotheses by combining our data with a 

pan-cancer analysis approach.

To test the first possibility, we examined CD8 T cell states (Fig. 4a, Supplementary Table 

4), and found hallmarks of antitumor immunity and recognition. T cell subsets spanned 

naïve, cytotoxic, exhausted, and regulatory states (Fig. 4b; Online Methods), with expansion 

based on TCR reconstruction38 (72 observed clones, all patient-specific, with shared clones 

between matched samples from the same patient; Extended Data Fig. 4a), and unique 

transcriptional features of an effector-like non-exhausted state (Fig. 4b, Extended Data Fig. 

4b, Supplementary Table 4). Notably, SyS-specific CTAs were expressed in large fractions 

of malignant cells (Extended Data Fig. 4c). Compared to CD8 T cells from melanoma30, 

CD8 T cells in SyS (a) overexpressed a program characterizing T cells in melanoma tumors 

that were responsive to immune checkpoint blockade39 (Fig. 4c bottom, P = 1.22*10−10, 

mixed-effects), (b) overexpressed effector and cytotoxic gene modules40,41 (e.g., GZMB, 

CX3CR1, P = 6.36*10−9, mixed-effects); and (c) under-expressed exhaustion markers (P 

= 6.36*10−3, mixed-effects) and checkpoint genes (CTLA4, HAVCR2, LAG3, PDCD1, 

TIGIT, and LAYN40 (P = 7.69*10−7, mixed-effects, Fig. 4c, top).

Among other immune cells, macrophages spanned M1-like and M2-like states42, with pro- 

and anti-inflammatory features, respectively (Extended Data Fig. 4d-f; Online Methods, 

Supplementary Table 4), and expressed relatively high levels of TNF (P = 1.13*10−7, mixed-

effects, >4 fold higher than melanoma macrophages), while mastocytes showed regulatory 

features (39% expressing PD-L1 vs. 2% PD-L1 expressing malignant cells).

We next compared the immune composition (Online Methods) inferred from bulk profiles 

of SyS to those of 30 other cancer and sarcoma types. SyS tumors showed extremely low 

levels of immune cells, which could not be explained by variation in the mutational load 

(Fig. 4d, Extended Data Fig. 4g; P = 2.58*10−11, mixed-effects accounting for mutational 

load), and despite malignant-cell expression of CTAs (Extended Data Fig. 4c). Unlike 

melanoma (Extended Data Fig. 4h, left), T cell levels were not correlated with prognosis 

in SyS (Extended Data Fig. 4h, right), perhaps because they do not cross the critical 

threshold for clinical impact. Only mastocytes had a moderate positive association with 

improved prognosis (P = 0.012, Cox regression). These findings support the hypothesis that 

insufficient immune cell infiltration is key to SyS immune evasion.
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The core oncogenic program is associated with immune deprived tumors and spatial 
niches

We next explored potential mechanisms of immune evasion by cancer cells, especially the 

connection between the malignant cells’ state and the tumor’s microenvironment. First, from 

our inferred composition of SyS tumors in published cohorts16,20 (Online Methods), we 

found that the levels of immune infiltrates were correlated with lower core oncogenic and 

cell cycle program scores and higher differentiation scores (P < 5.34*10−3, r = −0.44, −0.36 

and 0.48, respectively, partial Pearson correlation, conditioning on inferred tumor purity, 

Online Methods; Fig. 4e).

Next, we spatially profiled the expression of 1,412 transcripts in situ across 9 tumors in 

our cohort with the GeoMx® Cancer Transcriptome Atlas RNA Assay (Online Methods)43. 

Two of the tumors (SyS11 and SyS2) were also profiled in situ for >18,000 genes using 

the GeoMx Whole Transcriptome Atlas (Online Methods; Figs. 4f,g). We first stained 

tumor sections with markers for immune (CD45) and epithelial (PanCK) compartments, 

defined immune (CD45+) and non-immune (CD45−) cells, classified CD45− cells as 

malignant based on cytonuclear atypia, and distinguished them as epithelial (PanCK+) and 

non-epithelial (PanCK−) (Fig. 4f). Based on this information, we distinguished multiple 

Regions of Interest (ROI) in each sample and Areas of Illumination (AOI) within each 

ROI, separately profiling the RNA from CD45+, malignant CD45−/PanCK−, and malignant 

CD45−/PanCK+ AOIs to a total number of 306 spatially distinct areas (to account for 

variation in AOI size in each AOI the counts were normalized to obtain transcript per million 

(TPM) values; Online Methods).

We observed an inverse spatial correlation between the expression of the core oncogenic 

program in the malignant cells (CD45− AOIs) in a given ROI and CD45+ cell abundance 

in the same ROI (P = 3.54*10−14, mixed-effects, r = −0.67, P < 1*10−6, partial 

Spearman correlation for Overall Expression of the program, Fig. 4f,g; and P < 1*10−6, 

hypergeometric test at the single-gene level, Fig. 4h). No other gene signature showed such 

associations, including both the programs defined here and >9,000 annotated gene sets44.

Cell type signatures (Supplementary Table 2), including the overall SyS malignant cell 

signature and immune (T, B, etc.) and stromal cell signatures, were not differentially 

expressed in the CD45− AOIs from immune-rich vs. poor ROIs (P > 0.1, hypergeometric 

test). Thus, negative spatial correlation between the core oncogenic program and CD45+ 

cell abundance in an ROI is unlikely to be due to undetected non-malignant ‘contamination’ 

in the CD45− AOIs. We confirmed these findings with multiplexed immunofluorescence 

(t-CyCIF)45 (Extended data Fig. 4i, P < 1*10−10, mixed-effects, Online Methods).

SS18-SSX sustains the core oncogenic program and blocks differentiation

To examine whether the SS18-SSX fusion regulates the programs identified in SyS tumors 

we depleted SS18-SSX in two SyS cell lines (SYO1 and Aska) using shRNA, and 

profiled 12,263 cells by scRNA-Seq. The fusion knock-down (KD) caused extensive and 

consistent transcriptional changes in both cell lines (Fig. 5a, Extended Data Fig. 5a,b, 

Supplementary Table 5), where it repressed the core oncogenic program and cell cycle genes 
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(P < 8.05*10−107, and 5.2*10−71, t-test, respectively, Fig. 5a-c), and induced mesenchymal 

differentiation genes, including ZEB1 and VIM (P < 1*10−50, t-test and likelihood-ratio test 

Fig. 5a,b, Extended Data Fig. 5a,b).

The KD impact on the core oncogenic and differentiation programs was decoupled from 

repression of cellular proliferation (Fig. 5b): the impact on these programs was observed 

also when controlling for cycling status (Online Methods), and when considering only 

cycling or non-cycling cells (P < 1.54*10−13, t-test, Fig. 5b). Thus, the fusion’s impact on 

cell cycle may be secondary or downstream to its impact on the core oncogenic program. 

The KD caused a cell autonomous overexpression of antigen presentation and immune 

response genes, such as TNF and IFN signaling (P < 1*10−30, mixed-effects, Extended Data 

Fig. 5a).

We next stratified the target genes affected by SS18-SSX KD (“SS18-SSX program”) to 

direct and indirect fusion targets based on SS18-SSX ChIP-Seq16,17 (Online Methods; 

Extended Data Fig. 5c, Supplementary Table 5). SS18-SSX directly dysregulates 

differentiation programs and promotes the core oncogenic program (P < 2.51*10−5, 

hypergeometric test, Extended Data Fig. 5c, Supplementary Table 5), while its impact on 

cell cycle genes is mostly indirect (P < 1.2*10−9, hypergeometric test, Supplementary Table 

5, Extended Data Fig. 5c), and likely involves cyclin D2 (CCND2) and CDK6 – the only 

cell cycle genes that are direct SS18-SSX targets. As expected, the SS18-SSX program is 

exclusively active in SyS tumors compared to other cancer types (Extended Data Fig. 5d). 

Collectively, these findings support a model in which SS18-SSX directly promotes the core 

oncogenic program, blocks differentiation, and drives cell cycle progression.

TNF and IFNγ synergistically repress the core oncogenic and SS18-SSX programs

The negative correlation between the core oncogenic program and immune infiltration 

in situ suggests that the program may play a causal role in promoting T cell exclusion 

in SyS. Another (non-mutually exclusive) hypothesis is that, despite their low numbers, 

immune cells in the tumor microenvironment may nonetheless impact the malignant cells, 

for example, through the secretion of different cytokines. Indeed, the expression of IFNγ 
and TNF specifically from CD8 T cells and macrophages, respectively (Fig. 5d), was 

strongly associated with repression of the core oncogenic program in malignant cells, both 

by scRNA-Seq (P < 9.4*10−39, mixed-effects) and by in situ high-plex GeoMX profiles 

(P < 1*10−3, mixed-effects, Fig. 5e). We further predicted the TNF/IFNγ-dependent and 

-independent components of the core oncogenic program based on the association of each 

gene’s expression in malignant cells with TNF and IFNγ expression levels in corresponding 

macrophages and CD8 T cells, respectively (Online Methods, Supplementary Table 6).

To test these predictions, we treated primary SyS cells with TNF and IFNγ, separately 

and in combination, and profiled 1,050 cells by scRNA-Seq. As predicted, combined TNF 

and IFNγ treatment (a) repressed the core oncogenic program (P = 6.66*10−18, mixed-

effects, Fig. 5f) in a synergistic manner (P = 9.49*10−4, interaction term, mixed-effects), 

impacting only the predicted TNF/IFNγ-dependent component (1.6*10−38, mixed-effects, 

Fig. 5f), (b) repressed both direct and indirect targets of the SS18-SSX program (P < 

3.12*10−16, including TLE1; P = 1.23*10−4 for the interaction term, Fig. 5f, Supplementary 
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Table 6) and (c) induced the epithelial program (P = 1.95*10−9, hypergeometric test, 

Supplementary Table 6). Short-term (4–6 hours) treatment with TNF alone: substantially 

repressed homeobox genes (e.g., MEOX2, Supplementary Table 6), which are directly 

bound by SS18-SSX16,17 (P < 1*10−17, hypergeometric test); repressed the core oncogenic 

program, but only temporarily (P = 8.73*10−18, mixed-effects; Extended Data Fig. 5e), 

suggesting that IFNγ is required for sustained effect; and induced TNF RNA expression in 

SyS cells (P < 5.57*10−8, mixed-effects), potentially leading to positive feedback through 

autocrine signaling. These findings demonstrate that TNF and IFNγ can suppress the SS18-

SSX program, raising the possibility that their secretion by macrophages and T cells within 

the tumor might mediate a similar effect in vivo to counteract the transcriptional impact of 

SS18-SSX.

HDAC and CDK4/6 inhibitors synergistically repress the immune resistant features of SyS 
cells

Next, we examined whether the repression of the core oncogenic program in SyS cells 

could impact their interactions with surrounding T cells, by identifying compounds that 

can repress the core oncogenic program and potentially induce more immunogenic cell 

states in SyS cells. Modeling the core oncogenic regulatory network46–53(Online Methods) 

highlighted the SSX-SS18-HDAC1 complex18 as the program’s master regulator (Fig. 6a), 

and the tumor suppressor CDKN1A (p21) as its most repressed target. The latter indicates 

that the core oncogenic program regulates, but is not regulated by, cell cycle genes through 

the p21-CDK2/4/6 axis, potentially reinforcing the direct induction of cyclin D and CDK6 
by SS18-SSX. In this model, modulators of cell cycle (e.g., CDK4/6 inhibitors) and SS18-

SSX (e.g., HDAC inhibitors) could jointly target the immune resistance features of SyS 

cells, especially in the presence of cytokines such as TNF.

To test these predictions, we treated SyS lines and primary mesenchymal stromal cells 

(MSCs) with low doses of HDAC and CDK4/6 inhibitors, and profiled only the viable 

cells by scRNA-Seq. Although most SyS cells were viable under the sub-cytotoxic drug 

concentrations we used, a small fraction underwent apoptosis (P = 3.48*10−4, mixed-

effects), but not necrosis (P > 0.1, mixed-effects, Extended Data Fig. 6a), following 

treatment.

As predicted, the HDAC inhibitor panobinostat repressed the core oncogenic program (P = 

3.34*10−14, mixed-effects; Fig. 6b), the SS18-SSX program (P = 5.32*10−72; Fig. 6b), cell 

cycle genes (P < 1.78*10−20), and an immune resistance program we previously identified30, 

and increased the expression of CDKN1A (P = 2.13*10−8, Extended Data Fig. 6b), antigen 

presentation and IFNγ response genes (P < 9.53*10−31, Fig. 6b, Extended Data Fig. 6c,d). 

The CDK4/6 inhibitor abemaciclib repressed cell cycle gene expression (P = 3.63*10−8), 

without impacting the core oncogenic program (P > 0.1, Fig. 6b), supporting the notion that 

cell cycle regulation is down-stream of the core oncogenic program.

A low dose combination of panobinostat, abemaciclib and TNF synergistically repressed 

the core oncogenic program (P = 1.72*10−37, Fig. 6b, Extended Data Fig. 6b) and multiple 

immune resistant features, while inducing antigen presentation, IFN responses, and self-

antigens, such as MICA/B that can activate NK cells (P = 3.12*10−76; Fig. 6b, Extended 
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Data Fig. 6c, d). It also repressed MIF (Macrophage Migration Inhibitory Factor), a member 

of the core oncogenic and SS18-SSX programs, which hampers T cell recruitment into 

tumors54. The less toxic and more clinically-relevant combination of HDAC and CDK4/6 

inhibitors repressed the core oncogenic and SS18-SSX programs in four different SyS 

cell lines (CME-1, FUJI, SYO1, and HSSYII; P < 1*10−10, t-test, Fig. 6c), to an extent 

that significantly exceeded the drugs’ expected additive effect (P < 0.01, mixed-effects 

interaction term, Online Methods).

HDAC and CDK4/6 inhibitors enhance SyS cell immunogenicity and T cell-mediated-killing 
in co-culture

Finally, we examined whether the modulation of SyS cellular states by HDAC and CDK4/6 

inhibitors can impact T cell mediated killing. We co-cultured the SyS cell line CME-1 

engineered to express the cancer testis antigen NY-ESO1 with NY-ESO1-reactive human 

T lymphocytes (Fig. 6d; Extended Data Fig. 6e). Combined pre-treatment of the SyS cells 

with HDAC and CDK4/6 inhibitors before co-culture induced MHC-I cell surface protein 

expression (Fig. 6e, Extended Data Fig. 6f), and increased T cell activation in subsequent 

co-culture (Fig. 6e-h), as reflected by increased CD25 expression on the T cell surface (Fig. 

6f), increased secretion of IFNγ and IL-2 (Fig. 6g), and increased T-cell-mediated killing 

(Fig. 6h). These effects were mediated only by malignant cell state modulation, as the T 

cells were not exposed to the drug combination (Fig. 6d). Thus, co-targeting CDK4/6 and 

HDAC in SyS cells sensitizes them to adaptive immunity.

DISCUSSION

Combining single-cell profiles from clinical specimens and functional experiments, we used 

integrative analysis to map the tumor ecosystem, uncover bi-directional cell-cell interactions, 

track the direct and indirect impact of the genetic driver on malignant and non-malignant 

cells, and decouple the intrinsic and extrinsic regulators of oncogenic cell states. Our results 

demonstrate that the genetic driver and tumor microenvironment coordinately shape cell 

states in SyS (Fig. 6i), and proposes therapeutic leads to target the intrinsic oncogenic 

mechanisms that actively repress SyS immunogenicity (Fig. 6i).

Our study also provides key resources that are particularly difficult to generate for such a 

rare cancer type, including the first scRNA-Seq atlas of a large cohort of primary human 

sarcomas, at similar size to the TCGA collection, spatial transcriptomic and multiplex in situ 
immunofluorescence for nine of the tumors in our single-cell cohort, functional scRNA-Seq 

data of SyS cells following different genetic and pharmacological perturbations, and new 

computational approaches to study regulatory circuits and cell-cell interactions based on 

these data.

The core oncogenic program we uncovered is a cell state in SyS that is regulated by 

SS18-SSX, marks immune-deprived tumor regions, predicts patient prognosis and manifests 

the dynamic cancer-immune crosstalk, as it is repressed by cytokines secreted by immune 

cells and desensitizes malignant cells to T cell mediated killing. Future studies should chart 

the detailed mechanisms underlying the ability of SS18-SSX to modulate the expression 

of the core oncogenic program. Subsequent efforts should examine whether HDAC and 
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CDK4/6 inhibitors could induce T cell priming and recruitment in SyS models in vivo55, 

and test potential synergies with different forms of cancer immunotherapies, such as immune 

checkpoint blockade, adoptive T cell therapies, or cancer vaccines. Several clinical trials 

evaluating the efficacy of these new therapeutic approaches are currently ongoing. Thus 

far, it has been reported that CTLA-4 and PD-1 inhibitors had minimal to no effect in 

SyS patients56, whereas trials with more targeted immunotherapies against tumor specific 

antigens have shown greater promise in SyS, in particular vaccines that trigger priming of 

NY-ESO-1-specific T cells5 (NCT03520959), as well as therapies based on autologous T 

cells transduced with a TCR directed against NY-ESO157 (NCT01343043).

Notably, our proposed combinatorial effects should first be tested in pre-clinical models. 

This requires identifying genetic mouse models that faithfully recapitulate the heterogeneity 

of human SyS. The rapid growth in current models may unfortunately limit the 

establishment of both the intra-tumoral heterogeneity and the tumor-stroma/immune 

crosstalk we identified in patient tumors. Our extensive single cell and spatial profiling 

should help adjudicate models with respect to patient tumors, identify the most suitable for 

pre-clinical testing, and maybe draw conclusions about the yet uncertain cell of origin of 

these tumors.

Finally, the high-resolution approach we applied here to human SyS can serve as a 

blueprint for studies of other fusion-driven malignancies. For example, efforts for single 

cell profiling of patient tumors are ongoing in two well-defined translocated sarcomas: 

Ewing (EWS-FLI1) and alveolar rhabdomyosarcoma (PAX3/7-FKHR), and may benefit 

from the approach presented here. It remains to be seen whether targeting the driving 

oncogenic processes of these cancers can simultaneously induce their immunogenicity as we 

demonstrate here in SyS.

ONLINE METHODS

Human tumor specimen collection and dissociation

All patient samples included in this study are covered according to their respective 

Institutional Review Boards. Patients at Massachusetts General Hospital were consented 

preoperatively on Dana-Farber/Harvard Cancer Center protocol DF/HCC 13–416. Patients 

at the University Hospital of Lausanne were consented preoperatively on protocol Comité 

Ethique de Recherche CER-VD 260/15. Fresh tumors were collected directly from the 

operating room at the time of surgery and presence of malignancy was confirmed by frozen 

section. Tumor tissues were mechanically and enzymatically dissociated using a human 

tumor dissociation kit (Miltenyi Biotec, Cat. No. 130–095-929), following the manufacturers 

recommendations. Clinical annotations are provided in Supplementary Table 1.

Fluorescence-activated cell sorting (FACS)

Tumor cells were kept in Phosphate Buffered Saline with 1% bovine serum albumin (PBS/

BSA) while staining. Cells were stained using calcein AM (Life Technologies) and TO-

PRO-3 iodide (Life Technologies) to identify viable cells. For all tumors, we used CD45-

VioBlue (human antibody, clone REA747, Miltenyi Biotec) to identify immune cells and 
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in few cases, we also used CD3-PE to specifically identify lymphocytes (human antibody, 

clone BW264/56, Miltenyi Biotec). For all the samples, we used unstained cells as control. 

Standard, strict forward scatter height versus area criteria were used to discriminate doublets 

and gate only single cells. Viable single cells were identified as calcein AM positive and 

TO-PRO-3 negative. Sorting was performed with the FACS Aria Fusion Special Order 

System (Becton Dickinson) using 488nm (calcein AM, 530/30 filter), 640nm (TO-PRO-3, 

670/14 filter), 405nm (CD45-VioBlue, 450/50 filter) and 561nm (PE, 586/15 filter) lasers. 

We sorted individual, viable, immune and non-immune single cells into 96-well plates 

containing TCL buffer (Qiagen) with 1% beta-mercaptoethanol. Plates were snap frozen on 

dry ice right after sorting and stored at −80°C prior to whole transcriptome amplification, 

library preparation and sequencing.

Library construction and sequencing

For plate-based scRNA-seq, Whole transcriptome amplification was performed using the 

SMART-seq2 protocol22, with some modifications as previously described28,58. The Nextera 

XT Library Prep kit (Illumina) was used for library preparation, with custom barcode 

adapters (sequences available upon request). Libraries from 384 to 768 cells with unique 

barcodes were combined and sequenced using a NextSeq 500 sequencer (Illumina).

In addition to SMART-seq2, cells from three samples (SS12pT, SS13 and SS14) were also 

sequenced using droplet-based scRNA-Seq with the 10x genomics platform. The samples 

were partitioned for SMART-seq2 and 10x genomics after dissociation. For each tumor, 

approximately two thirds of the sample were used for SMART-seq2 and one third for droplet 

based scRNA-seq (10x genomics). We sorted viable cells using MACS (Dead Cell Removal 

Kit, Miltenyi Biotec) and ran up to 2 channels per sample with a targeted number of cell 

recovery of 2,000 cells per channel. The samples were processed using the 10x Genomics 

Chromium 3’ Gene Expression Solution (version 2) based on manufacturer instructions and 

sequenced using a NextSeq 500 sequencer (Illumina).

Whole exome sequencing (WES)

DNA and RNA were extracted from fresh frozen tissue or Formalin-Fixed Paraffin-

Embedded (FFPE) blocks for each patient (obtained according to their respective 

Institutional Review Board-approved protocols) using the AllPrep DNA/RNA extraction kit 

(Qiagen). We used tumor tissue and matched normal muscle tissue from the same patient as 

reference. Library construction was performed as previously described58, with the following 

modifications: initial genomic DNA input into shearing was reduced from 3µg to 20–250ng 

in 50µL of solution. For adapter ligation, Illumina paired end adapters were replaced 

with palindromic forked adapters, purchased from Integrated DNA Technologies, with 

unique dual-indexed molecular barcode sequences to facilitate downstream pooling. Kapa 

HyperPrep reagents in 96-reaction kit format were used for end repair/A-tailing, adapter 

ligation, and library enrichment PCR. In addition, during the post-enrichment SPRI cleanup, 

elution volume was reduced to 30µL to maximize library concentration, and a vortexing 

step was added to maximize the amount of template eluted. After library construction, 

libraries were pooled into groups of up to 96 samples. Hybridization and capture were 

performed using the relevant components of Illumina’s Nextera Exome Kit and following 
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the manufacturer’s suggested protocol, with the following exceptions: first, all libraries 

within a library construction plate were pooled prior to hybridization. Second, the Midi 

plate from Illumina’s Nextera Exome Kit was replaced with a skirted PCR plate to facilitate 

automation. All hybridization and capture steps were automated on the Agilent Bravo liquid 

handling system. After post-capture enrichment, library pools were quantified using qPCR 

(automated assay on the Agilent Bravo), using a kit purchased from KAPA Biosystems with 

probes specific to the ends of the adapters. Based on qPCR quantification, libraries were 

normalized to 2nM. Cluster amplification of DNA libraries was performed according to the 

manufacturer’s protocol (Illumina), using exclusion amplification chemistry and flowcells. 

Flowcells were sequenced using Sequencing-by-Synthesis chemistry. The flowcells are then 

analyzed using RTA v.2.7.3 or later. Each pool of whole exome libraries was sequenced on 

paired 76 cycle runs with two 8 cycle index reads across the number of lanes needed to meet 

coverage for all libraries in the pool.

In situ immunofluorescence imaging

Formalin-fixed, paraffin-embedded (FFPE) tissue slides, 5 µm in thickness, were generated 

at theMassachusetts General Hospital from tissue blocks collected from patients under 

IRB-approved protocols (DF/HCC 13–416). Multiplexed, tissue cyclic immunofluorescence 

(t-CyCIF) was performed as described recently45. For direct immunofluorescence, we used 

the following antibodies (manufacturer, clone, dilution): c-Jun-Alexa-488 (Abcam, Clone 

E254, 1:200), CD45-PE (R&D, Clone 2D1, 1:150), p21-Alexa-647 (CST, Clone 12D1, 

1:200), Hes1-Alexa-488 (Abcam, Clone EPR4226, 1:500), FoxP3-Alexa-570 (eBioscience, 

Clone 236A/E7, 1:150), NF-κB (Abcam, Clone E379, 1:200), E-Cadherin-Alexa-488 (CST, 

Clone 24E10, 1:400), pRB-Alexa-555 (CST, Clone D20B12, 1:300), COXIV-Alexa-647 

(CST, Clone 3E11, 1:300), β-catenin-Aleaxa-488 (CST, Clone L54E2, 1:400), HSP90-PE 

(Abcam, polyclonal, lot# GR3201402–2, 1:500) and vimentin-Alexa-647 (CST, Clone 

D21H3, 1:200). Stained slides from each round of t-CyCIF were imaged with a CyteFinder 

slide scanning fluorescence microscope (RareCyte Inc. Seattle WA) using either a 10X 

(NA=0.3) or 40X long-working distance objective (NA = 0.6). Imager5 software (RareCyte 

Inc.) was used to sequentially scan the region of interest in 4 fluorescence channels. 

Image processing, background subtraction, image registration, single-cell segmentation and 

quantification were performed as previously described45.

RNA in situ hybridization

Paraffin-embedded tissue sections from human tumors from Massachusetts General 

Hospital and University Hospital of Lausanne were obtained according to their respective 

Institutional Review Board-approved protocols. Sections were mounted on glass slides and 

stored at −80°C. Slides were stained using the RNAscope 2.5 HD Duplex Detection Kit 

(Advanced Cell Technologies, Cat. No. 322430), as previously described28,29: slides were 

baked for 1 hour at 60°C, deparaffinized and dehydrated with xylene and ethanol. The tissue 

was pretreated with RNAscope Hydrogen Peroxide (Cat. No. 322335) for 10 minutes at 

room temperature and RNAscope Target Retrieval Reagent (Cat. No. 322000) for 15 minutes 

at 98°C. RNAscope Protease Plus (Cat. No. 322331) was then applied to the tissue for 

30 minutes at 40°C. Hybridization probes were prepared by diluting the C2 probe (red) 

1:50 into the C1 probe (green). Advanced Cell Technologies RNAscope Target Probes used 
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included Hs-EGR1 (Cat. No. 457671-C2), Hs-IGF2 (Cat. No. 594361), Hs-TLE1 (Cat. 

No. 409191) and Hs-LGALS1 (Cat. No. 486281). Probes were added to the tissue and 

hybridized for 2 hours at 40°C. A series of 10 amplification steps was performed using 

instructions and reagents provided in the RNAscope 2.5 HD Duplex Detection Kit. Tissue 

was counterstained with Gill’s hematoxylin for 25 seconds at room temperature followed by 

mounting with VectaMount mounting media (Vector Laboratories).

RNA profiling in situ hybridization (ISH)—Complete methods for GeoMx RNA assays 

can be found in Merritt et al 202059. DNA oligo probes were designed to bind mRNA 

targets. From 5’ to 3’, they each comprised of a 35–50 nt target complementary sequence, 

a UV photocleavable linker, and a 66 nt indexing oligo sequence containing a unique 

molecular identifier (UMI), RNA ID sequence, and primer binding sites. Up to 10 RNA 

detection probes were designed per target mRNA. Precommercial research-use-only versions 

of the GeoMx Cancer Transcriptome Atlas (CTA) and the Human Whole Transcriptome 

Atlas (WTA) were provided by Nanostring Technologies.

To perform the ISH, 5 µm FFPE tissue sections from nine patients were mounted on 

positively charged histology slides. Sections were baked at 65⁰C for 45 minutes in a Hyb 

EZ II hybridization oven (Advanced cell Diagnostics, Inc). Slides were deparaffinized using 

Citrisolv (Decon Labs, Inc., 1601), rehydrated in an ethanol gradient, and washed in 1x 

phosphate-buffered saline pH 7.4 (PBS: Invitrogen, AM9625). Slides were incubated for 

15 minutes in 1X Tris-EDTA pH 9.0 buffer (Sigma Aldrich, SRE0063) at 100°C with 

low pressure in a TintoRetriever Pressure cooker (bioSB, 7008). Slides were washed, then 

incubated in 1 µg/mL proteinase K (Thermo Fisher Scientific, AM2546) in PBS for 15 

minutes at 37°C and washed again in PBS. Tissues were then fixed in 10% neutral-buffered 

formalin (Thermo Fisher Scientific, 15740) for 5 minutes, incubated in NBF stop buffer 

(0.1M Tris Base, 0.1M Glycine, Sigma) for 5 minutes twice, then washed for 5 minutes in 

PBS. Tissues were then incubated overnight at 37°C with GeoMx™ RNA detection probes 

in Buffer R (Nanostring Technologies) using a Hyb EZ II hybridization oven (Advanced 

cell Diagnostics, Inc). During incubation, slides were covered with HybriSlip Hybridization 

Covers (Grace BioLabs, 714022). Following incubation, HybriSlip covers were gently 

removed and 25-minute stringent washes were performed twice in 50% formamide and 

2X SSC at 37°C. Tissues were washed for 5 minutes in 2X SSC then blocked in Buffer 

W (Nanostring Technologies) for 30 minutes at room temperature in a humidity chamber. 

500nM Syto13 and antibodies targeting PanCK and CD45 (Nanostring Technologies) in 

Buffer W were applied to each section for 1 hour at room temperature. Slides were washed 

twice in fresh 2X SSC then loaded on the GeoMx™ Digital Spatial Profiler (DSP)43.

In the process entire slides were imaged at 20x magnification and a total of 244 circular 

regions of interest (ROI) with 300–600 μm diameter were selected per sample and the 

GeoMx software was used to define areas of illumination (AOIs or segments) within 

each ROI as one segment containing positive immunofluorescent signal for CD45 and 

auto-fluorescence in the same channel (CD45+) and the inverse of that segment (CD45−). 

Segmentation thresholds for CD45- segments were adjusted to enrich for tumor regions 

with minimal immune signal. As a result, the entire tumor region was not photocleaved. 

The CD45− AOIs included only malignant cells based on morphological and histological 
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examination. The CD45− segments in the biphasic sample (SyS1) were further segmented 

in the same manner also based on PanCK, separating the epithelial (CD45−/PanCK−) and 

mesenchymal (CD45−/PanCK+) malignant cells. In the WTA, a PanCK+ criterion was 

included in the CD45- segment, but the threshold was set to background levels resulting in 

segmentation comparable to a CD45-segment.

Once AOIs were defined, the DSP then exposed AOIs to 385 nm light (UV) releasing 

the indexing oligos and collecting them with a microcapillary. Indexing oligos were then 

deposited in a 96-well plate for subsequent processing. The indexing oligos were dried down 

overnight and resuspended in 10 μL of DEPC-treated water.

Sequencing libraries were generated by PCR from the photo-released indexing oligos and 

AOI-specific Illumina adapter sequences and unique i5 and i7 sample indices were added. 

Each PCR reaction used 4 μL of indexing oligos, 1 μL of indexing PCR primers, 2 μL 

of Nanostring 5X PCR Master Mix, and 3 μL PCR-grade water. Thermocycling conditions 

were 37°C for 30 min, 50°C for 10 min, 95°C for 3 min; 18 cycles of 95°C for 15sec, 65°C 

for 1min, 68°C for 30 sec; and 68°C 5 min. PCR reactions were pooled and purified twice 

using AMPure XP beads (Beckman Coulter, A63881) according to manufacturer’s protocol. 

Pooled libraries were sequenced at 2×75 base pairs and with the single-index workflow on 

an Illumina NextSeq to generate 458M raw reads.

Primary cell cultures and cell lines

Human primary Synovial Sarcoma (SyS) spherogenic cultures (SScul1, SScul2 and SScul3) 

were derived from patients undergoing surgery at Massachusetts General Hospital and 

University Hospital of Lausanne, according to their respective Institutional Review Board-

approved protocols. Directly after dissociation (as above), the dissociated bulk tumor cells 

were put in culture and grown as spheres using ultra-low attachment cell culture flasks 

in IMDM 80% (Gibco, Cat. No. 1244053), Knock-Out Serum Replacement 20% (Gibco, 

Cat. No. 10828028), Recombinant Human EGF Protein 10 ng/mL (R&D systems, Cat. 

No. 236-EG-200), Recombinant Human FGF basic, 145 aa (TC Grade) Protein 10ng/mL 

(R&D systems, Cat. No. 4114-TC-01M) and 1% Penicillin-Streptomycin (Gibco, Cat. No. 

15140122). Cells were expanded by mechanical and enzymatical dissociation every week 

using TrypLE Express Enzyme (ThermoFisher, Cat. No. 12605010).

The SyS cell lines used for the SS18-SSX KD experiments and the functional drug 

assays include: Aska (a generous gift from Kazuyuki Itoh, Norifumi Naka, and Satoshi 

Takenaka, Osaka University, Japan), SYO1 (a generous gift from Akira Kawai, National 

Cancer Center Hospital, Japan), HS-SY-II (purchased from RIKEN Bio Resource Center, 

3–1-1 Koyadai, Tsukuba, Ibaraki 305–0074, Japan), CME-1 (a generous gift from Dr. 

Armando Bartolazzi, Pathology Research Laboratory, Cancer Center Karolinska, Karolinska 

Hospital, Stockholm, Sweden) and FUJI (a generous gift from Duan Zhenfeng and Francis 

J. Hornicek, Orthopaedic Institute for Children, Department of Orthopaedic Surgery, UCLA, 

US). All cell lines excepted CME-1 were cultured using standard protocols in DMEM 

medium (Gibco) supplemented with 10–20% fetal bovine serum, 1% Glutamax (Gibco), 

1% Sodium Pyruvate (Gibco) and 1% Penicillin-Streptomycin (Gibco) and grown in a 
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humidified incubator at 37°C with 5% CO2. The CME-1 line was cultured in RPMI 

containing 10% FBS and 1% Penicillin-Streptomycin.

Human primary pediatric mesenchymal stromal cells (MSCs) were isolated from healthy 

donors undergoing corrective surgery in agreement with the Institutional Review Board-

approved protocol of the University Hospital of Lausanne (Protocol number 2017–0100). 

According to the Swiss ethic legislation no written consent was required since samples were 

anonymized prior to culture and analysis. Cells were expanded in 90% IMDM (Gibco, Cat. 

No. 1244053) containing 10% Fetal Bovine Serum (Gibco), 1% Penicillin-Streptomycin 

(Gibco) and 10ng/mL Platelet-Derived Growth Factor BB (PDGF-BB, PeproTech).

SS18-SSX knockdown in Aska and SYO1 cell lines

The SyS cell lines Aska and SYO1 were cultured using standard protocols 

in DMEM medium (Gibco) supplemented with 10–20% fetal bovine serum, 

1% Glutamax (Gibco), 1% Sodium Pyruvate (Gibco) and 1% Penicillin-

Streptomycin (Gibco) and grown in a humidified incubator at 37°C with 

5% CO2. Cells expressing a pLKO.1 vector with a scrambled shRNA 

hairpin control (5’- CCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTAAC 

CTTAGG-3’) or a shSSX hairpin targeting SSX of the SS18-SSX fusion (5’-

CAGTCACTGACAGTTAATAAA-3’) were prepared by lentiviral infection. Briefly, 

lentivirus was prepared by transfection of HEK293T cells with gene delivery vector and the 

packaging vectors pspax2 and pMD2.G, filtration of media followed by ultracentrifugation, 

and then resuspension of viral pellet in PBS. Aska and SYO1 cells were infected with 

lentivirus for 48 hours and then underwent 5 days of selection with puromycin (2 μg/mL) 

prior to collection for scRNA-seq.

In vitro IFN/TNF experiment

Cells were dissociated 12 hours before adding the drugs at the concentrations indicated 

directly to the growing media and cells were collected at different time point (ranging from 

4 hours to 4 days) for SMART-seq2. Viability was determined by CellTiter-Glo Luminescent 

Cell Viability Assay (Promega) after 5 to 7 days of treatment. TNF-alpha (Miltenyi Biotec, 

Human TNF-α, Cat. No. 130–094-014) IFN-gamma (R&D systems, Recombinant Human 

IFN-gamma Protein, Cat. No. 285-IF-100) were suspended in deionized sterile-filtered 

water.

In vitro drug assay, cell proliferation and cell death measurements

For the functional drug assay, 200,000 SYO-1 cells and HSSYII cells, and 100,000 MSCs 

were seeded in 60 × 15 mm plates (Falcon). Cells were stimulated for five days with the 

following compounds: 100 or 200 nM Abemaciclib (Selleckchem, U.S.A.), 15 or 30 ng/ml 

TNF (Miltenyi Biotech, Germany) or a combination of the two. Compounds were refreshed 

at days three and four, and the solvent (DMSO) was used as control. At day 4, 12.5 or 

25 nM Panobinostat (Selleckchem, U.S.A.) was added to the cultures, and the cells were 

harvested 24 hours later for proliferation scoring. To assess cellular proliferation, cells were 

detached with trypsin, washed in PBS, and re-suspended in 1 ml of complete medium. After 

diluting 1:2 with Trypan blue (Invitrogen) viable cells were counted using the Automated 
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Cell Counter Countess II FL (Thermo Fisher Scientific). Each experimental condition was 

measured in triplicate.

To assess the rate of cell death cells were seeded in 100mm plates at a 10–15% confluency, 

stimulated for 5 days with daily refreshed Abemaciclib (100nM), TNF (15ng/ml), or both. 

DMSO was added to control cells. After 4 days, 12.5nM Panobinostat was added and cells 

were harvested 24 hrs later. Cell viability and cell number were controlled by trypan blue 

exclusion and using an automated cell counter Countess II (ThermoFisher Scientific). The 

number of apoptotic, necrotic and viable cells was determined by flow cytometry after 

fluorescent detection of annexin V and PI staining using the Annexin V-FITC Apoptosis 

Detection Kit (BD Biosciences). Data were analyzed using the FlowJo software (FlowJo, 

LLC, Ashland, Ore.)

scRNA-seq pre-processing and gene expression quantification

BAM files were converted to merged, demultiplexed FASTQ files. The paired-end reads 

obtained with SMART-Seq2 were mapped to the UCSC hg19 human transcriptome using 

Bowtie60, and transcript-per-million (TPM) values were calculated with RSEM v1.2.8 in 

paired-end mode61. The paired-end reads obtained with droplet scRNA-Seq (10x Genomics) 

were mapped to the UCSC hg19 human transcriptome using STAR62, and gene counts/TPM 

values were obtained using CellRanger (cellranger-2.1.0, 10x Genomics).

For bulk RNA-Seq, expression levels were quantified as E=log2(TPM+1). For scRNA-seq 

data, expression levels were quantified as E=log2(TPMi,j/10+1). TPM values were divided 

by 10 because the complexity of our single-cell libraries is estimated to be within the order 

of 100,000 transcripts63. The 10−1 factoring prevents counting each transcript ~10 times and 

overestimating differences between positive and zero TPM values. The average expression 

of a gene i across a population P of N cells, was defined as

Ei,P = log2 1 + j∈PTPMi,j
N

For each cell, we quantified the number of genes with at least one mapped read, and the 

average expression level of a curated list of housekeeping genes30. We excluded all cells 

with either fewer than 1,700 detected genes or an average housekeeping expression (E, as 

defined above) below 3 (Supplementary Table 1). For the remaining cells, we calculated the 

average expression of each gene (Ep), and excluded genes with an average expression below 

4, which defined a different set of genes in different analyses depending on the subset of 

cells included. In cases where we analyzed different cell subsets together, we removed genes 

only if they had an average Ep below 4 in each of the different cell subsets included in the 

analysis. Different cell types and malignant cells from different tumors were considered as 

different cell subsets in this regard.

For completeness we also provide extended gene signatures (Supplementary Tables 3,4, 

“low QC genes”), where we list genes that did not pass the cutoffs described above, yet 
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show a significant association with the overall expression of the pertaining signature (mixed-

effect models controlling for cell quality, see Multilevel mixed-effects models section).

WES data pre-processing

A BAM file was produced with the Picard pipeline (http://picard.sourceforge.net/), 

which aligns the tumor and normal sequences to the hg19 human genome build using 

Illumina sequencing reads. The BAM was uploaded into the Firehose pipeline (http://

www.broadinstitute.org/cancer/cga/Firehose). Quality control modules within Firehose were 

applied to all sequencing data for comparison of the origin for tumor and normal genotypes 

and to assess fingerprinting concordance. Cross-contamination of samples was estimated 

using ContEst64.

Somatic alteration assessment

MuTect65 was applied to identify somatic single-nucleotide 

variants. Indelocator (http://www.broadinstitute.org/cancer/cga/indelocator), Strelka66, 

and MuTect2 (https://software.broadinstitute.org/gatk/documentation/tooldocs/current/

org_broadinstitute_gatk_tools_walkers_cancer_m2_MuTect2) were applied to identify small 

insertions or deletions. A voting scheme was used with inferred indels requiring a call by at 

least 2 out of 3 algorithms.

Artifacts introduced by DNA oxidation during sequencing were computationally removed 

using a filter-based method67. In the analysis of primary tumors that are formalin-fixed, 

paraffin-embedded samples (FFPE) we further applied a filter to remove FFPE-related 

artifacts68. Reads around mutated sites were realigned with Novoalign (www.novocraft.com/

products/novoalign/) to filter out false positive that are due to regions of low reliability in 

read alignment. At the last step, we filtered mutations that are present in a comprehensive 

WES panel of 8,334 normal samples (using the Agilent technology for WES capture) aiming 

to filter either germline sites or recurrent artifactual sites. We further used a smaller WES 

panel of 355 normal samples that are based on Illumina technology for WES capture, 

and another panel of 140 normal samples sequenced without our cohort69 to further 

capture possible batch-specific artifacts. Annotation of identified variants was done using 

Oncotator70 (http://www.broadinstitute.org/cancer/cga/oncotator).

Copy number and copy ratio analysis

To infer somatic copy number from WES, we used ReCapSeg (http://

gatkforums.broadinstitute.org/categories/recapseg-documentation), calculating proportional 

coverage for each target region (i.e., reads in the target/total reads) followed by segment 

normalization using the median coverage in a panel of normal samples. The resulting copy 

ratios were segmented using the circular binary segmentation algorithm71. To infer allele-

specific copy ratios, we mapped all germline heterozygous sites in the germline normal 

sample using GATK Haplotype Caller72 and then evaluated the read counts at the germline 

heterozygous sites in order to assess the copy profile of each homologous chromosome. The 

allele-specific copy profiles were segmented to produce allele specific copy ratios.
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Gene sets Overall Expression

We used the following scheme to compute the Overall Expression (OE) of a gene 

set (signature). The OE metric30 filters technical variation and highlights biologically 

meaningful patterns. The procedure is based on the notion that the measured expression 

of a specific gene is correlated with its true expression (signal), but also contains a technical 

(noise) component. The latter may be due to various stochastic processes in the capture and 

amplification of the gene’s transcripts, sample quality, as well as variation in sequencing 

depth. The OE of a gene signature is computed in a way that accounts for the variation in the 

signal-to-noise ratio across genes and cells.

Given a gene signature and a gene expression matrix E (as defined above), we first binned 

the genes into 50 expression bins according to their average expression across the cells or 

samples. The average expression of a gene across a set of cells within a sample is Ei,p (see: 

scRNA-seq pre-processing and gene expression quantification) and the average expression 

of a gene across a set of N tumor samples was defined as: Ej Eij =
j

Eij
N . Given a gene 

signature S that consists of K genes, with kb genes in bin b, we sample random S-compatible 
signatures for normalization. A random signature is S-compatible with a signature S if it 

consists of overall K genes, such that in each bin b it has exactly kb genes. The OE of 

signature S in cell or sample j is then defined as:

OEj = i∈SCij
ES i ∈ SCij

Where S is a random S-compatible signature, and Cij is the centered expression of gene i 
in cell or sample j, defined as Cij = Eij − E Eij . Because the computation is based on the 

centered gene expression matrix C, genes that generally have a higher expression compared 

to other genes will not skew or dominate the signal. We found that 100 random S-compatible 

signatures are sufficient to yield a robust estimate of the expected value ES i ∈ SCij . The 

distribution of the OE values was normal or a mixture of normal distributions, facilitating 

subsequent analyses.

We use the term transcriptional program (e.g., the core oncogenic program) to denote cell 

states defined by a pair of signatures, such that one (S-up) is overexpressed and the other 

(S-down) is underexpressed. The OE of a program is then the OE of S-up minus the OE of 

S-down.

In cases where the OE of a given signature/program has a bimodal distribution across the 

cell population, it can be used to naturally separate the cells into two subsets. To this end, we 

applied the Expectation Maximization (EM) algorithm for mixtures of normal distributions 

to define the two underlying normal distributions. We then assigned cells to two subsets, 

depending on the distribution (high or low) they were assigned to.
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Cell type assignments

Cell type assignments were performed based on genetic and transcriptional features, 

according to the following four analyses:

(1) Fusion detection.—Fusion detection was performed with STAR-Fusion24, to detect 

any transcript that indicates the fusion of two genes. The detection of gene-fusions in single 

cells is based on the detection of mRNA reads that either span or include the junction 

between the SS18 and SSX1/2 genes. It is therefore impacted by technical variabilities 

and stochasticity inherent to single-cell RNA-seq methods (e.g., the effective sequencing 

depth, drop-out rate and amplification noise of each cell). Indeed, within the cells that 

were identified as malignant by other approaches (listed below), the detection of the fusion 

is tightly linked to the number of genes and reads sequenced per cell (P < 1*10−10, mixed-

effects). Because the fusion is detected in a subset of malignant cells in each expression 

cluster (Fig. 1d) and because cells with or without detected fusion do not form separate 

clusters, the detection of the fusion in a subset of cells in a cluster allowed us to confidently 

annotate clusters as either malignant or non-malignant.

(2) Copy Number Alterations (CNA) inference.—To infer CNAs from the scRNA-

seq data we used the approach described in25, as implemented in the R code provided in 

https://github.com/broadinstitute/inferCNV with the default parameters. To avoid circularity, 

we first used only a small set of cells that were annotated as fibroblasts as the reference 

set. These cells formed a cluster that was completely deprived of fusion transcripts, 

and expressed multiple fibroblast markers. We used the resulting CNAs to examine the 

consistency between the different cell type annotation approaches. In the next iteration we 

inferred CNA using all the cells that were annotated as non-malignant (according to multiple 

other analyses) as reference cells, such that each cell type compromises and independent 

reference group. These two CNA-inference approaches resulted in the same CNA-based 

cell-type-annotations. In addition, when using only a subset of the non-malignant cells as 

reference, we do not find any CNA in the non-malignant cells that were not provided as 

reference, as shown in Fig. 1g (bottom).

To identify malignant cells based on CNA patterns, we defined the overall CNA level 

of a given cell as the sum of the absolute CNA estimates across all genomic windows. 

Within each tumor, we identified CD45− cells with the highest overall CNA level (top 

10%), and considered their average CNA profile as the CNA profile of the pertaining 

tumor. For each cell we then computed a CNA-R-score defined as the Spearman correlation 

coefficient obtained when comparing its CNA profile to the inferred CNA profile of its 

tumor. Cells with a high CNA-R-score (greater than the 25% of the CD45− cell population) 

were considered as malignant according to the CNA criterion. As certain tumors/malignant 

cells have a stable genome, we did not use the CNA criterion to identify non-malignant 

cells. Large-scale CNAs were visualized (Fig. 1g) as described in https://github.com/

broadinstitute/infercnv/wiki/infercnv-i6-HMM-type, such that the HMM was parameterized 

with a state transition probability of 1*10−6, and the Bayesian network was configured to 

use an uninformative Dirichlet prior, and run for 1000 iterations after a burn-in of 500 

iterations.
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(3) Differential similarity to bulk tumors.—We compared the scRNA-Seq profiles to 

those of bulk sarcoma tumors21. RNA-Seq of bulk sarcoma tumors was downloaded from 

TCGA (http://xena.ucsc.edu). For each cell in our scRNA-Seq cohort we: (i) computed the 

Spearman correlation between its expression profile and the expression profiles of the bulk 

sarcoma tumors, and (ii) examined if the rs coefficients obtained when comparing the cell to 

SyS tumors were higher than those obtained when comparing the cell to non-SyS sarcoma 

tumors, using a one-sided Wilcoxon ranksum test. Cells with a ranksum p-value < 0.05 were 

considered as potentially malignant, and as potentially non-malignant otherwise.

(4) Expression profile clustering.—We clustered the cells by applying a shared 

nearest neighbor (SNN) modularity optimization algorithm73, as implemented in the 

Seurat R package. First, Principle Component Analysis (PCA) was performed using the 

(2,000) topmost overdispersed genes. These genes were identified using the Seurat package 

FindVariableFeatures function. In this procedure local polynomial regression (LOESS) is 

used to estimate the expected variance given the average gene expression values across 

the cells, on a log-log scale. Deviation from the expected value is then used to identify 

overdispersed genes. Next, k-nearest neighbors (kNN) were calculated based on the top 25 

PCs to construct a k-NN graph, which was then used to identify clusters that optimize the 

modularity function. Similar results were obtained when using different numbers of PCs and 

overdispersed genes (data not shown).

Next, clusters were assigned to cell types, such that clusters where the majority of cells 

had the SS18-SSX1/2 fusion (by the method in (1)) were considered as malignant clusters. 

Non-malignant clusters were assigned to cell types by computing the OE of well-established 

cell type markers across the non-malignant cells (Supplementary Table 2). The OE of each 

of these cell type signatures had a bimodal distribution across the cell population. Applying 

the Expectation Maximization (EM) algorithm for mixtures of normal distributions, we 

defined the two underlying normal distributions, and assigned cells to cell types. Each 

non-malignant cluster was enriched for cells of a particular cell type, and was assigned to 

that cell type.

We used these four converging criteria to assign the cells to nine cell subsets: malignant 

cells, epithelial cells, Cancer Associated Fibroblasts (CAFs), CD8 and CD4 T cells, B cells, 

NK cells, macrophages, and mastocytes. Specifically, a cell was labeled malignant if it was 

CD45− and classified as malignant according to analyses (3) and (4) above. A cell was 

labeled non-malignant if it was classified as non-malignant according to analyses (1–4) 

above. Non-malignant cells were then further assigned to cell types based on their cluster 

assignment by (4). Cells with inconsistent assignments (157 in the SMART-Seq dataset 

and 558 in the droplet-based dataset) were removed from further analyses. Lastly, within 

malignant cells we identified epithelial cells by clustering each of the biphasic tumors into 

two clusters.

Cell type assignments were preformed separately for the SMART-Seq2 and droplet scRNA-

Seq datasets cohort. Fusion detection was performed only with the full-length SMART-Seq2 

data.
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Cell type signatures

Cell type signatures were generated based on pairwise comparisons between identified cell 

subtypes: malignant cells, epithelial cells, CAFs, CD8 and CD4 T cells, B cells, NK cells, 

macrophages, and mastocytes. For each pair of cell subtypes we identified differentially 

expressed genes using the likelihood-ratio test74, as implemented in the Seurat package 

(http://www.satijalab.org/seurat). Genes were considered as cell type specific if they were 

overexpressed in a particular cell subtype compared to all other cell subtypes (log-fold 

change > 0.25 and p-value < 0.05, following Bonferroni correction). We defined a general T 

cell signature for both CD4 and CD8 cells by identifying genes that were overexpressed in 

both CD4 and CD8 compared to all other (non T) cells. A more permissive version of this 

generic T cell signature includes genes which were overexpressed in CD4 or CD8 T cells 

compared to all other (non T) cells.

Inferring tumor composition

Tumor composition was assessed based on the Overall Expression of the different cell 

type specific signatures we identified from the scRNA-seq data (Supplementary Table 2). 

For example, the CD8 T cell signature was used to infer the level of CD8 T cells in the 

tumor, and likewise for other cell types. To estimate tumor purity, we used the malignant 

SyS signature identified here (Supplementary Table 2), which consists of genes that are 

exclusively expressed by malignant SyS cells compared to non-malignant cells in SyS 

tumors.

To evaluate the performance of this approach, we simulated 200 bulk RNA-Seq profiles. 

For each simulated bulk RNA-Seq profile we: (1) randomly chose one of the tumors in the 

cohort; (2) sampled 100 cells from different cell types profiled in this tumor – these cells 

include a mix of immune, stroma and malignant cells, at a randomly chosen composition; 

(3) summed the scRNA-Seq profiles of this randomly chosen population (P) of 100 cells, 

such that the bulk expression of gene i across this population was defined as

Ei,P = log2 1 + j∈PTPMi,j
100

We also used cell type signatures we previously derived from melanoma scRNA-Seq data30 

to predict the tumor composition of the simulated SyS bulk RNA-Seq profiles, and vice 

versa. We then compared the predictions to the known cell type composition. The predicted 

composition was highly correlated with the known composition (r > 0.9, P < 1*10−30, 

Spearman correlation) for all cell types.

Multilevel mixed-effects models

To examine the association between two cell features, denoted here as x and y, across 

different patients or experiments we used multilevel mixed-effects regression models 

(random intercepts models). The models include patient/experiment-specific intercepts to 

control for the dependency between the scRNA-seq profiles of cells that were obtained 

from the same patient/experiment. The models also control for data quality by providing 
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the number of reads (log-transformed) that were detected in each cell as a covariate. To 

compute the association between features x and y we provided x as another covariate 

and used y as the dependent variable. The models were implemented using the lme4 

and lmerTest R packages (https://CRAN.R-project.org/package=lme4, https://CRAN.R-

project.org/package=lmerTest).

For example, to test if malignant cycling cells were more frequent in treatment naïve 

samples, we used a logistic mixed-effects model as described above. The dependent variable 

y was the cycling status of the malignant cells. The independent covariate x was a binary 

variable denoting if the sample was obtained before or after treatment. Only malignant cells 

were included in this model.

T Cell Receptor (TCR) reconstruction and T cell expansion program

TCR reconstruction was performed using TraCeR38, with the Python package in https://

github.com/Teichlab/tracer. To characterize the transcriptional state of clonally expanded T 

cells, we first identified the clonality level of the T cells in our cohort. T cells that were 

obtained from tumors with a larger number of T cells with reconstructed TCRs were more 

likely to be defined as expanded. To control for this confounder, we performed the following 

down-sampling procedure. First, we removed T cells without a reconstructed alpha or beta 

TCR chain, and samples with less than 20 T cells with a reconstructed TCR. Next, we 

computed the probability that a given cell will be a part of a clone when subsampling 20 

T cells from each tumor. T cells with a high probability to be a part of a clone (above 

the median) were considered expanded, and non-expanded otherwise. To identify the genes 

differentially expressed in expanded CD8 T cells we used mixed-effects models with a 

binary covariate, denoting if the cell was classified as expanded or not.

CD8 T cell analyses

The analysis of T cell exhaustion vs. T cell cytotoxicity was performed as previously 

described 75, with the exhaustion signature provided in75. First, we computed the 

cytotoxicity and exhaustion scores of each CD8 T cell. Next, to control for the 

association between the expression of exhaustion and cytotoxicity markers, we estimated 

the relationship between the cytotoxicity and exhaustion scores using locally-weighted 

polynomial regression (LOWESS, black line in Fig. 4b). Based on these values we classified 

the CD8 T cells into four groups: Cells with a low cytotoxicity score (below the 25th 

percentile) were classified as naïve or memory-like cells, while the others were considered 

effector or exhausted if their cytotoxicity scores were significantly higher or lower than 

expected given their exhaustion scores, respectively. According to this classification, we 

examined if the clonal expansion program was higher in the effector-like cells. In addition, 

we compared the SyS CD8 T cells to CD8 T cells from human melanoma tumors30 using 

mixed-effects models with a sample-level covariate denoting if the sample was obtained 

from a SyS or melanoma tumor.

Malignant epithelial and mesenchymal differentiation programs

The epithelial and mesenchymal signatures were obtained through intra-tumor differential 

expression analysis, using the likelihood-ratio test for single cell gene expression74, as 
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implemented in the Seurat package (http://www.satijalab.org/seurat). We compared the 

mesenchymal to epithelial cells in each of the three biphasic tumor samples (SyS1, SyS12 

and SyS12pt). The tumor SyS16 was not included in this analysis (although it was annotated 

as partially biphasic according to its histology), because its scRNA-Seq sample did not 

include any epithelial malignant cells, potentially due to misclassification of SyS16 as 

biphasic, biased tumor sampling, or less transcriptionally distinct epithelial cells in this 

tumor.

Genes that were up-regulated in the epithelial cells compared to the mesenchymal cells in all 

three samples were defined as epithelial genes, and likewise for mesenchymal genes. When 

using the epithelial and mesenchymal signatures in the analysis of bulk gene expression 

we removed from these signatures those genes that are also part of non-malignant cell type 

signatures.

Using these signatures, we defined: (1) the epithelial vs. mesenchymal differentiation score 

as the OE of the epithelial signature minus the OE of the mesenchymal signature, and (2) the 

differentiation score as the OE of the epithelial signature plus the OE of the mesenchymal 

signature. An alternative way to define the differentiation score of a particular cell is first 

to assign it to the epithelial or mesenchymal subset, and then use only the pertaining 

signature to estimate its differentiation level. However, this approach will not distinguish 

between poorly-differentiated mesenchymal cells, and mesenchymal cells which have begun 

to transition to an epithelial state. Hence, we used the inclusive definition of differentiation.

Based on the genes in the epithelial and mesenchymal signatures we then generated 

diffusion maps76 for each one of the tumors in our cohort, using the density R 

package (https://bioconductor.org/packages/release/bioc/html/destiny.html) with the default 

parameters.

Identifying co-regulated gene modules

To identify co-regulated gene modules that capture intra-tumor heterogeneity we applied 

both a PCA-based and an NMF-based approach. As this analysis was geared to identify new 

types of intratumor variation beyond the epithelial/mesenchymal one, the biphasic tumors 

(SyS1, SyS12, and SyS12pt) were represented by two “samples”, one of epithelial and 

anther of mesenchymal cells.

In our PCA-based approach we first identified overdispersed gene modules separately in 

each of the tumors in our cohort using PAGODA33 as implemented in https://github.com/

hmsdbmi/scde. The number and size of the gene modules was determined based on the 

significance of their overdispersion across the cells. Redundant modules that represent the 

same co-variation across the cells were merged. To identify genes that were repeatedly 

co-regulated we then constructed a gene-gene co-regulation graph. In this graph, an edge 

between two genes denotes that the two genes appeared together in the same gene module 

in at least five samples (similar results were obtained with lower and higher cutoffs). Next, 

we identified dense clusters in the graph using the Newman-Girvan34 community clustering, 

and filtered out small gene clusters (< 20 genes). Lastly, for each gene cluster we identified 

the opposing gene module by identifying genes that were negatively correlated with its 
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Overall Expression (OE) across the malignant cells. Correlation was computed using partial 

Spearman correlation, when controlling for the number of genes and (log-transformed) 

reads detected per cells, and correcting for multiple hypotheses testing using the Benjamini-

Hochberg procedure77.

For comparison we applied another complementary NMF-based approach, LIGER35,36, 

which identifies repeating gene modules in the malignant cells using integrative non-

negative matrix factorization (NMF)36. Integrative NMF learns a low-dimensional space, 

where cells are defined by one set of dataset-specific factors (denoted as Vi), and another set 

of shared factors (denoted as W). Each factor, or metagene, represents a distinct pattern of 

gene co-regulation. To find these metagenes it solves the following optimization problem

argminHi, V i, W ≥ 0 i Ei − Hi W + V i F
2 + λ i HiV i F

2

Where Ei denotes the expression matrix (log-transformed TPM) of the malignant cells 

in sample i, Vi denotes sample-specific metagenes and W denotes the shared metagenes 

across all samples. We used the top 100 genes of each metagene in W as the iNMF 

signatures, and then computed the overall expression of these signatures in the malignant 

cells. The resulting signatures and their expression across the malignant cells matched the 

core-oncogenic and cell cycle programs that were identified in the PCA-based approach (R 

> 0.93, P < 1*10−20, Pearson correlation; Extended Data Fig. 3a), but did not completely 

recapitulate the other PCA-based signatures.

Predicting patient prognosis

To test if a given program predicts metastasis free-survival or overall survival, we first 

computed the OE of the program in each tumor based on the bulk gene expression data. 

Next, we used a Cox regression model with censored data to compute the significance of 

the association between the expression values and survival. To visualize the predictions of a 

specific signature in a Kaplan Meier (KM) plot, we stratified the patients into three groups 

according to the program expression: high or low expression correspond to the top or bottom 

20% of the population, respectively, and intermediate otherwise. We used a log-rank test to 

examine if there was a significant difference between the survival rates of the three patient 

groups.

Analysis of in situ immunofluorescence imaging

Immune cells were detected based on the protein level of CD45 (>7.5 log-transformed). 

Malignant cells were identified based on histological morphology, and high protein levels 

of Hes1. High protein expression was detected by applying the EM algorithm for mixtures 

of normal distributions. The core oncogenic program score was computed only in the 

malignant cells based on the combined expression of its repressed protein markers: Hsp90, 

p21, NFkB, and cJun (minus sum of centered log-transformed values). Each image – 

corresponding to a specific sample in the scRNA-Seq cohort – was divided to frames of 

100 cells. The average expression of the core oncogenic program in the malignant cells 

and the fraction of immune cells in each frame was computed. Using these frame-level 
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values we examined the association between the expression of the core oncogenic program 

in the malignant cells and the fraction of the immune cells, using a mixed-effects model, 

with a sample-level intercept (see Multilevel mixed-effects models). The mixed-effect model 

accounts for the nested structure of the data (frames are associated with samples), and 

ensures the pattern repeatedly appears across different samples.

Analysis of in situ RNA profiling

FASTQ files from multiple lanes were merged to generate single files for processing and 

insure proper removal of PCR duplicates later in the pipeline. Illumina adapter sequences 

were trimmed using Trim Galore (version 0.4.5) with a minimum base pair overlap 

stringency of four bases and a base quality threshold of 20. Paired end reads were stitched 

using Paired-End reAd mergeR (PEAR, version 0.9.10) specifying a minimum stitched read 

length of 24bp and a maximum stitched read length of 28bp. The 14bp UMI sequence was 

extracted from the stitched FASTQ files from the 5’ end of the sequence reads using umi 

tools (version 0.5.3). The FASTQ files with extracted UMIs were then aligned to a genome 

containing the 12bp reference sequence tags using bowtie2 (version 2.3.4.1) in end-to-end 

mode with a seed length of four. Using a custom python function, the generated SAM files 

were split into multiple SAM files based on the tag to which they aligned to limit memory 

usage when removing PCR duplicates. The split SAM files were converted to bam files, 

sorted, and indexed using samtools (version 1.9) with the import, sort, and index options 

respectively. PCR duplicates were removed from the sorted and indexed bam files using the 

dedup command from umi tools with an edit distance threshold of three. An edit distance 

threshold of three was used. Using custom python functions, the SAM files with PCR 

duplicates removed were merged for each sample and used to generate digital counts of the 

tags.

Outlier counts were removed before generating a consensus count for each target. Outlier 

tags were identified as those with counts 90% below the mean of the probe group in at least 

20% of the AOIs analyzed and removed them from the analysis. Subsequently, we removed 

tags from the analysis if they were flagged as outliers in at least 20% of the AOIs analyzed. 

This was done using the Rosner Test if there were at least 10 probes for the target (k = 0.2 * 

Number of Probes, alpha = 0.01), or the Grubbs test if there were less than 10 probes for the 

target. Probes flagged as outliers in less than 20% of the AOIs analyzed were only removed 

from the analysis for the AOIs in which they were flagged. Count reported for each target 

transcript were calculated as the geometric mean of the remaining probes. The counts for 

each target transcript in each AOI were then normalized to the count of all genes in that AOI.

The normalized in situ RNA measures were used to compute the overall expression of the 

malignant programs in each of the malignant areas of interest (AOIs), as described in the 

Gene sets Overall Expression section. To examine whether the core oncogenic program 

captures more in situ intratumoral variation than expected, we compared its intratumor 

variance in the malignant cells to that of 1,000 other S-compatible signatures. Each tumor 

was considered separately, resulting in a set of empirical p-value (one per tumor), which 

we merged using the Fisher combined probability test. For each malignant AOI we also 

computed the abundance of CD45+ cells in the respective ROI based on the CD45 staining, 
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and examine the association between the OE of the core oncogenic program in the malignant 

AOIs and CD45+ cell abundance as well as the expression of TNF and IFNG in the adjacent 

CD45+ AOIs, which reside in the same ROI. This was done using a multilevel model that 

accounts for the sample identify, technical variability (i.e., log-transformed total number of 

reads detected in each AOI), and the epithelial vs. mesenchymal status (i.e., PanCK+ or 

PanCK−)

Identifying SS18-SSX targets

The fusion program consists of genes that were differentially expressed in the Aska or 

SYO1 cells with the SS18-SSX shRNA (shSSX) compared to those with control shRNA 

(shCt) 3 or 7 days post-infection. Gene that were previously reported16,17 to be bound by 

the SS18-SSX oncoprotein in at least two SyS cell lines were defined as direct SS18-SSX 

targets, and were used to stratify the SS18-SSX program to direct and indirect targets.

Mapping cancer-immune interactions

The association between the core oncogenic program in the malignant cells and the 

expression of different ligands/cytokines in the immune cells was examined using the 

multilevel mixed-effects regression model described above, using the scRNA-Seq data 

collected from SyS tumors. The dependent variable y was the OE of the core oncogenic 

program and the covariate x was the average expression of a certain ligand/cytokine in 

a specific type of immune cells (e.g., macrophages) that were profiled from the same 

tumor. The model also corrected for inter-patient dependencies using the patient-specific 

intercepts and for cell complexity (log(number of reads)). We restricted the analysis to 

ligands/cytokines that can physically bind to proteins expressed by the malignant cells78. 

The immune cells were either macrophages or CD8 T cells, as other immune cell types were 

not sufficiently represented in the data.

We used a similar approach to further stratify the program to its TNF/IFN-dependent 

and independent components. We repeated the same analysis described above, using each 

one of the genes in the core oncogenic program as the dependent variable. Genes which 

were associated with both TNF and IFN (P < 0.05, following Bonferroni correction) 

were considered as TNF/IFN-dependent, and genes which were not associated with both 

cytokines (P > 0.05) were considered as TNF/IFN-independent.

TNF and IFNγ impact on SyS cell cultures

SyS cell cultures were treated with TNF and IFNγ, separately and in combination (see 

In vitro IFN/TNF experiment section), and profiled with scRNA-Seq. Given this data, 

differentially expressed genes and gene sets were identified using mixed-effects regression 

models (Multilevel mixed-effects models section), with experiment-specific intercepts. The 

dependent variable y was the expression of a gene or the OE of a gene set. The model 

included three treatment covariates: only TNF, only IFN, and a combination of TNF and 

IFN. Another binary covariate denoted the duration of the treatment (1 for < 24h duration 

and 0 otherwise). The model corrected for differences between the different SyS cultures 

and experiments, and identified patterns that repeatedly appeared across the different 
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experiments. The effect-size and significance of the combination covariate denotes the effect 

of the combination, and not the synergy between the two cytokines.

To examine if the combined treatment with TNF and IFNγ had synergistic effects, we used 

only the control cells and the cells treated for 4 days with one or two of the cytokines. This 

model also included 3 binary treatment covariates (TNF, IFN, and the combination), but 

this time cells that were treated with the combination were positive for all three treatment 

covariates. The effect-size and significance of the combination covariate hence denotes the 

synergistic effect of the combination.

Reconstructing regulatory networks

To reconstruct the gene regulatory network controlling the core oncogenic program we 

assembled a database of transcription factor (TF) to target mapping based on four sources: 

JASPAR49, HTRIdb46, MSigDB50, and TRRUST47, and augmented it with the direct SS18-

SSX targets identified here (Supplementary Table 5) and TF-target pairs we identified 

in a cis-regulatory motif analysis of the core oncogenic program. Specifically, for the cis-
regulatory analysis, we used RcisTarget48 (a R/Bioconductor implementation of icisTarget52 

and iRegulon53) to identify cis-regulatory elements significantly overrepresented in a 

window of 500bp around the transcription start site of the core oncogenic genes (normalized 

enrichment score > 3.0) along with their cognate TFs.

We pruned the resulting network to include only core oncogenic program genes (and 

SS18-SSX) (i.e., all TFs and targets aside from SS18-SSX are program genes). An edge 

in the network between a TF and its target denotes that: (1) the TF is regulating the target 

according to at least one of the sources described above, and (2) there is an association 

between their expression levels in the scRNA-Seq data of SyS tumors. Edges are weighted 

1 and −1 to reflect positive and negative associations. We used pageRank51 (with the R 

implementation as provided in igraph (https://igraph.org/r/)) as a measure of TF and target 

importance in the network. To compute TF importance, we first flipped the direction of 

the edges in the network, going from target to TFs. Consistent with the network weights, 

targets from the up- or down-regulated side of the network were considered induced or 

repressed, respectively. Likewise, TFs from the up- or down-regulated side of the network 

were considered activators and repressors, respectively.

Selectivity and synergy in drug experiments

To evaluate the impact of each drug on the expression of a certain program or gene in 

different cell lines (SYO1, HSSYII, or MSCs), we used a regression model with four binary 

treatment covariates: abemaciclib, TNF, panobinostat, and the combination of all three 

drugs. As in the case of TNF/IFN analysis, to examine the synergy of the combination, 

the cells treated with the combination were positive for all four treatment covariates. The 

model also included the number of reads detected in each cell (log-transformed) to control 

for technical variation. When examining the impact on the two SyS cell lines together, we 

used a mixed-effects model with a cell line specific intercept, to control for cell line specific 

baseline states. Drug selectivity was examined by using a mixed-effects model that accounts 

for all three cell lines and has another covariate to denote if the treated cells were SyS or not.
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Co-culture experiments: prior cell culture and HLA typing

CME-1 cells (a generous gift from Dr. Armando Bartolazzi, Pathology Research 

Laboratory, Cancer Center Karolinska, Karolinska Hospital, Stockholm, Sweden) were 

maintained in vitro with RPMI-1640 medium supplemented with 10% FBS, 2 mM 

Glutamax, and 100 units/ml penicillin/streptomycin. CME-1 cells were HLA typed to 

confirm the HLA-A*02:01 genotype by performing Sanger sequencing on genomic 

DNA amplified with primers for forward: ACCGTCCAGAGGATGTATGG and reverse: 

CCAGGTAGGCTCTCAACTGC to ensure cells were at minimum, heterozygous.

Plasmid cloning and lentiviral vectors

CME-1 cells were transduced with the lentivirus in a serial dilution to express the NY-

ESO-1 cDNA that encoded the relevant NY-ESO-1 protein (NYEP, processed peptide 

sequence SLLMWITQC) that is recognized by the 1G4 TCR when presented by HLA-

A*02:01. Briefly, the CME-1 NY-ESO-1+ tumor line was generated by joining the cDNA 

encoding NY-ESO-1 (Accession number: NM_139250.2) and luciferase through a 2A 

ribosomal skip sequence and cloned into the pHAGE-MCS lentiviral vector under the 

control of the EF-1ɑ promoter. The purified amplicon from a single colony was ligated 

into the vector backbone using the NotI and XbaI restriction enzymes. The plasmid was 

transfected with packaging plasmids pCMV-dR8.91 and pCMV-VSV-G (Addgene #8454) 

into HEK293FT cells. This lentiviral vector also encoded the non-functional human nerve 

growth factor receptor (NGFR) extracellular domain down stream of an IRES to enable 

isolation of transduced cells. CME-1 NGFR+ cells were purified by FACS to > 99% purity 

to select a population with uniform NY-ESO-1 expression. CME-1 NGFR+ tumor cells were 

utilized between 2 and 5 passages for all experiments, and NGFR marker expression was 

periodically verified to be expressed by > 99% of the cells.

To generate the NY-ESO-1 [1G4] T cell receptor cells, the NY-ESO-1 TCR (1G4 TCR) 

cDNA (Robbins, Paul F, JI 2008) was synthesized, gel purified, and inserted into the 

pHAGE-MCS lentiviral vector backbone under the control of the EF-1ɑ promoter using 

NheI and ClaI restriction enzymes. The DNA sequence of the construct was confirmed for a 

single bacterial colony. Lentivirus was packaged as described above and stored at −80°C.

Isolation of primary human T cells for co-culture experiments

Primary human T cells were isolated from fresh leukophoresis blood collars provided 

by the Brigham and Women’s Hospital blood bank. Briefly, PBMCs were isolated using 

SepMate PBMC isolation tubes (Stemcell Technologies; Vancouver, Canada). T cells 

were isolated using the Human T cell isolation kit (EasySep, cat#17951) following the 

manufacturer’s instructions. Human T cells were maintained in vitro in RPMI-1640 medium 

supplemented with 9% fetal bovine serum (FBS), 1% human serum, 50 units/ml penicillin/

streptomycin (Pen/Strep), 5 mM HEPES, 2 mM Glutamax, 5 mM non-essential amino 

acids, 5 mM sodium pyruvate, 50 μM β-mercaptoethanol, and 30 units/ml of recombinant 

human IL-2 (Peprotech; Rocky Hill, NJ). T cells were subsequently stimulated with 

human dynabeads (Life Technologies) at a ratio of 1:1 in the presence of 30 U/ml 

IL-2 for 3 days. The endogenous T cell receptor (TCR) was inactivated as described79. 

Briefly, the guide RNA directed against the T cell receptor ɑ constant (TRAC) locus was 
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electroporated into the human T cells using an Amaxa 4-D nucleofector with the sequence 

5′- TGTCTATAGGTCTTGGGAC-3’. The T cells were cultured in IL-2 (30 U/ml) for 3 

days following electroporation. Next, the T cells were transduced with NY-ESO-1 TCR 

lentivirus (described above) and expanded with dynabeads (1:1 ratio) and IL-2 for 10 days. 

Prior to co-culture assay, the T cells were rested for 3 days by removing the magnetic 

dynabeads following the manufacturer’s instructions and cultured in IL-2.

Preparation of CME-1 cells and setup of co-culture

CME-1 cells were collected and 1.5 × 105 cells were seeded into each well of 6-well plates 

and cultured overnight. The next day (day 1), the media was replaced containing 100nM 

Abemaciclib or vehicle control (DMSO) and refreshed again on day 4. The media was 

next refreshed on day 5 containing 100nM Abemaciclib and 12.5nM Panobinostat. Vehicle 

control groups were refreshed with media containing DMSO.

The cells were harvested on day 6, counted, and the drugs washed off two times. The 

vehicle control or drugged CME-1 cells were seeded into 96-well flat bottom plates at 2.5e4 

cells per well and allowed to attach to the plate for 3 hours. The NY-ESO-1 TCR+ T cells 

(described above) were seeded into each well of the 96-well plate and cultured for 72 hours.

Analysis of co-culture

The supernatants from the co-culture plates were collected and used for the detection 

of IL-2 and IFNγ by enzyme linked immunosorbent assays (ELISA) according to the 

manufacturer’s instructions (Biolegend). ELISAs were performed in triplicate in Costar high 

binding 96-well assay plates (Corning; Corning, NY). Each well was coated with capture 

antibody (based on lot specific antibody concentration) that was diluted in carbonate buffer 

with pH of 9.5 and incubated overnight at 4°C. Plates were washed with PBS + 0.05% 

Tween-20 and subsequently blocked with 1% BSA in PBS at room temperature for 1 

hour. Following a 2-hour incubation with experimental cell culture supernatants and the 

manufacturer provided standard, plates were washed and incubated with the manufacturer’s 

biotinylated detection antibody for 1 hour at room temperature. The secondary antibody 

was next detected with streptavidin-Europium (Perkin-Elmer; Waltham, MA) and DELFIA 

Enhancement Solution (Perkin-Elmer). Next, the Europium fluorescence was analyzed using 

an EnVision multimode plate reader (Perkin-Elmer).

The cell pellets from the co-cultures were stained for analysis by flow cytometry (Extended 

Data Fig. 6g). Briefly, cells were washed with PBS to remove residual serum and incubated 

with Zombie UV (Biolegend; San Diega, CA) for 10 minutes at room temperature following 

the manufacturer’s instructions. Next, the cells were stained with antibodies against CD3-

APC [HIT3a], CD25-BV785 [BC96], CD69-BV421 [FN50] in PBS containing 2% FBS for 

15 minutes at 4°C, washed twice, and fixed using Fixation and Permeabilization solution 

(BD Bioscience; Franklin Lakes, NJ) for 20 minutes at 4°C. The samples were analyzed 

using an LSR Fortessa (BD Bioscience). Data were analyzed using FlowJo software (Tree 

Star). Antibodies were purchased from Biolegend. For additional information, see “Life 

Sciences Reporting Summary”.
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Overview of statistical tests

Mixed-effects hierarchical models were used to examine changes in overall expression 

across cells from different samples and patients (see Multilevel mixed-effects models 

section). Hypergeometric enrichment tests were used to examine the enrichment of 

specific signatures with pre-annotated gene sets. Differential gene expression was tested 

using likelihood-ratio test74. Wilcoxon ranksum test and t-tests were used for pairwise 

comparisons when comparing protein or overall gene expression readouts, respectively.

Extended Data

Extended Data Fig. 1. Consistent classification of cells based on expression and genetic features.
(a) Converging assignments of cell identity. tSNE of single-cell profiles (dots), colored 

by (1) tumor sample, (2) inferred cell type, (3) SS18-SSX1/2 and MEOX2-AGMO fusion 
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detection, (4) SSX1/2 gene detection (mRNA level > 0), (5) MEOX2 and AGMO gene 

detection (mRNA level > 0), (6–12) overall expression of well-established cell type markers 

(Supplementary Table 2). (b) Droplet based scRNA-Seq of SyS. tSNE of single cells (dots), 

profiled with droplet-based scRNA-seq23, colored according to tumor sample (left) and 

inferred cell type (right). (c) Differential similarity to SyS compared to other sarcomas 

(Online Methods) distinguishes malignant (n = 4,371) from non-malignant (n = 2,375) cells. 

Differential similarity (y axis) to SyS shown for cells in each cell subset (x axis). (d) The 

SyS program distinguishes between SyS and non-SyS cancer types. Distribution of the 

SyS program Overall Expression (y axis) across BAF driven tumors (left, x axis) and in 

TCGA (right, x axis; n = 9,128; 253; and 10, for other, sarcoma, and SyS tumors). In (c-d) 

middle line: median; box edges: 25th and 75th percentiles, whiskers: most extreme points 

that do not exceed ±IQR*1.5; further outliers are marked individually; P-values: one-sided 

Wilcoxon-ranksum test; AUC: Area Under the receiver operating characteristic Curve.

Extended Data Fig. 2. Characterizing mesenchymal, epithelial and poorly differentiates 
malignant cells.
(a) Epithelial and mesenchymal program genes. The expression of the top epithelial and 

mesenchymal program genes (rows) across the malignant cells (columns), with cells sorted 

according to the difference in epithelial vs. mesenchymal OE scores (bottom plot). Topmost 

Color bar: epithelial vs. non-epithelial cell status, and sample. Canonical markers and 

immune-related genes are in red and blue, respectively. (b) Cell cycle signature. Overall 
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Expression of the G2/M (y axis) and G1/S (x axis) phase signatures in each malignant cell, 

colored by their cycling status. (c) Cycling cells are less differentiated. The distribution 

of differentiation scores of cycling (red) and non-cycling (grey) malignant cells, across all 

tumors (top) and within each tumor (bottom; only tumors with at least 10 cycling cells are 

shown); p-value: mixed-effects test.

Extended Data Fig. 3. The core oncogenic program is detected using different approaches and 
datasets.
(a) Agreement between the core oncogenic program detected by a PCA and an iNMF 

approach36. Overall Expression (OE) of the core oncogenic program across malignant 

SyS cells, as identified in the PCA-based approach33 (x axis) and in the integrative-NMF 

approach36 (y axis) (Online Methods). (b-c) Program Overall Expression captures inter-

tumor variation and the MYC-high cluster in 64 SyS tumors from an independent RNA-

Seq cohort16. The tumors were previously classified into two transcriptionally distinct 

clusters16, denoted here as MYC-high and MYC-low. (b) For each tumor (dots), shown 
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is the Overall Expression (OE) of the core oncogenic program (y axis) vs. the projection 

on the second Principle Component (PC2) of the data. (c) Normalized expression (centered 

log-transformed RPKM) of the core oncogenic program genes (columns) most correlated 

with PC2 across the tumors (columns). Tumors are sorted by their PC2 projection (bottom 

bar). (d) The fraction of TLE1+LGALS1+ cells out of TLE1+ ones based on ISH of tumors 

SyS5 and SyS13; Data are presented as mean values +/− SD, such that each dot corresponds 

to one high power field (HPF), with a total of 10 HPF per sample; TLE1 is a SyS cell marker 

and LGALS1 is a positive marker of the core oncogenic program.

Extended Data Fig. 4. Antitumor immunity and immune evasion in SyS.
(a) CD8 T cell clones, stratified based on clone size (x axis) and tumor (color). (b) 
Overall expression of the T cell expansion program in CD8 T cells with a reconstructed 

TCR (TCR+), when stratified based on clonality (Clone+ and Clone−, denoting clone size 
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greater or equal to 1, respectively). (c) The cancer testis antigens CTAG1A, CTAG1B 
(encoding for NY-ESO-1), and PRAME are exclusively expressed by SyS malignant (n 

= 4,371) cells compared to non-malignant ones (n = 2,375). Log-transformed TPM (y 
axis) in different cell subsets (x axis); p-values: one-sided Mann-Whitney test. (d) tSNE 

of macrophage profiles, colored by M1/M2 polarization scores, according to signatures 

defined here (Supplementary Table 4). (e) M1/M2 polarization scores (y axis) according 

to previously defined signatures42 in macrophages in our datasets partitioned to M1-like 

and M2-like subgroups (p-value: two-sided t-test). (f) Spearman correlation coefficient 

(color bar) between each pair of genes from M1 and M2 signatures defined here (top, 

Supplementary Table 4) or previously42 (bottom) across macrophages in SyS (left) and 

melanoma30 (right). (g) Overall Expression of the immune cell signatures (y axis, Online 

Methods) in SyS tumors (orange) and other cancer types (green); p-value: one-sided t-test. 

(c) and (g) middle line: median; box edges: 25th and 75th percentiles, whiskers: most 

extreme points that do not exceed ±IQR*1.5; further outliers are marked individually. (h) 
Prognostic value of T cell levels in different tumor types. Kaplan-Meier (KM) curves of 

survival in melanoma (left; TCGA), sarcoma (middle)21, and SyS (8) (right), stratified by 

high (top 25%, red), low (bottom 25%, blue), or intermediate (remainder, green) levels of 

inferred T cell infiltration levels; P: COX regression. (i) Protein expression (CyCIF) of core 

oncogenic program markers in immune-enriched and deprived niches.
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Extended Data Fig. 5. Characterizing the transcriptional impact of SS18-SSX inhibition and 
tumor microenvironment cytokines on synovial sarcoma cells.
(a) The fusion KD induces innate immune programs. Distribution of Overall Expression 

scores (y axis) in the pathways most differentially expressed between SyS cells with SS18-

SSX (shSSX, grey) vs. control (shCt, blue) shRNA, shown separately for non-cycling and 

cycling cells (x axis). (b) Co-embedding (using PCA and canonical correlation analyses80, 

Online Methods) of Aska (top) and SYO1 (bottom) cell profiles (dots), colored by: (1) 

perturbation; or the Overall Expression (colorbar) of the (2) cell cycle, (3) core oncogenic, 

or (4) mesenchymal differentiation31,32 programs. (c) Biological processes regulated in 

the SS18-SSX program. Gene sets (rows) most enriched (-log10(P-value), hypergeometric 

test, x axis) in induced (left) and repressed (right) SS18-SSX program genes, which are 

either direct (black bars) or indirect (grey bars) targets of SS18-SSX based on ChIP-Seq 

data16,17 and genetic perturbation. Vertical line denotes statistical significance following 

multiple hypotheses correction. (d) The SS18-SSX program distinguishes SyS from other 
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cancer types and other sarcomas. Overall Expression of the SS18-SSX program (y axis) 

in either TCGA samples (n = 9,391, top), stratified by cancer types (x axis), or in 

another independent cohort of sarcoma tumors (n = 164, bottom) (48). Middle line: 

median; box edges: 25th and 75th percentiles, whiskers: most extreme points that do 

not exceed ±IQR*1.5; further outliers are marked individually. **P<0.01, ***P<1*10−3, 

****P<1*10−4, one-sided t-test. (e) Repression of the core oncogenic and SS18-SSX 

programs by short term TNF treatment is not sustained long term. Distribution of Overall 

Expression scores (y axis) of the core oncogenic program and the direct and indirect SS18-

SSX programs (x axis) in control cells (blue) and cells treated with TNF for 4–6 hours (left) 

or more than 24 hours (right).

Extended Data Fig. 6. HDAC and CDK4/6 inhibitors synergistically repress the core oncogenic 
program and induce cell autonomous immune responses.
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(a) The fraction of viable, necrotic, and apoptotic cells, showing four different SyS cell 

lines. (b-d) Distribution of the expression (y axis) of core oncogenic genes (b), as well as 

the Overall Expression of TNF (c) and IFN (d) signaling pathways in SyS cells and MSCs 

(x axis) under different treatments (color legend; n = no. of SYO1, HSSYII, and MSC 

cells). Middle line: median; box edges: 25th and 75th percentiles, whiskers: most extreme 

points that do not exceed ±IQR*1.5; further outliers are marked individually. **P<0.01, 

***P<1*10−3, ****P<1*10−4, onesided t-test. (e) Workflow of the co-culture CME-1-T-cell 

experiment. (f) HLA-A2 and HLA-E protein levels on the cell surface of CME-1 cells under 

different treatments. (g) Standard, FSC vs. SSC gating was performed followed by strict 

FSC-width vs. FSC-area criteria to discriminate doublets and gate only single cells. Top: 

Singlets were gated upon the CD3- population to clearly identify the tumor cell population. 

The percentage of Zombie-UV+ cells were determined on the CD3- population. Bottom: 

Singlets were gated upon the Zombie-UV- (live) CD3+ population to clearly identify the 

viable T cell population.
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Fig. 1. Single-cell map of the cellular ecosystem of synovial sarcoma tumors.
(a) Study workflow. (b-e) Consistent assignment of cell identity. t-SNE plots of scRNA-Seq 

profiles (dots), colored by either (b) tumor sample, (c) inferred cell type, (d) SS18-SSX1/2 

fusion detection, (e) CNA detection, and (f) differential similarity to SyS compared to 

other sarcomas (Online Methods). Dashed ovals (b): mesenchymal and epithelial malignant 

subpopulations of biphasic (BP) tumors. (g) Inferred large-scale CNAs distinguish malignant 

(top) from non-malignant (bottom) cells, and are concordant with WES data (bold). The 

CNAs (red: amplifications, blue: deletions) are shown along the chromosomes (x axis) for 

each cell (y axis).
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Fig. 2. Cellular plasticity and a core oncogenic program characterize synovial sarcoma cells.
(a-d) De-differentiation, cell cycle, and the core oncogenic programs across malignant 

cells. t-SNE plots of malignant cell profiles (dots), colored by: (a) sample, (b) Overall 

Expression of the epithelial vs. mesenchymal differentiation program, (c) cell cycle status, 

or (d) Overall Expression of the core oncogenic program. Dashed ovals (A): mesenchymal 

and epithelial malignant subpopulations of biphasic (BP) tumors or poorly differentiated 

(PD) tumor. (e, f) Association between cell cycle and poor differentiation. (e) G1/S 

(x axis) and G2/M (y axis) phase signature scores for each cell. (f) Epithelial and 

mesenchymal-like differentiation. Scatter plots of the malignant cells’ (dots) scores for 

the epithelial vs. mesenchymal program (x axis) and for overall differentiation (y axis). 

Color: expression of cell cycle program (see also Extended Data Fig. 2b, c). (g) Distinct 

differentiation pattern in biphasic tumors. Single cell profiles dots arranged by the first 

two diffusion-map components (DCs) for representative examples of a biphasic (SyS12, 

left) and monophasic (SyS11, right) tumors, and colored by the Overall Expression of 

the epithelial vs. mesenchymal programs (colorbar). (h) Core oncogenic program genes. 

Normalized expression (centered TPM values, colorbar) of the top 100 genes in the core 

oncogenic program (columns) across the malignant cells (rows), sorted according to the 

Overall Expression of the program (bar plot, right). Leftmost color bars: biphasic tumor 

and sample ID. (i) The program is expressed in a higher proportion of cycling and poorly 

differentiated cells. Fraction of malignant cells (y axis) with a high (above median, black) 
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and low (below median, blue) Overall Expression of the core oncogenic program, in cells 

stratified by cycling and differentiation status (x axis).
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Fig. 3. The core oncogenic program is associated with poor prognosis and aggressive disease.
(a-c) In situ validation of programs. Detection of core oncogenic (induced: Hsp90, c-Jun 

and EGR1; repressed: LGALS1), epithelial (E-cadherin) and mesenchymal (Vimentin) 

markers, using immunofluorescence (t-CyCIF) (a) and in situ hybridization (ISH) (b,c). 
Arrows (c): LGALS1+ SyS cells. These patterns repeatedly appeared across tens of different 

fields of view (see also Extended Data Fig. 3d). (d) The core-oncogenic program and de-

differentiation mark the aggressive poorly differentiated (PD) subtype. Overall expression of 

the core oncogenic or differentiation (both mesenchymal and epithelial) programs scores (y 

axis) across 34 SyS tumors19, including 7 biphasic (BP), 21 monophasic (MP), and 6 poorly 

differentiated (PD) (x axis). Middle line: median; box edges: 25th and 75th percentiles, 

whiskers: most extreme points that do not exceed ±IQR*1.5; further outliers are marked 

individually; one-sided t-test. (e) The core oncogenic program and differentiation scores 

(overall expression of both differentiation programs) are predictive of metastatic disease 
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in an independent cohort of 58 SyS patients20. Kaplan-Meier (KM) curves of metastasis 

free survival (x axis, years), when stratifying the patients by high (top 25%), low (bottom 

25%), or intermediate (remainder) expression of the respective program. P: COX regression 

p-value; Pc: COX regression p-value when controlling for fusion type and patient age group.
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Fig. 4. Limited immune infiltration and features of anti-tumor immunity in SyS tumors.
(a) t-SNE of immune and stroma cell profiles (dots), colored by inferred cell type (left) 

or sample (right). (b) Cytotoxicity (x axis) and exhaustion (y axis) scores of SyS CD8 

T cells, colored by the T cell expansion program score. The latter is associated with 

high cytotoxicity and lower than expected exhaustion (P < 1*10−11, mixed-effects). (c) 
Distribution of effector vs. exhaustion scores (top) or an immune checkpoint blockade 

responsiveness program39 (bottom) in CD8 T cells from SyS (orange) and melanoma 

(green); p-value: mixed-effects test. (d) Overall Expression of the immune signatures (y 
axis) in SyS tumors (orange) and other cancer types (controlling for variation in the 

mutational load, left panel) or other sarcomas (right panel). (e) Inferred level of immune 

cell types is associated with the malignant programs in bulk SyS tumors, when controlling 

for tumor purity. Partial correlation (colorbar) between the inferred level of each immune 

subset (rows) and the core oncogenic and differentiation levels (columns). (f-h) GeoMx 
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Cancer Transcriptome Atlas (TA) and Whole Transcriptome Atlas in situ profiling reveals 

that the core oncogenic program (COP) is associated with reduced immune infiltrates. (f) 
Representative CD45+ staining in COP-high and COP-low tumor niches; the trend was 

observed across 244 ROIs in 9 SyS tumors, as shown in (g) and (h); (g) the expression of 

the COP in malignant CD45− AOIs stratified according to the immune cell abundance in the 

pertaining ROI, with no. of ROIs in parenthesis; p-values: mixed-effects test. (h) association 

gene expression in malignant CD45− AOIs with immune abundance in the pertaining ROI. 

(d) and (g) middle line: median; box edges: 25th and 75th percentiles, whiskers: most 

extreme points that do not exceed ±IQR*1.5; further outliers are marked individually.
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Fig. 5. Impact of the genetic driver and immune cells on SyS malignant cells.
(a) scRNA-Seq following KD of SS18-SSX. Co-embedding of Aska and SYO1 cell profiles 

(dots), colored by: (1) cell line and perturbation; or the Overall Expression (colorbar) of 

the (2) cell cycle, (3) core oncogenic, or (4) mesenchymal differentiation31,32 programs. 

(b) SS18-SSX KD represses the core oncogenic program and induces the mesenchymal 

differentiation program irrespective of its repression of the cell cycle program. Distribution 

of Overall Expression scores (y axis) for each program in control (blue) and shSSX (grey) 

cells, for each cell line, where core oncogenic and mesenchymal program scores are shown 

separately for cycling and non-cycling cells. (c) Expression (centered TPM) of genes (rows) 

shared between the fusion and core oncogenic programs across the Aska and SYO1 cells 

(columns), with a control (shCt) or SSX (shSSX) shRNA. Cells are ordered by the Overall 

Expression of the SS18-SSX program (bottom plot) and labeled by type and condition 

(Color bar, top). (d) TNF and IFNγ are detected primarily in macrophages and T cells, 
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respectively. Fraction of cell (y axis) of each subset in the tumor (x axis) that express (black) 

IFNγ (left) or TNF (right) by scRNA-seq. (e) The expression of TNF and IFNG in CD45+ 

cells is associated with the expression of the core oncogenic program in malignant cells 

according to the high-plex in situ RNA sequencing (P = 1.15*10−3, mixed-effects). Middle 

line: median; box edges: 25th and 75th percentiles, whiskers: most extreme points that do 

not exceed ±IQR*1.5; further outliers are marked individually. (f) TNF and IFNγ repress 

the core oncogenic and SS18-SSX programs. Distribution of Overall Expression score (y 

axis) of the core oncogenic (also stratified to its predicted and TNF/IFNγ-dependent and 

-independent components) and SS18-SSX programs (x axis) in control (blue) and TNF + 

IFNγ treated cells.
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Fig. 6. HDAC and CDK4/6 inhibitors repress the core oncogenic program in SyS cells.
(a) Gene regulatory model links the core oncogenic program to SS18-SSX. Red/green: 

genes that are induced/repressed in the core oncogenic program. Grey: genes that are 

repressed in the core oncogenic program and directly repressed by HDAC1-SS18-SSX18. 

Red blunt arrows: repression; black pointy arrows: activation. Thick edges represent 

paths from SS18-SSX to p21. (b-c) TNF, abemaciclib and panobinostat suppress the 

core oncogenic program (n = no. of cells from each cell line, according to the order on 

the x axis). Overall Expression of the core oncogenic program, SS18-SSX program, an 

immune resistance program identified in melanoma30, and MHC-1 genes in SyS cells and 

MSCs (x axis) treated with different treatment regimens. *P<0.1,**P<0.01, ***P<1*10−3, 

****P<1*10−4, one-sided t-test; middle line: median; box edges: 25th and 75th percentiles, 

whiskers: most extreme points that do not exceed ±IQR*1.5; further outliers are marked 

individually. (d) NY-ESO-1-based T-cell-sarcoma co-culture system. (e-h) Prior treatment 

Jerby-Arnon et al. Page 52

Nat Med. Author manuscript; available in PMC 2022 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of CME-1 cells with abemaciclib and panobinostat (e) increased HLA-A and HLA-E 

protein levels on the cell surface (P < 1*10−4, two-sided Mann-Whitney U test); (f) CD25 

(activation marker) expression on the T cell surface (2.5:1 P = 0.0061, 1:1 P = 0.0082, 

0.25:1 P = 0.0118, two-sided Mann-Whitney U test), (g) induces IFNγ and IL-2 secretion, 

and (h) improves T cell mediated killing (P = 0.0053, 2.5:1 P = 0.0009, 1:1 P = 0.0025, 

0.25:1 P = 0.0122, two-sided Mann-Whitney U test). (e-h) Data are presented as mean 

values +/− SEM; each dot denotes one of 3 biologically independent experiments. (f-h) the 

results are shown for different malignant to T cell ratios. (i) Model of multifactorial SyS 

cell states. Left: The SS18-SSX oncoprotein sustains de-differentiation, proliferation and the 

core oncogenic program. Right: immune cells repress the core oncogenic and SS18-SSX 

programs through TNF and IFNγ secretion. Combined inhibition of HDAC and CDK4/6 

mimics these effects in SyS cells.
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