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Cancer patient survival can be parametrized to
improve trial precision and reveal time-dependent
therapeutic effects
Deborah Plana 1,2, Geoffrey Fell 3, Brian M. Alexander3,4, Adam C. Palmer 5,6✉ & Peter K. Sorger 1,6✉

Individual participant data (IPD) from oncology clinical trials is invaluable for identifying

factors that influence trial success and failure, improving trial design and interpretation, and

comparing pre-clinical studies to clinical outcomes. However, the IPD used to generate

published survival curves are not generally publicly available. We impute survival IPD from

~500 arms of Phase 3 oncology trials (representing ~220,000 events) and find that they are

well fit by a two-parameter Weibull distribution. Use of Weibull functions with overall sur-

vival significantly increases the precision of small arms typical of early phase trials: analysis of

a 50-patient trial arm using parametric forms is as precise as traditional, non-parametric

analysis of a 90-patient arm. We also show that frequent deviations from the Cox propor-

tional hazards assumption, particularly in trials of immune checkpoint inhibitors, arise from

time-dependent therapeutic effects. Trial duration therefore has an underappreciated impact

on the likelihood of success.
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Extensive effort has been devoted to increasing rates of suc-
cess in oncology drug development by improving preclinical
studies1–3. However, completed randomized controlled

trials (RCTs) remain the most valuable single source of infor-
mation for understanding opportunities and challenges in drug
development. Retrospective comparison of trials is most com-
monly performed via meta-analyses and systematic reviews4 with
the goal of improving patient management in specific disease
areas5. Retrospective analysis has also been credited with
improving the statistical treatment of trial data, which can be
complex and confounded6. However, quantitative analysis of
oncology trials is difficult to perform at scale because individual
participant data (namely times of progression, death, and cen-
soring; IPD), which are necessary for high-quality analysis, are
rarely available7,8. Trial results are instead reported in the form of
summary statistics and, in the case of oncology trials, plots of
patient survival based on the Kaplan–Meier estimator9. These
plots are generated using IPD but it has proven time-consuming
and resource-intensive to gain access to the underlying IPD
values because journals and investigators do not generally make
them available10.

To address this problem, the International Committee of
Medical Journal Editors (ICMJE) recently developed a set of data
reporting standards to encourage the release of IPD from all
clinical trials11. However, less than 1% of papers published in a
two-year period were found to have made IPD publicly
available12. We and others have developed methods to bypass this
problem by using image processing to impute IPD values from
published plots of the Kaplan–Meier estimator13–15. In this
manuscript, we describe a comprehensive analysis of imputed
IPD and reconstructed survival curves from ~150 publications
reporting Phase 3 cancer trial results, which in aggregate com-
prise ~220,000 overall survival or event-free survival events (e.g.,
progression-free survival, PFS). We also make these data freely
available via an interactive website (https://cancertrials.io/) and
through the NCI-recognized Sage Synapse repository (ID:
syn25813713)16. Our approach is consistent with the Institute of
Medicine’s reports on best practices for sharing data from pub-
lished clinical trials, including crediting the sources of the data
and sharing all code used in the analyses17.

Analyzing survival functions with parametric forms of different
types has a long history18, but evidence has been lacking about
which distribution best represents real data. Parametric statistics
are also well known to increase precision, but only when the fit to
data is sufficiently accurate. We now show that therapeutic
responses for multiple cancer types and therapeutic classes as
measured both by overall survival (OS) and event-free survival
(e.g., progression-free survival; PFS) are well fit by unimodal
distributions described by the two-parameter Weibull function;
one parameter is proportional to median survival and the second
quantifies changes in hazard over time. Using Weibull functions,
we find that a 50-patient trial arm (assessing overall survival) is as
accurate and precise as a 90-person arm evaluated using tradi-
tional nonparametric statistics; this finding is directly applicable
to improving the precision of therapeutic efficacy estimates made
with the small patient populations typical of Phase 1 and 2
oncology trials19. Weibull fitting of survival data also confirms
that violations of the assumption of proportional hazards are
common in contemporary Phase 3 trials15 notably for immune
checkpoint inhibitors (ICIs)13,20—but also more broadly. Viola-
tions arise from variation in hazard ratios over time and, as a
consequence, so does the likelihood of trial success (which is most
commonly defined as a hazard ratio less than one at a 95%
confidence level). This effect is different from the increase in
statistical confidence that occurs in any trial as a result of the
accrual of more events. In particular, simulation suggests that

some failed trials with strong time-dependence might have been
judged to be successful had they been run for slightly longer. Trial
characteristics computed from IPD allow for comparison of
response distributions across diseases and therapeutic modalities,
potentially making it possible to improve the design of future
trials and reduce attrition. The accuracy of the Weibull form in
describing survival data may also assist cost-effectiveness research
in which diverse parametric statistics are already in use21.

Results
Cancer patient survival can be accurately parameterized. We
used previously described algorithms and approaches14,15 to mine
published papers reporting the results of Phase 3 clinical trials in
breast, colorectal, lung, and prostate cancer with endpoints
including OS or surrogates such as PFS, disease-free survival
(DFS), and locoregional recurrence (LRR) (which we henceforth
consider in aggregate as “event-free survival”). For each trial
between 2014 and 2016 that met our search criteria, plots of the
Kaplan Meier (KM) estimator were extracted from trial figures
using the DigitizeIt software (version 2.5.3; Braunschweig, Ger-
many), while the at-risk tables and the number of patient events
were manually extracted from the publication. We then used the
digitized KM survival curves to estimate patient-level time-to-
event outcomes (IPD; e.g.,: times of progression, death, and
censoring; Fig. 1a). We recently reported the use of this approach
to reconstruct patient-level data for oncology Phase 3 clinical trial
publications identified through a PubMed search22. Study-level
information such as cancer type, metastatic status, treatment
modality, and trial success was also manually curated.

Analysis of OS data from 116 published figures yielded 237
distributions (91,255 patient events). Data on event-free survival
from 146 figures yielded 301 distributions (127,832 patient
events). Classes of therapy included chemotherapy, ICIs, radio-
therapy, surgery, targeted therapy, and placebo/observation. All
imputed data were compared against the original trial publication
for accuracy22 and trials with inaccuracies in the imputation
procedure were excluded. The accuracy of IPD imputation is
discussed further in Supplementary Data 1 and “Methods”. The
data set is released in its entirety as Supplementary Materials to
this paper, via an interactive website (https://cancertrials.io/), and
through the online Synapse repository (ID: syn25813713)16.

A variety of parametric forms have been proposed to describe
survival in oncology trial data, including the Log-Normal, Log
Logistic, Gamma, Weibull, Gompertz–Makeham, and Exponen-
tial distributions23,24. These differ in their hazard functions,
which quantify the likelihood of an event (e.g., death or
progression) at a given time25–28. To our knowledge, no
systematic assessment of the accuracy of these forms in describing
empirical data from a large set of oncology trials has previously
been described. We therefore assessed the goodness-of-fit (R2) of
different parametric distributions to imputed IPD. First, “best-fit”
parameter values were estimated for individual IPD distributions
using a maximum-likelihood procedure (Fig. 1b, c). Second,
mathematical transformations specific to a parametric form were
used to linearize the distribution of event times and the
corresponding survival values (in the case of the Weibull form
the linearization is the Weibull plot)29. Data that perfectly follow
a proposed distribution would, in the transformed form, follow a
straight line with R2= 1.

Parametric forms for survival distributions differ the most at
long follow-up times when the tails of the distributions fall to an
asymptotic value or to zero. However, such long event times are
rarely recorded in traditional oncology trials, which are limited in
duration by cost and increased censoring (often because patients
switch to an alternative therapy). As a consequence, we found
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that two types of two-parameter distributions fit survival data
equally well: Weibull distributions and Log-Normal distributions
(Weibull median R2= 0.981 and Log-Normal median
R2= 0.980). We chose to use the two-parameter Weibull
distribution because its parameters are easily interpreted in terms
familiar to oncologists. The Weibull α (shape) parameter
describes increasing or decreasing hazard over time30, and the
β (scaling) parameter is proportional to median survival time31.
Survival data fit by Weibull distributions having α < 1 have
decreasing hazard rates over time, meaning that the likelihood of
progression or death is highest at the start of the trial and then
falls. A value of α= 1 corresponds to a constant hazard and α > 1
to a hazard that increases with time.

For each trial arm in our data set, we obtained best-fit values
for α and β (Fig. 1d). The distributions for individual arms and
their parameterizations can be visualized in three different ways:
(i) as probability density functions (PDFs), the likelihood that an
event will occur at any particular time t; (ii) as cumulative density
functions (CDFs), the integral of the PDF with respect to t; for OS
data, 1-CDF is overall survival at t; and (iii) as hazard functions,
which correspond to the ratio of the PDF and survival function.
In oncology trials, the survival function is usually determined
using the nonparametric Kaplan–Meier estimator (Fig. 2a–c),
which accounts for progression or death events as well as
censoring (e.g., withdrawal of a participant from the trial, or loss
of follow-up, for reasons other than progression or death). A plot
of patient-level data as a PDF shows that death or progression is

right-skewed for all values of α that we observed in trial data (as
illustrated in Fig. 1b). Thus, a substantial proportion of all events
occur well after the modal (peak) survival value. Fitting Weibull
distributions, therefore, quantifies the frequently observed
phenomenon that the response of a subset of patients to therapy
is substantially better than the most commonly observed response
to that treatment.

For trials reporting OS data, we found that a two-parameter
Weibull distribution had a median coefficient of determination of
R2= 0.981 (lower quartile, Q1: 0.966, mean: 0.975, upper quartile,
Q3: 0.989) across 237 trial arms from 116 figures in clinical trial
reports (Fig. 2d; “Methods”); the histogram of R2 values for every
OS arm of every clinical trial can be found in Fig. 2e. The
theoretical maximum R2 value can be calculated under the
hypothesis that all OS distributions are Weibull distributions and
that deviations are attributable only to sample size variability,
which yields a maximum R2= 0.995. Thus, ~2% of variance
observed is not explained by the Weibull model. For trials
reporting event-free survival data (e.g., PFS; Supplementary
Fig. 1) median R2= 0.950 (Q1= 0.909, mean: 0.929,
Q3= 0.970) as compared to a theoretical maximal R2= 0.996,
which corresponds to 5% of observed variance not explained by
the Weibull model. Biomarker-stratified arms were also well
described by a single two-parameter Weibull distribution. This is
illustrated in Supplementary Fig. 2a, b for Weibull fits to OS and
PFS data for panitumumab in combination with FOLFIRI and for
FOLFIRI alone in wild-type and mutant KRAS metastatic
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colorectal cancer (trial 2005018132; average R2= 0.99 for OS
curves and 0.92 for PFS curves). We conclude that a two-
parameter Weibull distribution provides an excellent fit, with the
few exceptions discussed in detail below, to available trial data
across multiple types of cancer, treatment modalities, and
metastatic status.

Investigating the least good fits of survival data to Weibull
parametrizations. Across the entire data set, some of the worst
fits for two-parameter Weibull forms were observed for trials with
relatively few events, for example, the Chronicle trial
(NCT0042771333) with only eight deaths in the treatment arm
and 16 progression events in the observation arm (Fig. 2c; Sup-
plementary Fig. 1). Fit was also poor for trials involving pre-
planned changes in treatment such as the ACT2 trial
(NCT01229813)34, in which treatment induction was followed by
randomization to maintenance treatment at 18 weeks (Fig. 2c). In
cases such as this, responses varied over the course of the trial by
design, and a good fit to a single two-parameter survival function
is not expected.

For a small number of trials in which the asymptote of the
fitted survival curve was greater than zero (i.e., patients were
expected to be alive at the end of the longest follow-up), a three-

parameter Weibull distribution consisting of the traditional two-
parameter distribution with an additional “cure rate” term35 had
an improved fit (Supplementary Fig. 3). Since the improvement in
fit was modest and two-parameter Weibull forms are both more
computationally tractable and are more parsimonious, we relied
on them for all subsequent large-scale analysis. However, the use
of a cure rate parameter might nonetheless be advisable for
different sets of data in which cure is a known outcome (e.g.,
R-CHOP for non-Hodgkin’s lymphoma36).

We also observed that event-free survival exhibited a slightly
poorer fit to Weibull forms than OS data (5% vs 2% of observed
variance not explained). Inspection of the relevant curves showed
that this was caused primarily by a sharp decrease in survival at
early time points and a shallowed decrease subsequently; this
behavior has previously been interpreted as evidence for
subpopulations of responding and non-responding patients,
particularly in trials of ICIs37. It has also been attributed to
delayed T-cell activation by ICI therapy38. For trials of these
agents, we found that fits to PFS data could be improved by using
a mixture model comprising two different two-parameter Weibull
distributions, each with its own α and β parameters. This is
potentially consistent with a two-population hypothesis (Fig. 3a;
Supplementary Fig. 4). However, a mixture model also resulted in
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a better fit to the control arms in these trials, suggesting that the
deviation from a single distribution was not ICI-specific. More-
over, a mixture model exhibited no meaningful improvement in
fit as compared to a single-distribution for OS data from ICI or
control arms in these trials (Fig. 3b; Supplementary Fig. 4).
Finally, when we examined PFS data from an additional 25 ICI
trials, we found that the drop in survival at early event times
(which we identified as the time t corresponding to the greatest
change in the slope of the survival curve) was strongly correlated
with the time of the first radiological scan (as reported in trials’
methods sections; Pearson correlation 0.982, p < 10−21; Supple-
mentary Data 3). We surmised that fitting Weibull distributions
to PFS data was confounded by scan times. To test this idea we
simulated the influence of scan times by taking a single two-
parameter Weibull distribution and imposing a scanning interval
of nine or twelve weeks (the actual value was extracted from the
trial protocol). This generated the steep decline in PFS values
observable in the control and experimental arms of actual ICI
trials, and improved fit to PFS distributions, raising mean R2 from
0.93 to 0.98 (Fig. 3c; Supplementary Fig. 4; “Methods”). We
conclude that a steep drop in initial PFS is likely to arise because
values at early time points from a unimodal response distribution
are concentrated in time by scans performed at discrete intervals.
We further conclude that mixture models involving two Weibull
curves are not necessary to accurately describe survival for ICIs or

any other class of therapy that we have examined. Instead, when
scan times are accounted for, single two-parameter Weibull
distributions are found to have an excellent fit to PFS data
(R2= 0.98).

Parametric fitting improves the precision of drug efficacy
estimates. To compare the performance of Weibull-based and
nonparametric methods used for survival analysis we calculated
pointwise confidence intervals (at 12-months). This is a fre-
quently reported statistic for many early phase oncology trials
(Phase 1 and 2) that involve relatively small numbers of patients.
It is also a landmark outcome in systematic reviews and meta-
analysis of oncology clinical trials39, and used to guide the design
of larger trials. A challenge in the analysis of such data is that,
when too few events have occurred, nonparametric numeric
confidence estimates return non-informative values (usually
reported as a value “not reached” or “indeterminate”27 as illu-
strated for two different scenarios in Supplementary Fig. 5a). To
determine how parametric analysis would perform in this setting,
we subsampled groups of 20–100 patients at random from the
arms of imputed Phase 3 trials. We then compared estimates of
12-month survival for small cohorts with a well-powered ground
truth value obtained using the full Phase 3 data set. We found that
12-month survival estimates were non-informative for 20–40% of
OS trial arms, and 23–61% of event-free survival trial arms, with
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higher failure rates occurring when the sample size was smaller
(Supplementary Fig. 5b, c). In comparison, the use of a Weibull
parametric form made it possible to calculate 12-month con-
fidence intervals for all of the ~45,000 simulated 20–100 patient
trials that we examined.

Considering only the subset of OS curves for which confidence
intervals could be computed using both parametric and
nonparametric methods (125 curves), we found that a Weibull-
based approach was more precise (it had a narrower confidence
interval) across all sample sizes, and accuracy was comparable. By
way of illustration, the precision of a 50-patient trial arm was
comparable to that of a 90-patient study using traditional
methods (Fig. 4). For event-free survival (for which 99 event-
free survival curves could be compared), the precision of a
Weibull-based approach was also greater than a nonparametric
approach across all sample sizes, while accuracy was equivalent
for small sample sizes (fewer than 40 patients) (Supplementary
Fig. 6a). We conclude that the use of Weibull distributions to
parameterize data from small trials reporting either OS or PFS
data approximately doubles the number of trials for which
informative confidence intervals can be determined for a point
survival estimate (e.g., survival at 12 months). Moreover, for the
subset of trials in which parametric and nonparametric methods
can be directly compared, the former is as precise using roughly
half the number of patients.

Figure 4 indicates that survival estimates made using Weibull
parameterization decrease in relative accuracy as compared to
nonparametric methods as patient number is increased. This
arises simply because nonparametric analysis of the full set of
Phase 3 data was defined as the ground truth. It is nonetheless
true that using Weibull forms is most valuable when cohorts are
small (fewer than ~40 patients). This sample size is typical of
Phase 1 or 2 oncology trials, a setting in which alternative
statistical methods are also most likely to be acceptable from a
regulatory standpoint.

As one illustration of the use of Weibull parameterization, we
analyzed a recent trial that encompassed both Phase 1 and 2 data
and tested pembrolizumab with dabrafenib and trametinib for
metastatic BRAF-mutant melanoma (MK-3475-022/KEYNOTE-
022; NCT02130466)40. Parametric fitting for 15 patients in Phase
1 yielded a median PFS of 14.8 months and 95% confidence

interval of 7.8–23 months, while nonparametric estimates yielded
a median value of 15.4 months and 95% confidence interval of
5.4 months to “not reached.” Nonparametric analysis of a Phase 2
cohort of 60 patients for this same trial revealed a median PFS of
16 months and a 95% confidence interval of 8.6–21.5 (ref. 41).
Thus, parametric fitting of data from 15 patients made a
comparably precise and accurate estimate of median PFS as
nonparametric analysis of 60 patients (Supplementary Fig. 6b).
The availability of a more precise parametric approach would in
principle have made it possible to use the same number of
patients enrolled in this Phase 2 study (e.g.,: 60 patients) to
perform three different signal-finding studies (each involving 20
patients) with no loss of statistical power. This would have been
particularly helpful in the case of KEYNOTE022, a trial that failed
to meet its primary endpoint.

Evaluating the impact of patient heterogeneity on the accuracy
of Weibull parameterization. Subsampling Phase 3 trials to
generate synthetic arms having the small numbers of patients
typical of Phase 1 and 2 trial cohorts has the advantage that the
Phase 3 data serve as the ground truth. However, it has the dis-
advantage that patient populations in early stage trials are often
more heterogenous than in pivotal trials. We have been unable to
identify a sufficient number of matched early and late phase
survival data for comprehensive investigation of this issue. As an
alternative approach, we simulated a trial having a heterogeneous
population of ~900 patients with a mixture of breast, colorectal,
lung, and prostate cancer cases. The simulated cohort was con-
structed by subsampling five patients from each of 172 trial arms
that reported OS for patients with metastatic cancer. We observed
that for a representative simulation, a two-parameter Weibull
form accurately described the synthetic trial data (R2= 0.98;
Supplementary Fig. 7). However, a representative synthetic cohort
involving patients drawn from both metastatic and local cancers
(237 trial arms) is not as well fit by a two-parameter model
(R2= 0.95) but fit improves with the addition of a cure-rate
parameter (R2= 0.98). From this analysis, we conclude that trial
arms having different types of solid tumors, as encountered in
some basket trials, can be accurately parameterized by two-
parameter Weibull functions. If metastatic and non-metastatic
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disease are mixed in an RCT, the addition of a third parameter is
likely to improve fit.

Weibull fitting quantifies survival differences across cancer
types. The availability of a large set of IPD made it possible to
search for systematic differences in the parameters of survival
distributions by disease class. Best-fit Weibull parameters were
compared across cancer types and metastatic status using an
ANOVA test with a Bonferroni correction for multiple hypothesis
testing at a two-tailed significance level of 0.05 (see Supplemen-
tary Data 2). The largest difference in parameter values was
between metastatic and non-metastatic disease, irrespective of

tumor type (β values corresponding to median survival of 22 and
180 months respectively). We also observed that β values were
significantly larger for breast cancer than lung cancer in the
metastatic setting (β values corresponding to median survival of
28 versus 14 months) (Fig. 5), which is consistent with previous
data on relative disease severity42,43. Parameter values for trials
reporting event-free survival followed a similar pattern to OS
values (Supplementary Fig. 8 and Supplementary Data 2). Lung
cancers had a significantly lower α (shape parameter) for OS as
compared to other cancer types (average α= 1.30 for lung; versus
~1.5 to 1.6 for breast, colorectal, and prostate cancers), demon-
strating a relatively high probability of early death. This difference
in shape also corresponds to a wide distribution of lung cancer

0 36 72 108 1440

25

50

75

100

0 24 48 72 96
0

25

50

75

100

0 18 36 54 72
0

25

50

75

100

0 4 8 12 16
0

25

50

75

100

Months

O
S 

(%
)

CONCUR, Placebo c 

TROG306, Delayed Androgen
Deprivation Therapy

INT0142, Tamoxifen

Be
st

 W
ei

bu
ll 

Fi
t  

α

Best Weibull Fit Log[β]
Cancer Type Metastatic Status

Breast Colorectal Lung Prostate Metastatic Non-metastatic

a

b

d

e

b

α=1.69 
Log[β]=2.05

d e

α=0.90
Log[β]=4.31

α=2.53
Log[β]=4.78

α=1.13 
Log[β]=6.90

Months

Months Months

Original trial 
data

Most likely 
Weibull fit

O
S 

(%
)

O
S 

(%
)

O
S 

(%
)

Weibull parameters by cancer type and metastatic status

c

ESPATUE, Surgery

1 2 3 4 5 6 7

1.0

1.5

2.0

2.5

Fig. 5 Best-fit Weibull parameter values for trials reporting overall survival (OS) data. Weibull fits for trials reporting OS data, encompassing
237 survival curves from 116 trial figures. a Survival distributions categorized by cancer type and metastatic status (defined as trials that included patients
with distant metastases). Representative survival functions and fits for trials across a variety of cancer types including b metastatic colorectal cancer
(NCT01584830) c non-metastatic lung cancer (NCT number not reported) d metastatic prostate cancer (NCT00110162) and e non-metastatic breast
cancer (NCT number not reported).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28410-9 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:873 | https://doi.org/10.1038/s41467-022-28410-9 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


survival times as compared to other cancer types, which may
reflect heterogeneity in lung cancer trial cohorts. We propose that
parameters drawn from IPD be used to model cancer survival
distributions for future exploratory trials and to facilitate inter-
group comparisons in master protocol or basket trials, which
often involve different cancers types44,45.

Impact of trial length on estimates of relative hazard. Rando-
mized controlled trials in cancer are conventionally evaluated
based on the use of Cox regression to estimate the semi-
parametric hazard ratio (hereafter referred to as HRSP). If the
hazard ratio is significantly below one then the test treatment
decreases the risk of death or progression relative to control, and
the trial is regarded as successful27,46. As expected, when Weibull

α and β parameter values were compared between experimental
and control arms, a trial was more likely to be successful (which,
following common practice, we defined as HRSP < 1 at a 95%
confidence level) when differences in β values were larger: the
median difference between control and experimental β values in
OS curves was −0.6% for unsuccessful trials and 29% for suc-
cessful trials (Fig. 6a). A similar pattern was observed for event-
free survival data, with control and experimental β values dif-
fering by 1.0% for unsuccessful trials and 36% for successful trials
(Supplementary Fig. 9).

Fundamental to the model of proportional hazards is the idea
that the hazard functions for control and experimental arms are
related by a constant of proportionality (the hazard ratio) that
does not change over time. However, prior work has shown that
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this assumption is frequently violated13,15,47. From the perspec-
tive of Weibull distributions, proportionality means that the two
arms have the same shape parameter (i.e., Δα= 0 where Δα is the
difference in α values). A trial with Δα= 0 is successful if the
experimental arm has significantly larger β value than the control
arm. However, across 121 comparisons of experimental and
control arms from 116 OS trial figures, we found that Δα values
actually varied from +0.65 to −0.80 (median absolute value
|Δα|= 0.11; Fig. 6a). For event-free survival data, 155 compar-
isons of experimental and control arms from 146 trial figures
revealed a range of Δα values from +0.55 to −0.85 (median
|Δα|= 0.08) (Supplementary Fig. 9). Using a traditional
Grambsch–Therneau test15,48, a proportional hazards violation
was found in 18/108 OS and 47/135 event-free survival trials, as
well as 8/10 ICI trial comparisons (3/5 for OS and 5/5 for PFS)15;
a corresponding 90% confidence level yields a |Δα|= 0.30
threshold for significant violations of proportional hazards.

To explore the origins and consequences of non-
proportionality of hazards in survival data we used best-fit
Weibull shape and scale parameters to calculate the ratio of
cumulative hazards at time t (HRc(t)), an approach that makes no
assumptions about proportionality, and compared HRc(t) to the
hazard ratio calculated using Cox regression (HRSP; which is
semiparametric and time invariant). In both successful and
unsuccessful trials for which |Δα| was small, HRc(t) (blue lines in
Fig. 6b, c) closely approximated HRSP (red lines). In contrast,
when Δα=−0.26 (for the successful trial CheckMate 057;
NCT0167386749) HRc(t) and HRSP often differed (Fig. 6d). This
was also true of CA184-043 (NCT00861614; Δα=−0.30), which
was judged to have failed based on HRSP

50(Fig. 6e). However, in
this trial, HRc(t) fell steadily over time and had reached a value
below one by the end. Unless the shape of the hazard function

were to change substantially after month 25, it seems probable
that CA184-043 would have been judged a success had it
continued for only a few months longer.

To more fully explore the dependence of trial duration on
outcome, we simulated a series of two-arm trials having a range of
differences in Δα and Δβ values. We then plotted the fraction of
trials that were successful, as judged by Cox regression. Success
was evaluated both at an early stopping point, when ~60% of
events had been recorded (tA) or a late stopping point when ~95%
of events had been recorded (tB; Fig. 7; “Methods”). For simulated
trials in which α was smaller for the experimental than the control
arm, the experimental arm exhibited lower survival at early times
and then crossed over the control arm at later times (as shown in
Fig. 7a). In these cases, a later time point was associated with a
greater likelihood of success than an earlier time point (Fig. 7b, c).
The greater the value of |Δα|, the greater the impact of curve
crossing and duration of follow-up on outcome. Moreover, OS
results from all ICI trials in our data set fell into this category
(e.g., Fig. 6a). The reasons for time-dependent therapeutic effects
are unknown, but in ICI trials it has been suggested that they arise
from treatment-related toxicity at early times or delayed
treatment effects13,51,52.

The importance of trial duration on success is demonstrated by
the MK-3475-022/KEYNOTE-022 trial of pembrolizumab with
dabrafenib and trametinib for BRAF-mutant melanoma. The pre-
planned analysis at 24 months did not identify a statistically
significant benefit (PFS hazard ratio of 0.66, 95% CI: 0.40–1.07)
but a subsequent analysis at a median 36.6 months did (PFS
hazard ratio of 0.53, 95% CI: 0.34–0.83)41,53. Parametric fitting of
the original Phase 2 data at 24 months found a difference in the
survival curve α values (Δα=−0.21). This is the scenario in
which a statistically significant benefit from therapy is more likely
to be identified at longer follow-up, as was confirmed by data at
36.6 months.

From these data, we conclude that oncology trials exhibit
continuous deviations from the assumptions of the proportional
hazards model. The underlying variation in treatment effect over
time can be identified by Weibull fitting as situations in which
|Δα| ≫ 0. In these cases, the duration of the trial can have an
effect on the likelihood of success in a manner that is not
accounted for by Cox regression. We suggest that future trials,
particularly of ICIs, evaluate Δα and model the possible impact of
trial duration on the likelihood of success.

Discussion
Using a set of ~220,000 imputed participant survival events from
published oncology trials we find that survival functions for solid
tumors, including those from trials that report OS or event-free
survival data (e.g.: PFS) or are biomarker-stratified, are well fit by
two-parameter Weibull distributions. The poorest fits are often
explainable by pre-planned changes in treatment and by the
confounding effects of radiological scan times on evaluation of
PFS. The Weibull α (or shape) parameter defines increasing or
decreasing hazard over time and the β parameter is proportional
to the median survival time, making fitted parameter values
readily interpretable. Both α and β differ between treatment and
control arms; Δα quantifies violations in the assumption of pro-
portional hazards that is used in Cox regression and Δβ measures
the magnitude of the therapeutic effect. The excellent fit of sur-
vival data to a single parametric function for many types and
stages of cancer and across drug classes demonstrates that ther-
apeutic benefit can be well-described by a simple function in
which responses vary continuously across a population. In the
trials studied here, the likely presence of prognostic factors, or
responder and non-responder populations, did not sufficiently
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separate survival functions to produce bimodal distributions that
would have necessitated the systematic use of mixture models or
cure-rate parameters.

Our findings support modeling survival in early stage oncology
clinical trials by using parametric statistics. Parametric statistics
are already used in cost-effectiveness analysis21 and other simu-
lation studies, although it has not been established which para-
metric forms (Weibull, Log-Normal, Gompertz–Makeham, etc.)
accurately fit empirical survival data. We now establish that
Weibull distributions involving clinically interpretable parameter
values have sufficient accuracy to be the preferable parametric
form for describing survival in trials of solid tumors. By simu-
lating trials of different sizes, we find that modeling with para-
metric methods substantially improves precision with equivalent
accuracy: point estimates of survival (e.g., at 12-months) using a
Weibull-based parametric approach approximately doubles the
number of trials in which informative confidence intervals can be
obtained. In cases in which parametric and nonparametric
approaches can be compared directly, we find that a 50-patient
trial arm reporting OS data is as precise as a 90-patient trial
arm evaluated using nonparametric methods. This advantage
pertains primarily to trials with small numbers of participants
(20–100 per arm); when arms are larger, conventional Cox
regression is the preferred method. Thus, the use of parametric
methods based on Weibull distributions should be strongly
considered in early phase signal-seeking studies with the goal of
rapidly and economically identifying the optimal setting in which
to perform Phase 3 trials.

Weibull distributions are also appropriate for cost-effectiveness
research for oncology drugs, an increasingly important topic for
drug approval in many countries. In this context, it is important
to note that Weibull and Log-Normal distributions provide
equivalently good fits to IPD and the Weibull form was chosen in
the current study because of its interpretability in terms of hazard
rates and median survival. Log-Normal distributions may have
corresponding advantages in pharmaco-economic analysis54.
Moreover, insofar as there exist multiple ways to implement
parametric statistics, we note that our results pertain specifically
to approaches detailed in the “Methods”, which are conventional.
Alternative approaches to increasing trial precision, for example
by changing significance levels to create narrower nonparametric
confidence intervals while still maintaining an acceptable level of
Type I error, have not yet been empirically explored in detail but
can be pursued using the imputed IPD provided with this
manuscript.

In current practice, Cox regression is used to compare survival
functions based on the proportional hazards assumption, which
states that the ratio of control and experimental hazard rates is
constant over time. Success usually corresponds to a hazard ratio less
than one at 95% confidence. With respect to Weibull distributions,
the assumption of proportional hazards corresponds to no difference
in shape, i.e., Δα= 0. It is well established that a subset of trials
deviate from the proportional hazards assumption13,15. However, we
find that Δα varies over a wide range, from ~+0.7 to −0.8, and that
the majority of trials analyzed deviate from the proportional hazards
assumption to some degree. If we apply previously described criteria
(the Grambsch–Therneau test at a 10% threshold)48 to identify
significant deviations from proportional hazards13,15 we find viola-
tions in ~17% of trials reporting OS and ~35% of trials reporting
PFS data, and that this significance level corresponds to |Δα| > 0.3.

Analysis of imputed data from published trials and simulations
using empirical survival functions shows that violations of pro-
portional hazards arise from time-varying treatment effects. In
the data analyzed here, this was most evident in ICI trials, but was
also seen in trials of the BCL-2 inhibitor venetoclax, in which
experimental and control arm PFS curves cross each other after

trial initiation55. The biological basis of time-varying treatment
effects (and curve crossing) are not known but could arise
from high toxicity in a subset of patients early in treatment,
delayed onset of treatment effects, or exceptionally durable
responses in some patients (indicating the presence of prognostic
factors)13,15,51,52. Regardless, the practical consequence of these
effects is that the duration of a trial has a direct impact on out-
come, independent of statistical considerations such as increasing
confidence in hazard ratio values as trial events accrue.

We found that it was possible to use Weibull fitting to identify
trials judged as failures by Cox regression in which the ratio of
cumulative hazards was trending steadily below one at the end of a
trial, and an extension of only a few months was predicted to result
in success. Future work could explore the use of Weibull fitting in
trial interim analysis, particularly in trials where |Δα| ≫ 0 such as
for ICIs, to help determine when to terminate trials for treatment
futility. Additional changes that could be implemented in future
trials include improving how sample size and power are estimated.
Such calculations are most commonly performed under an
assumption of an exponential fit to survival data. Alternative dis-
tributions have been proposed for such analyses56–59 but without
any means for selecting optimal parameter values for simulation.
Using the Weibull fitting described here, empirically-derived
parameter values can be drawn directly from past trial data. A
final set of applications involves the use of parametric forms for
subgroup analysis in Phase 3 and basket trials. Since studies of this
type are intended to test therapeutic hypotheses rather than lead to
drug registration, the regulatory barriers to using parametric
methods are limited. Parameterized Bayesian trial designs, such as
the continual reassessment method (CRM) or escalation with
overdose control (EWOC), are other model-based methods already
in use to define specific parameter values and improve the effi-
ciency of Phase 1 studies60.

Even modest improvements in the design and interpretation of
oncology clinical trials are likely to have a substantial payoff. The
overall approval rate for new oncology drugs remains low: only
3% of drugs tested in a Phase 1 clinical trial and 7% of drugs
tested in a Phase 2 study are ultimately found to be superior to
standard of care comparators in pivotal Phase 3 studies and
approved61. Methods to more accurately understand drug activity
in small patient populations are included in the National Cancer
Institute’s (NCI) 2020 “provocative questions” and could lead to a
wider use of master protocol trials. Improving trial efficiency and
predictability will become increasingly critical as the number of
new monotherapies and combinations continues to rise, patient
populations become more subdivided based on the molecular
characteristics of their tumors, and it becomes impractical to
enroll enough patients to test all promising drug treatments62.

The use of nonparametric statistics was historically appropriate
because treatment effects could be calculated precisely without
the need for extensive computation46, which was largely infeasible
prior to the widespread availability of personal computers.
Moreover, the proportional hazards assumption appears to be
largely valid when assessing OS in the context of cytotoxic che-
motherapies (OS trials including chemotherapies in our data set
had a median |Δα|= 0.10, well below the |Δα| = 0.30 threshold
for significant violation). However, the deviation from propor-
tional hazards reported in this and previous studies, and its likely
origins in the biology of new and more diverse forms of cancer
therapy, call for a reconsideration of Cox regression. Several
approaches for comparing treatment effects have been proposed
including weighted63 or adaptive log-rank tests64, restricted mean
survival times65,66, and permutation-based approaches67. Trial-
ists, sponsors, and regulatory agencies may want to examine the
use of such methods in the setting of the ICI trials that are the
focus of so much current research.
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Limitations of this study. This work is not a formal meta-
analysis or systematic review of a specific treatment regimen or
disease, but instead a broadly conceived research study; no
treatment decisions should be made based on our findings. A
specific limitation is that we only analyze four tumor types
(breast, colorectal, lung, and prostate); extending the analysis to
other cancer types will require imputing IPD from additional
trials. Additionally, we use Cox regression to determine whether
real or simulated trials are “successful” (e.g., Figs. 6 and 7) even
when their survival distributions clearly violate proportional
hazards. We do this because a hazard ratio less than one at a pre-
specified level of confidence is the only widely accepted method
for evaluating trial outcomes. Finally, we used subsampled patient
events from completed, Phase 3 trials to infer the properties of
small patient populations commonly used in Phase 1 and 2 trials
on the assumption that underlying survival functions can be
described by similar parametric forms in early and late stage
trials. We are unable to rigorously assess this assumption but we
find that simulated trials comprising four different cancer types
are also well fit by two-parameter Weibull forms, suggesting that
having a heterogenous patient population (as encountered in
many early phase trials) does not reduce the accuracy of para-
metric analysis. The parameters of best-fit Weibull distributions
are very likely to differ between Phase 1 or 2 and Phase 3 studies
whenever there are differences in inclusion criteria, such as prior
therapy, performance status, tumor stage, and histology. Notably,
a similar limitation can be expected from other methods (e.g.,
traditional nonparametric approaches) that use early-phase effi-
cacy data to design pivotal studies.

A final limitation of this study is that it uses imputed IPD
rather than original data. We are forced to do this because
original results are simply not released, and most published
oncology trial reports do not provide the numerical values used to
plot the Kaplan–Meier estimators. The release of numerical data
underlying graphical representations has become the norm in
pre-clinical research and is at the heart of efforts by funding
agencies to make data FAIR (findable, accessible, interoperable,
and reusable). Multiple calls have been made to make IPD from
research clinical trials publicly accessible to ensure the reprodu-
cibility of study results and facilitate meta-analyses, but
compliance remains low12. Outside of oncology, calls for reuse
of both contemporary and historical control arms have arisen in
repurposing trials for COVID-19, particularly when the same set
of institutions is conducting many parallel trials outside of a
master protocol framework. Recent work has attempted to
identify factors contributing to this non-compliance, which
include the time involved in data annotation, an absence of
standardized provisions for sharing IPD, and concerns about
patient privacy68. We have made the data described in this paper
available via an interactive website (https://cancertrials.io/) that
we will continue to expand with new imputed data and analysis.
To reduce barriers to sharing IPD, trialists are invited to post
their primary data on cancertrials.io (contact information on the
website).

Ongoing data collection efforts relevant to clinical trials include
Project Data Sphere69, the NCI’s National Clinical Trials Network
(NCTN) and Community Oncology Research Program (NCORP)
Data Archive, and The Yale University Open Data Access
(YODA) Project70. Unfortunately, these projects have substantial
limitations with respect to the type of analysis presented here: (i)
most IPD are greater than six years old and do not cover many of
the drugs of greatest current interest, including ICIs; (ii) most
public data derives from control, not experimental treatment
arms; (iii) much of the data involves summary statistics, not IPD,
and requests for underlying data can be strictly limited; (iv) if
access to IPD is granted, they are often available online for

inspection but are not downloadable for additional computational
analysis. A substantial unmet need, therefore, exists for primary
data from clinical trials to be made available for reuse. One
approach is to amend the requirements for data deposition on
ClinicalTrials.Gov (per U.S. Public Law 110-85) to include IPD.

Methods
Individual participant data imputation and curation. The original data set
consisted of 153 unique trials in breast, colorectal, lung, and prostate cancer in the
metastatic and non-metastatic settings from 2014 to 201622. Trials were removed
from the original data set if there were any inconsistencies in the imputed patient
data as compared to its associated clinical trial (e.g.: differing numbers of patients
from the publication at-risk table and imputed data). The quality of the data
imputation was confirmed quantitatively, by calculating the hazard ratio for
imputed data and comparing it to the corresponding trial’s reported hazard ratio,
and qualitatively, by overlaying the Kaplan–Meier curve generated from the
imputed data on top of the published curve. Trials with a hazard ratio difference
greater than 0.1, or with perceptible visual differences, were removed from the final
data set and not analyzed further (Supplementary Data 1).

Parametric fitting of patient survival data. The imputed event times, either
death for overall survival distributions or surrogate events in the case of event-free
survival distributions, were compared to the event times simulated under each
parametric distribution. The likelihood of a specific parametric form to fit patient
data was computed by maximum likelihood estimation. Specifically, the relative
likelihood of a patient event taking place at a particular point in time was calculated
under that parametric distribution’s probability density function. The likelihood of
a censoring event taking place was calculated by integrating the probability density
function (the CDF), and computing the likelihood of a patient event taking place in
the trial after the censoring time (1-the cumulative probability up to that time).
This procedure was repeated for all patient events in an arm of a clinical trial, and
the overall likelihood of a fit was calculated by multiplying all relative likelihoods.

Computing R2 explained by the Weibull fit. For imputed patient events in a
clinical trial arm, the event times (deaths or surrogate events) and corresponding
percent survival (OS or event-free survival) were computed. Weibull parametric
fitting was used to obtain the best-fit α and β values corresponding to the imputed
patient data. The differences between the survival distribution under a best-fit
Weibull model and the imputed data were analyzed through a Weibull plot29. In
this approach, the event times and corresponding survival are normalized such that
if the data follow a Weibull distribution, the points will be linear. The event times
were normalized through the transformation: ln t/β, while survival was normalized
by: ln (−ln S (t))/α. Coefficient of determination (R2) values were calculated to
assess the goodness of Weibull fitting for all trial arms in the data set.

Computing Weibull fits to trials of immune checkpoint inhibitors. Trials of ICIs
were selected from the data set (five in total). Each trial’s OS and PFS IPD were fit
to a single Weibull distribution and a mixture distribution made of two Weibull
distributions. An additional set of simulations was performed to account for the
periodicity of radiological scans in detecting progression events. The quality of fit
for these simulations is not readily interpretable through use of a Weibull plot, and
was instead quantified by the coefficient of determination (R2) between observed
and fitted PFS.

Assessing the relationship between trial scan times and PFS drops. Trials of
ICIs in oncology were obtained through a PubMed search of the terms “neoplasms”
or “cancer” and “Clinical Trial, Phase III” along with therapies of interest (“ipili-
mumab” or “pembrolizumab” or “nivolumab”). The search was filtered to yield 25
trials with PFS data and a reported scan time, in addition to the five trials in the
original data set, for a total of 30 trials for subsequent analysis. PFS curves were
extracted from each of the trials and images were analyzed using DigitizeIt software
(version 2.5.3; Braunschweig, Germany) to estimate the timing of the PFS drop in
each survival curve. The trial scan time interval was obtained from each publica-
tion’s methods, blinded to the image associated with each trial. All extracted values
can be found in Supplementary Data 3.

Simulating differences in trial success based on α and β values. Control and
experimental arms of clinical trials were simulated 1000 times by drawing 100
patient events from Weibull distributions with differing α and β values. α values in
the experimental arm ranged from 0.5 to 4.5, β values from 0.4 to 1.6, and control
arm parameter values were kept constant (1.5 and 1 respectively). Figure 7 shows
results in the region of interest, from experimental arm α= 0.5 to 2.5. Events were
censored at either early time points (corresponding to a ~60% event rate, a time
equal to the control arm β value) or later time points (corresponding to a ~95%
event rate, a time equal to four times the control arm β value). Trial success was
calculated for each simulation by using a Cox regression at a 95% confidence level.
Significance was calculated using a Wald test.
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Calculating the precision and accuracy of survival estimates. IPD for each trial
arm in the data set was extracted. 213 OS and 273 event-free survival trial arms
were used for further analysis; these trial arms had at least 100 patients (the
maximum number of patient subsampling events used in this experiment) and at
least one event (i.e.: death, progression) taking place before 12 months. For each
trial arm, 20–100 patient events (with a step size of 10 events) were subsampled
from the imputed IPD. At least three non-censoring events were selected during
each sampling simulation. This procedure was repeated ten times per sample size
and trial. Parametric and nonparametric 95% confidence intervals for 12-month
survival were computed for every sampling simulation.

Accuracy and precision plots were constructed for the subset of simulated trial
arms returning numerical nonparametric confidence intervals (125 OS trial arms
and 99 event-free survival trial arms). Note that nonparametric estimates did not
return a numerical confidence interval for 41% of OS trial arms and 64% of event-
free survival trial arms, while Weibull fitting made it possible to calculate 12-month
confidence intervals for every trial arm in every simulation.

Quantification and statistical analysis tools. Analysis was performed using
Wolfram Mathematica Version 12.1. Details of the statistical analysis performed,
exact values of n and what they represent, definitions of the summary statistics
used, definitions of significance, and trial inclusion and exclusion criteria can be
found in the “Method” details, Figure captions, and “Results” sections of the
manuscript. Compute-intensive analyses (e.g., sample size simulations) were con-
ducted on the O2 High Performance Compute Cluster, supported by the Research
Computing Group, at Harvard Medical School.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article
(and its supplementary information files). Data are also available through the website
https://cancertrials.io/ and Synapse (ID: syn25813713).

Code availability
All code used in this study is included in Supplementary Data 2. Code is also available
through Synapse (ID: syn25813713). Each piece of code is provided in a folder containing
a Mathematica Notebook (.nb), all data required by the code, and the corresponding code
output. With source data kept within the same folder as the code, the Mathematica
Notebook can be executed in Wolfram Mathematica by selecting “Evaluate Notebook”
from the “Evaluation” menu. Sample R code (R version 4.0.3) illustrates the parametric
fitting and confidence interval construction procedures. Pseudocode files summarize the
algorithms used to execute analysis corresponding to each result.
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