
RESEARCH ARTICLE

Combination treatment optimization using

a pan-cancer pathway model

Robin SchmuckerID
1, Gabriele FarinaID

2, James FaederID
3, Fabian Fröhlich4,
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Abstract

The design of efficient combination therapies is a difficult key challenge in the treatment of

complex diseases such as cancers. The large heterogeneity of cancers and the large num-

ber of available drugs renders exhaustive in vivo or even in vitro investigation of possible

treatments impractical. In recent years, sophisticated mechanistic, ordinary differential

equation-based pathways models that can predict treatment responses at a molecular level

have been developed. However, surprisingly little effort has been put into leveraging these

models to find novel therapies. In this paper we use for the first time, to our knowledge, a

large-scale state-of-the-art pan-cancer signaling pathway model to identify candidates for

novel combination therapies to treat individual cancer cell lines from various tissues (e.g.,

minimizing proliferation while keeping dosage low to avoid adverse side effects) and popula-

tions of heterogeneous cancer cell lines (e.g., minimizing the maximum or average prolifera-

tion across the cell lines while keeping dosage low). We also show how our method can be

used to optimize the drug combinations used in sequential treatment plans—that is, opti-

mized sequences of potentially different drug combinations—providing additional benefits.

In order to solve the treatment optimization problems, we combine the Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) algorithm with a significantly more scalable sam-

pling scheme for truncated Gaussian distributions, based on a Hamiltonian Monte-Carlo

method. These optimization techniques are independent of the signaling pathway model,

and can thus be adapted to find treatment candidates for other complex diseases than can-

cers as well, as long as a suitable predictive model is available.

Author summary

Combination therapies are a promising approach to counter complex diseases such as

cancers. Two key difficulties in the design of effective cancer combination therapies are
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the large number of available drugs and the heterogeneity of cancers which render exhaus-

tive laboratory studies impractical. In recent years, sophisticated signaling pathway mod-

els that can predict responses to combination treatments at a molecular level have been

developed. This motivates the question of how one can leverage mechanistic models to

identify candidates for novel combination treatments. In this paper we propose a combi-

nation treatment optimization framework which employs a large-scale pan-cancer path-

way model. We formulate treatment optimization problems for single cell lines and

heterogeneous populations of cancer cells. We further investigate sequential treatment

plans and combine an existing evolutionary algorithm with an efficient Hamiltonian

Monte-Carlo based sampling scheme. During extensive simulation studies our approach

identified combination therapies which are predicted to be more effective than conven-

tional treatments. We hope that one day in silico experiments will be used to identify a

small set of promising treatment candidates which can then form a starting point for labo-

ratory studies, allowing for an efficient use of limited resources and accelerated discovery

of effective therapies.

Introduction

Rational design of combination therapies is a difficult but important challenge in the treatment

of complex diseases such as cancers [1–6]. The large heterogeneity of cancers and number of

available drugs renders exhaustive in vivo or even in vitro investigation of treatments impracti-

cal. Accordingly, computational models that enable—even individualized—prediction of drug

sensitivity have to be employed [7]. To this end, sophisticated mechanistic, ordinary differen-

tial equation (ODE) models for drug sensitivity prediction have been developed [8–14]. How-

ever, so far little effort has been put towards using these models to actually design treatments.

Typically, only the temporal aspect of when to administer drugs [15, 16] is considered, but not

which drugs to pick.

The selection and prioritization of anti-cancer drugs needs to balance decrease in prolifera-

tion in cancer tissue with adverse side effects in healthy tissue. The anti-proliferative effect can

be enhanced by using searching for synergistic drug combinations where the combination of

drugs decreases proliferation more effectively that individual drugs, according to some null

model such as Bliss independence [17] or Loewe additivity [18]. The higher efficacy of syner-

gistic drugs enables these drugs to be employed at lower drug concentrations, which may

reduce adverse side effects. In the cancer context, single drug efficacy has been exhaustively

characterized in large databases such as the Cancer Cell Line Encyclopedia [19]. The previ-

ously mentioned ODE models can extrapolate single drug measurement to combinations and

predict synergy, which is difficult to explore experimentally [9]. However, there is no compre-

hensive characterization of adverse effects in healthy tissues. Cells in healthy tissue are often

terminally differentiated and, accordingly, do not proliferate. This makes it intractable to gen-

erate cell counts required for comprehensive in vitro screens and therefore adverse effects have

to be investigated in vivo in expensive animal experiments or clinical trials.

Besides adverse effects, drug resistance is a major concern for treatment design. Drug resis-

tance can either be innate, or acquired as a response to treatment [20]. While bio-marker

guided patient stratification is possible in select cases, invasive biopsies are required to evaluate

the presence of molecular markers in solid tumors. Such biopsies are expensive and only pro-

vide a limited view of clonal substructure. The issue of heterogeneity in drug resistance can

also be addressed by the use of combination treatments, as the chances for susceptibility
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increase with the number of employed drugs [21]. This inherently also addresses the issue of

acquired resistance, as drug combinations can counteract clonal selection that is frequently

observed in single-drug treatments.

In this paper we present a framework for in silico combination treatment optimization

which employs a large-scale mechanistic pan-cancer pathway model [9]. A robust evolutionary

optimization algorithm is modified with an efficient sampling scheme and used to guide the

search for effective drug combination. An extensive simulations study shows how different

regularization strategies can be used to identify a set of combination therapy candidates—trad-

ing off low proliferation with adverse side effects—targeting homogeneous and heterogeneous

tumors. Furthermore, we show how our method can be used to optimize sequential treatment
plans which apply varying drug cocktails in sequence to prevent inherent and acquired drug

resistance. The framework can be easily adapted to find treatment candidates for complex dis-

eases other than cancers, as long as a suitable predictive model is available.

To our knowledge, this is the first application of a large-scale pan-cancer pathway model to

search for novel combination therapy candidates. We adapt non-convex optimization tech-

niques and use an efficient parallelization scheme which enables the analysis of dozens of cell

lines and combinations of 7 anti-cancer agents at low cost. Three different treatment scenarios

targeting single as well as multiple cell lines at once are formalized as optimization problems

and simulations studies are conducted. Our simulations identified a set of treatment candi-

dates in the form of drug combinations that achieve better predicted treatment effects at lower

concentrations than the conventional therapy approaches.

Related work

The use of mathematical modeling for the design of cancer therapies has a rich history. Early

studies combined optimal control theory with a growth model of bone cancer to find treat-

ment regimes which balance reductions in cell population with administered dosage of a single

drug [22, 23]. Moreover, evolutionary game theory [24, 25] was used to analyze the adaption

of cell populations under selective pressure, especially with regards to population size [26–28],

and emergence of drug resistance [29–31].

Sandholm [32, 33] proposed modeling treatment planning—and steering biological entities

more generally—as a multi-step game between a biological entity and a treater, for the pur-

poses of computationally constructing steering plans that can involve combination therapies,

sequential plans, and conditional plans (aka. adaptive treatments). He proposed modeling the

biological entity in the game 1) using a behavioral model if there is enough data, 2) as a game-

theoretic worst-case adversary if there is not enough data, or 3) as an opponent with limited

lookahead so it can be exploited by luring it into traps. (Specific algorithms have since then

been developed for exploiting an opponent’s limited lookahead in imperfect-information

games [34, 35], but they have not yet been applied to biological settings.) In that taxonomy, the

present paper falls under approach (1).

Adaptive treatment regimes [36]—that is, regimes that monitor tumor development and

use predictive models to adapt reactively—have led to promising preclinical trials on breast

cancer [37] and Phase 2 clinical trials on prostate cancer [38]. Multiple in vitro studies [39–41]

investigated the emergence of drug resistance and showed advantages of adaptive treatment

regimes. A recent line of work [16, 42, 43] investigates benefits of combination treatments on

the development of drug sensitivity. Stackelberg games have been used in computational stud-

ies to design vaccines that impede virus adaption [44] and have more recently been proposed

for cancer treatment design [45] with the motivation to control drug resistance.
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While these prior approaches rely on rather high-level abstractions of the underlying biol-

ogy, our work employs a detailed, mechanistic pan-cancer signaling pathway model [9]. It can

be individualized to cell-lines using sequencing data, which is important to account for hetero-

geneity in response. It describes the action of 7 small molecule inhibitors, which enables the

design of higher-order combinations. One advantage of mechanistic pathway models over

other machine learning based techniques [46, 47] is that the domain knowledge encoded into

their graphical structure makes them less prone to overfitting and can help with generalization.

Previous evaluations of the pathway model we used indicated that it is capable of predicting

the effect of drug combinations from single drug treatments with quantitative accuracy [9],

which is essential for the reliability of treatment strategies we propose. The only prior work

[48] in this direction uses a Boolean T-cell signaling pathway model [49] which yielded—due

to its Boolean nature—mainly qualitative insights.

Our work serves as a proof of concept of how biologically accurate quantitative signaling

pathway models can be combined with optimization algorithms to discover effective

combination therapies, including multi-step ones. Our methodology and computational

approach enabled us to perform extensive simulations for combinations of 7 existing anti-

cancer agents on dozens of cancer cell-lines yielding promising directions for future laboratory

studies.

Methods

In this section we present our approach in detail. We first discuss the pan-cancer signaling

pathway model that is used to simulate treatment responses. Building on the predictions of

this model, we propose three different regularization strategies that minimize drug concentra-

tions and introduce three treatment optimization problems that account for different levels of

biological complexity. In order to tackle these problems we discuss modifications to the

CMA-ES algorithm [50], to make it suitable for our constrained search space. Finally, we dis-

cuss simulated cell lines and combination treatments as well as implementation details.

Pan-cancer cell simulation

For our treatment optimization simulation study, we employed a pre-existing large-scale

mechanistic pan-cancer signaling pathway model [9]. The model describes the effects of 7 tar-

geted anti-cancer agents on multiple cancer-associated pathways at the molecular level as an

ODE model. In total, the model describes the temporal development of 1228 different molecu-

lar species, that is, concentrations of ligands, protein complexes or drugs, through 2704 reac-

tions using a total of 4104 parameters. Every model simulation reports a proliferation score

Rðτ; eÞ ¼ f ðxss;wÞ; s:t: _x ¼ gðx; p; e; τÞ and gðxss; p; e; τÞ ¼ 0; ð1Þ

where f ðx;wÞ : R1228

�0
� R16

�0
! R�0 is a phenomenological function that maps molecular

abundances to proliferation scores, xss are molecular abundances defined by the steady state of

the ODE model and w 2 R16

�0
are mapping coefficients, which are free parameters of the map-

ping function. Here, gðx; p; e; τÞ : R1228

�0
� R4088

�0
� R144

�0
� R7

�0
! R1228

is the right hand side of

the differential equation. x 2 R1228

�0
, the kinetic parameters p 2 R4088

�0
are biophysical rate con-

stants such as binding rates or catalytic activities, which are free parameters for the ODE

model. e 2 R144

�0
are mRNA expression levels for 108 different genes and 36 gain of function

mutations described by the model, which can be used to individualize the model to specific

cell lines. τ 2 R7

�0
are drug concentrations, which define the concentrations of individual

drugs in the extracellular compartment.
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To be biologically meaningful, the proliferation score r has to be normalized to the prolifer-

ation score for the untreated condition with τ = 0. The normalized relative proliferation score

V(τ, e) = R(τ, e)/R(0, e) can be directly compared to experimental observations from cell viabil-

ity assays such as CellTiter-Glo [51], which quantify the difference in cell counts between

treated and untreated conditions, thus accounting for the net sum between cell growth and

cell death.

For all simulations, we used previously reported values for p and w, which were obtained by

training the model on relative proliferation data from 120 cell lines from the Cancer Cell Line

Encyclopedia [19]. We used the Advanced Multilanguage Interface for CVODES and IDAS

(AMICI) software package [52, 53]—which internally uses a C implementation of the Variable
Coefficient ODE Solver (VODE) [54] called CVODES [55]—to solve the ODE model (that is,

the signaling pathway network variables) to steady state after each treatment. Default AMICI

integration and steady state tolerances were used.

Combination treatment optimization

We leverage the pan-cancer pathway model to identify candidates for novel combination ther-

apies for a variety of cancers using 7 preexisting drugs. Formally, we represent a multi-drug

treatment by a 7-tuple τ 2 R7

�0
. Entry τi is the concentration of the i-th drug contained in

treatment τ in nanomoles (nM). Mathematically, the set of treatments considered in this paper

is represented by T ¼ fτ 2 R7

�0
: ktk1 � ag, that is, the set of all combination therapies

whose total dosage is below threshold value α. In prior work [9], the pathway model had been

fitted with clinical data administering concentrations in the range from 2.5 nM to 8000 nM.

Thus, we use a value of α = 8000 to ensure that the optimization domain T resembles the train-

ing data in terms of total dosage.

An effective treatment needs to trade off between desired and adverse effects. For each cell

line c the model defines a function Vc : T ! R�0 ¼ Vðτ; ecÞ, which given a treatment t 2 T
and a vector of expression levels ec, predicts the relative proliferation value of c when subjected

to τ. The predicted relative proliferation is used to capture desired treatment effects. Because

the literature does not offer a concise way to quantify adverse effects on healthy cells caused

by a combination of multiple drugs, we apply a mathematical regularization function

R : T ! R�0 to the treatment vector as an idealized measure. Prior work has used L1 [22, 23]

and L2 [56] regularization for this purpose. In our simulation study we use L1 (RL1), L2 (RL2)

and sum of logs regularization (Rln) defined as

RL1ðτÞ ¼
X7

i¼1

jtij; RL2ðτÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
X7

i¼1

t2

i

s

; RlnðτÞ ¼
X7

i¼1

lnð1þ tiÞ ð2Þ

and compare differences in resulting treatments. The following three subsubsections, respec-

tively, introduce three different treatment optimization problem classes that are addressed in

our simulation study.

Optimizing the single-step treatment of a single cell line. First, we focus on identifying

a treatment t 2 T that is effective for a specific cell line c. An optimization problem which bal-

ances relative proliferation score and adverse effects is given by

min
τ2T

VcðτÞ þ lRðτÞ; ð3Þ

where the penalty parameter λ sets the weight of adverse effects as quantified by regularizer

R 2 {RL1, RL2, Rln}. Large values of λ favor conservative treatments administering small dosages

while low values favor more aggressive treatments administering larger dosages. Solving the
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optimization problem for a range of different penalty values results in combination treatments

that are Pareto efficient with respect to their treatment effect/adverse effects profiles. The

Pareto front formed by these treatments can then in principle be used as an aid in the treat-

ment selection process.

Optimizing the single-step treatment of a population of cell lines. Tumors often feature

multiple sub-clones that feature different sets of mutations and expression levels. To avoid

resistance from clonal evolution, all possible sub-clones have to be targeted effectively. As a

proxy for these sub-clones, we consider multiple cell lines with the same tissue of origin.

Accordingly, we try to construct treatments t 2 T that are simultaneously effective on a set of

different cell lines C. The optimization problem is

min
t2T

max
c2C

VcðtÞ þ lRðτÞ; ð4Þ

where the objective function only considers the highest predicted proliferation value following

treatment τ among the cell lines in C, that is, the most proliferated cell line. This objective

favors treatments that reduce the proliferation values of all cell lines in the population evenly.

An alternative is to use a weighted sum of the individual proliferation scores. This could be

useful, for example, for finding personalized treatments when the distribution of cell types in a

tumor is known. When starting weights are used, that objective function tries to minimizes the

average proliferation of all cell lines in set C. In the Results section, we will briefly discuss

results under this objective. Of course, one could use hybrids of these two objectives as well.

Optimizing sequential treatment plans. In the clinic, most anti-cancer drugs are admin-

istered in cycles, where drugs are administered for a short period of time, followed by a longer

recovery period without treatment. In practice, the same drug is administered in every cycle,

but theoretically, it would be possible to use different combinations in each cycle. This is par-

ticularly interesting since sub-clones may have different levels of intrinsic resistance or sensi-

tivity to treatment, resulting in distinct drug-dependent growth rates. Therefore, it may not

always be possible to find a single treatment that works optimally for all possible sub-clones,

and a sequential plan could account for treatment-induced changes to clonal structure. To

address this, we also investigate the discovery of a sequential treatment plan, that is, a sequence

of combination treatments (τ1, . . ., τn) that is effective on a set of cell lines C. Let the space of

sequential treatments T n
� R7n

be the n-ary Cartesian power of the space of drug combina-

tions T . A treatment plan optimization problem is now given by

min
ðτ1 ;...;τnÞ2T

n
max
c2C

Yn

i¼1

VcðτiÞ þ l
Xn

i¼1

RðτiÞ: ð5Þ

For each cell line c 2 C, the relative proliferation value is computed by taking the product of

the predicted relative proliferation values at the individual treatment steps. This assumes that

the growth of a cell line during one of the steps of the treatment plan multiplicatively affects

the growth of that cell line in the next treatment step. A simple, biologically plausible model

that satisfies this assumption is an exponential growth model with different, drug-dependent

growth rates in each treatment step:

VcðZðtiÞÞ ¼
Ni� 1;t;c exp ðZcðtiÞTÞ
Ni� 1;0;c exp ðZcð0ÞTÞ

; ð6Þ

where Ni−1,τ,c is the final cell count of cell line c from the previous step in the treated condition,

Ni−1,0,c is the final cell count of cell line c from the previous step i − 1 in the untreated condi-

tion, ηc(τi) is the treatment-dependent growth rate of cell line c during the current step i,
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exp(ηc(0)) is the untreated growth rate of cell line c, and T is the treatment duration (which we

assume to be 72 hours, the time used to generate the experimental data the pathway model was

calibrated on in prior work). Under the assumption of such an exponential growth model, the

following equations hold in every treatment step:

VcðτiÞ ¼
expðZðtiÞTÞ
expðZð0ÞTÞ

ð7Þ

and, by induction,

Ni� 1;t;c

Ni� 1;0;c
¼
Yi� 1

j¼1

VcðτjÞ; ð8Þ

assuming that
N0;t;c
N0;0;c
¼ 1, that is, both treated and untreated cell populations start at the same

cell counts. This was true for the experimental data used for training the model in prior work.

Similar to the multi-cell line setting, this objective function considers the highest prolifera-

tion value to find a therapy that is effective for all c 2 C. The advantage of sequential plans

compared to time-invariant plans—plans that use the same drug cocktail in each step of the

treatment—is that the use of multiple specialized drug-combinations targeting different sub-

sets of C one at a time can be more effective than a single general t 2 T targeting all of cell

lines at once. A small illustrative example for this is shown in Fig 1. In this paper discrete 72h

time steps are naturally enforced in that the path-way model is simulated from one steady state

to the next.

Optimization process

The deployed pathway model behaves in a non-convex way when interpolating between drug

combinations. Because of this the proposed optimization problems are non-convex and there

is no known algorithm that is both scalable and guaranteed to find an optimal solution in

every case.

In this work we implemented covariance matrix adaption evolution strategy (CMA-ES)—a

robust and sample-efficient algorithm [50]. The underlying idea of CMA-ES is to iteratively

generate a set of solution candidates whose objective scores are then evaluated. After this, a

number of elites—that is, the solution candidates with the best objective scores—are selected

which are then used to generate the solution candidates for the next iteration step. The

Fig 1. Comparison of a sequential treatment plan with a time-invariant treatment plan. The use of different specialized drug-combinations

(targeting fewer cell lines at once) at different points in time can enable more effective therapies. In the illustrative example above with two cell lines and

three available treatments, the optimal two-step time-invariant treatment leads to a relative proliferation score of 0.36 for both cell lines. Meanwhile, the

optimal two-step sequential treatment plan achieves relative proliferation scores of 0.32 and 0.27 for cell lines 1 and 2, respectively.

https://doi.org/10.1371/journal.pcbi.1009689.g001
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CMA-ES algorithm does this by maintaining a mean vector and covariance matrix describing

a multivariate Gaussian distribution. At each step, solution candidates are sampled and elites

are selected to update the mean and covariance matrix in a way that increases the likelihood of

reaching previous elite solution candidates.

Over the years, a large variety of CMA-ES variations have been proposed and applied to

various domains. Our implementation of the algorithm exactly follows that presented in [57].

However, we had to make certain modifications to that algorithm to account for the fact that

the domain of treatments T is a constrained set with small volume. We will discuss those mod-

ifications next.

Sampling from a constrained space. During the sampling step, CMA-ES generates a set

of solution candidates by sampling from a multivariate Gaussian distribution. When dealing

with a constrained domain, naive sampling can lead to the generation of infeasible solution

candidates. A popular way to deal with this problem is to simply reject the infeasible points

and to sample again until all candidates are feasible [58, 59]. This process effectively transforms

the multivariate proposal distributed into a truncated Gaussian.

However, this approach fails in our treatment domain. The volume of domain T roughly

shrinks with a factor 1/d!, where d is the problem dimension. With increasing dimensionality,

the vast majority of sampled solution candidates needs to be rejected, rendering the naive

rejection-based approach infeasible. While the rejection-based approach took less than one

second per iteration to generate candidates for single-step treatment plans, the per iteration

time for two-step plans was already up to 5 minutes and for three-step plans we could not

complete a single CMA-ES iteration in 8 hours. To avoid this problem, we employ a Hamilto-

nian Monte Carlo method [60], which can directly generate samples from a truncated multi-

variate Gaussian distribution that can be constrained by linear and quadratic inequalities. The

per iteration sample generation time of this more advanced approach for one-, two- and three-

step treatment plans are less than one, three and eight seconds respectively. Thus the Hamilto-

nian Monte Carlo method can speed up the sample generation process by multiple orders of

magnitude. Without this modification extensive simulation studies of n-step sequential treat-

ment plans (d = 7n) would have not been possible.

Cell lines, penalties, and reference drug combination used in the

simulation study

Our simulation study involves 12 colorectal, 19 melanoma, 10 pancreatic, and 20 breast cancer

cell lines on which the pathway model was trained in prior work. Cancers from these tissues

have a high frequency of BRAF and RAS mutations, for which a large fraction of drugs in the

model is thought to be effective. As mentioned in the objective definition, a penalty parameter

λ is used to trade-off between reduction in predicted proliferation and adverse effects as quan-

tified by the regularization functions. Because it is not clear how to choose a single best λ
ahead of time, we varied the penalty parameter λ from 10−7 to 10−1 with exponent steps of 0.25

(0.05 for the sequential treatments) which recovered a set of Pareto efficient treatment candi-

dates. Empirically, we observed that 10−1 provides a natural upper bound so conservative that

the algorithm decides to not administer any treatment at all. A lower bound of 10−7 allowed

the algorithm to select the most aggressive dosage of 8000 nM and the treatment compositions

for all regularizers were very similar. While in most cases the optimization process converged

in less than 100 iterations, we ran the algorithm for 400 iterations because we observed large

variance in the returned treatments when using logarithmic regularization with large λ values

indicating a difficult optimization surface. Regarding the hyperparameters we exactly follow

the CMA-ES implementation discussed in the book by Kochenderfer and Wheeler [57]. For
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single/two-step plans we sample 9/11 candidates per iteration and select 4/5 elites. Candidate

generation variance is σ = 0.25. The initial starting point is the treatment that splits 8000 nM

evenly among the 8 drugs. For every problem configuration, the optimization algorithm is ini-

tialized with 3 different random seeds and the search result with best objective function value

is reported.

We compare the optimized treatments to two baselines. The first baseline is the best single-

drug treatment which is determined as follows. For each of the 7 drugs, treatments using con-

centrations in the range from 0 nM to 8000 nM are considered (8000 nM matches the maximal

concentration in the clinical data the ODE model was fitted with). Their objective and relative

proliferation values are evaluated at 1 nM steps. For a given penalty parameter λ, the best single

drug treatment is identified by its objective value. The second baseline are two-drug combina-

tions that use a mixture of PLX-4720 (RAFi)+PD0325901 (MEKi). PLX-4720 and PD0325901

serve as a proxy for the clinical grade combination therapy of Vemurafenib (RAFi) and Cobi-

metinib (MEKi) for BRAF mutant melanoma [5]. Vemurafenib is the clinical analogue of

PLX-4720 and PD0325901 and Cobimetinib are allosteric inhibitors that target similar pockets

in MEK molecules. As it was difficult to find precise information on the clinical mixture ratios

for these two drugs, we consider ratios from 0%-100% evaluated at 5% steps. As for the single

drug baseline, treatments that use a total concentration in the range from 0 nM to 8000 nM

are evaluated at 1 nM steps, and the two-drug treatment that achieves the best objective value

is used as the second baseline.

Computation

All simulations were conducted using a compute cluster. Each individual optimization was

run on a single 64-core server with AMD Opteron(TM) 6272 2.1 GHz processors and required

less then 64 GB of RAM. Each prediction of proliferation for a given cell line and treatment

(that is, one call to the function Vc) took about 1 second. This dominated the run-time of the

CMA-ES algorithm. We parallelized the evaluation of treatment candidates generated by the

CMA-ES algorithm, and furthermore, for each solution candidate, parallelized the evaluation

of that treatment on the different cell lines. In this way, we were able to run all simulations in

less than two weeks.

Results

In this section we evaluate the effectiveness of the combination therapy candidates identified

by the modified CMA-ES algorithm for the three treatment settings. For each setting, the find-

ings are illustrated and the resulting treatments are compared to the two baselines. We also

analyze the variance of the returned treatments as well as optimization for average

proliferation.

Optimizing the single-step treatment of a single cell line

In the first setting, the objective function defined by Eq (3) is used to find effective drug-com-

binations for individual cell lines. Fig 2 visualizes the optimization results for K029AX—a mel-

anoma cancer with BRAF V600E mutation—for three different types of regularization. The

optimized treatments achieve substantially lower relative proliferation values at lower total

dosage than the two baseline treatments showing the suitability of the CMA-ES algorithm. For

low penalties all regularizations lead to similar treatment compositions. For higher penalties

L2 regularization leads to treatments that use more drugs at lower dosage and logarithmic reg-

ularization leads to treatments that use fewer drugs at higher dosage. L1 regularization penal-

izes only the total dosage and is agnostic towards the specific treatment composition. Thus a
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treatment that is optimal under L1 regularization achieves the strongest possible reduction in

cancer cell proliferation with respect to its total dosage. Given two-drug combinations that

employ the same total dosage and that achieve the same treatment effect, L2 regularization pre-

fers the one that balances its components more evenly. Logarithmic regularization penalizes

treatments that employ multiple drugs harshly and a low objective value does not always iden-

tify a strong treatment (this might be explained with variance in the optimization process

which we analyze later on). The middle column of Fig 2 visualizes Pareto efficient treatments

and can be used to trade-off proliferation rate reduction with total administered dosage. Fur-

ther results for A2058 and MDAMB435S—two other melanoma cancer with BRAF V600E

mutation—are provided in S1 Appendix. For A2058 the optimized combination treatments

are substantially more efficient than the baselines for all dosages over 500 nM. For

MDAMB435S, the clinical-grade combination therapy that uses PLX-4720 and PD0325901 is

already very effective and the discovered treatment only leads to slight improvements. This

Fig 2. Single-step treatment for K029AX. Comparison between optimized single-cell multi-drug treatment, optimal

single-drug treatment, and optimal PD0325901/PLX-4720 combination treatment for K029AX—a melanoma cell line

with BRAF V600E mutation—for three different types of regularization. Left plots: optimal treatment as identified by

the objective function for different penalty parameters. The middle plots: relationship between administered total

dosage and achieved proliferation value regardless of penalty and objective value. Right plots: composition of the

multi-drug treatments. For all three types of regularization the optimization process leads to combination treatments

which achieve significantly lower predicted proliferation values at lower concentrations than single and two-drug

treatment. The treatment composition varies with the type of regularization.

https://doi.org/10.1371/journal.pcbi.1009689.g002
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can be seen as evidence that the clinical-grade therapy is close to optimal in the space of possi-

ble multi-drug treatments captured by the ODE model.

Optimizing the single-step treatment of a population of cell lines

For the second setting, the objective function defined by Eq (4) is used to find drug combina-

tions that minimize the maximum relative proliferation value predicted by the pathway model

over sets of cell lines originating from skin (CMelanoma), large-intestine (CColorectal), pancreas

(CPancreatic), and breast (CBreast) tissues, respectively. Findings for colorectal cell lines are visual-

ized in Fig 3. Results for the three other tissues under all three types of regularization are pro-

vided in S2 Appendix. For all four tissues, the discovered treatments achieve substantially

lower maximum relative proliferation values than the single-drug and PD0325901/PLX-4720

combination baselines at medium and high dosages. Especially for pancreatic cell lines, the

optimized treatments reduce the predicted cancer cell viability by a factor of up to three for

penalty values λ< 10−4.5 which allow the algorithm to employ the maximum (most aggressive)

Fig 3. Single-step treatment for colorectal cell lines. Comparison between optimized multi-cell multi-drug

treatment, optimal single-drug treatment, and optimal PD0325901/PLX-4720 combination treatment for colorectal

cell lines for three different types of regularization. Left plot: optimal treatment as identified by the objective function

for different penalty parameters. Middle plot: relationship between administered total dosage and achieved

proliferation value regardless of objective values. Right plot: composition of the multi-drug treatments. For all three

types of regularization the optimization process leads to combination treatments which achieve significantly lower

predicted proliferation values at lower concentrations than single and two-drug treatment. When using the

logarithmic regularization low objective values did not always indicate favorable proliferation values.

https://doi.org/10.1371/journal.pcbi.1009689.g003
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dosage of 8000 nM. For breast cancers, the optimization process leads to drug combinations

that achieve notable treatment effects even at dosages below 500 nM. The predicted advantage

of combination therapies over the baselines in the multi-cell regime is even more pronounced

than in the single-cell regime.

Optimizing sequential treatment plans

The third setting investigates 2-step treatment plans and uses the objective function defined by

Eq (5) to find sequences of drug combinations that are effective on cell lines originating from

the same tissue. In this setting we compare the performance of optimized sequential treatment

plans (that is, ones that can use different drug combinations and dosages at the two treatment

steps) described by 14 variables against optimized time-invariant treatment plans (that is, ones

that have to use the same drug combination and dosage in each of the two treatment steps)

described by 7 variables. With these candidate drugs and cell lines, only very slight benefits

were gained from allowing time-varying treatments. However, in a few cases at medium dos-

ages we observed some larger gains. One example for an effective 2-step plan for colorectal

cell lines is shown in Fig 4. A sequential plan that first employs one more aggressive drug-

combination of PD0325901, PLX-4720, and Erlotinib and then a more conservative—that is,

lower-dose—combination of PD0325901, Lapatinib, and Erlotinib achieves a maximum pre-

dicted proliferation value of 0.6048 which is 13% lower than the proliferation value achieved

by the optimized time-invariant treatment plan (0.6978), which uses the clinical-grade drug

pair of PD0325901 and PLX-4720 at medium dosage.

Fig 4. Two-step treatment plan composition for colorectal cell lines. A visualization of the drug cocktails

administered by the optimized two-step treatment plan and the optimized two-step time-invariant treatment plan for

colorectal cell lines under L1 regularization at the same total drug dosage (550 nM). The 2-step plan uses a high-dose

treatment followed by a low-dose treatment. This achieves maximum proliferation 0.6048, which is more effective than

the time-invariant treatment plan which only achieves 0.6978.

https://doi.org/10.1371/journal.pcbi.1009689.g004
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Optimization for average proliferation

While this paper mainly focuses on minimizing the maximum proliferation value in popula-

tions of cancer cell lines, we will now briefly discuss optimization results where the objective

was to minimize the average proliferation value. This alternative optimization problem was

discussed in the methods section.

First we investigated what average proliferation rate the multi-cell combination treatments

that were optimized for the maximum criterion achieve for each of the four individual tissues

under L1 regularization with penalty value λ = 10−7. We found that the treatments optimized

for low maximum proliferation achieve an average relative proliferation rate of approximately

0.1036 across melanoma, 0.0814 across colorectal, 0.1019 across pancreatic, and 0.2010 across

breast cancer cell lines. We compared these scores to those attained by the multi-cell combina-

tion treatments which were specifically designed to minimize the average proliferation rate.

We found that the treatments optimized for low average proliferation rate achieve average pre-

dicted proliferation values of approximately 0.0816 across melanoma, 0.0712 across colorectal,

0.0804 across pancreatic, and 0.1589 across breast cancers. Therefore, the multi-cell treatments

considered in this paper not only minimize the maximum proliferation rate of cells originating

from each tissue type, but they also attain average proliferation rates that are within 20% of

what is attained by the treatments which were specifically designed for low average. A potential

explanation for this behaviour is that both objectives lead to treatments focusing on the same

cell lines. The cell-specific proliferation rates shown in Fig 4 reveal that there are a few cell

lines which a much harder to treat than others. Any drug combination that wants to achieve

low average or maximum proliferation needs to focus on these few hard-to-treat cell lines.

Variance in optimization process

During our single- and multi-cell simulations we observed some variance in the optimized

combination treatments when using low penalty values. For example in Fig 3, there appears to

be a non-smooth dependency of PLX-4720 and CHIR-265 concentrations on the value of λ.

As PLX-4720 and CHIR-265 both have RAF as primary target with similar affinity, the two

drugs can be applied interchangeably without larger effect on the objective function and pen-

alty term. This might induce an indeterminacy in the optimization problem and that the opti-

mization runs convergence to multiple distinct local optima, causing the non-smooth

dependence on λ. To get a better insight into this behavior we performed additional single-cell

optimization runs with K029AX as well as multi-cell optimizations with colorectal cell lines.

For both settings we ran an additional 20 runs with warm starts. Each run started by optimiz-

ing a treatment for the lowest penalty value (λ = 10−7) and then increased the penalty exponent

at 0.25 steps, where at each step we initialized the algorithm with the optimal drug-combina-

tion from the previous step.

We grouped the discovered drug-combinations found during the 20 runs by penalty value

and performed separate Principal Component Analysis (PCA) for each group to investigate

the treatment distribution. The first two principal components are visualized in Figs 5 and 6

which in both setups explained more than 90% of the existing variance. Under high to medium

penalties L1 and L2 regularization led to unique optimal treatments. For lower penalty values

there is some variance. Logarithmic penalization suffers from high variance even when using

large penalties indicating multiple local optima. This might explain some of the instabilities we

observed in the previous CMA-ES runs which used logarithmic regularization. For low penalty

values the distribution of the returned combinations is similar for all types of regularization

which indicates stable convergence of the optimization algorithm. Overall the variance in the

multi-cell optimizations is larger than in the single-cell one.
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Fig 5. Output variance for K029AX. Visualization of the first two principal components of 20 single-cell combination

treatments for K029AX under three different types of regularization using warm starts. The treatment variance varies

with changing penalty parameter.

https://doi.org/10.1371/journal.pcbi.1009689.g005
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Fig 6. Output variance for colorectal cells. Visualization of the first two principal components of 20 multi-cell

combination treatments for colorectal cells under three different types of regularization using warm starts. The

treatment variance varies with changing penalty parameter.

https://doi.org/10.1371/journal.pcbi.1009689.g006
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Discussion

Our approach discovered treatment candidates that deviate from current clinical first-line

treatment strategies and are predicted to achieve larger reductions in cancer cell proliferation.

Yet, we have to carefully examine whether the proposed strategies are plausible from a biologi-

cal perspective. For the investigations with BRAFV600E skin cancer cell lines, the optimal

combination strategy we identified was often only marginally better than the PD03525901

+PLX-4720 gold-standard reference. Similarly, for the multi-cell line analysis, the algorithm

identified the gold-standard combination for low total dosages and was only able to identify

better combinations at higher dosages. However, we consistently observed high concentrations

of the MEK inhibitor PD0325901, which is known to display otherwise rare on-target toxici-

ties, suggesting that a different regularization strategy might be desired for this drug.

Another question is how likely it is that the treatments which are predicted to be effective

by the pathway model will also be effective in a real wet lab study. Overfitting is a concern

when calibrating a model with over 4000 parameters. We used a trained mechanistic pathway

model that was fitted in prior work [9] with over 5000 real data points from the Cancer Cell

Line Encyclopedia [19]. Unlike in many other systems biology settings here the number of

data points is larger than the number of model parameters. The model itself and its calibration

process are described in great detail in [9]. One advantage of mechanistic models is that their

graphical structure captures domain knowledge of the underlying cell biology. This makes

mechanistic models less prone to overfitting and can help with generalization. The used path-

way model was calibrated with data from single-drug treatments and has been shown to accu-

rately predict treatment effects of two-drug combination treatments [9]. Given that most of

the optimized treatments only use 3 or 4 drugs, we are optimistic that the model can yield valu-

able insights. Nonetheless, laboratory studies are, of course, required to provide a final answer

about the effectiveness of the treatment candidates identified here.

One limitation of the current study is that the relative cell viability measures we have used

here, such as those reported by assays such as CellTiter-Glo, are subject to several known

inconsistencies [61, 62]. These issues can, in part, be addressed by more modern methods [63,

64]. Similarly, the assumption that cell growth dynamics have reached a steady state after 72

hours may not always hold true. This may influence whether and how well biological insights

presented in this study can be replicated in in vitro and in vivo experiments. However, these

limitations are primarily due to limitations of data available in the large pharmacological stud-

ies [19] that were used in the parameterization of the current model, and not due to intrinsic

shortcomings of the methods developed in this study. In fact, the methods developed here

could easily be applied to the design of adaptive treatment strategies [16].

The model employed here assumes cell-line-specific, but static transcription. Accordingly,

the model may not accurately describe adaptive resistance mechanisms that are believed to

work through transcriptional feedbacks [20, 65]. Moreover, because the steady state of the

model is always unimodal under conditions we have considered, there is no memory effect

between subsequent treatments at the cellular level. However, the multiplicative propagation

of relative viabilities along the sequence of treatments introduces a memory effect at the popu-

lation level. In every treatment step, the relative proliferation values from the previous step

effectively introduce a re-weighting of the relative importance of the cell lines. As we showed,

this alone is enough to cause there to be benefit from time-varying sequential treatments. In

practice, a further benefit from sequential treatment may be obtainable by steering a cell line

or set of cell lines during the dynamics, that is, without waiting for steady state between treat-

ments. Finding such treatment plans computationally would require a signaling pathway

model that is faithful to reality not only at steady states but also during the transient paths.
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Constructing and calibrating such models would likely require significantly more in vivo
and/or in vitro data than models that only need to be accurate in steady states. The approach we

present here itself does not make assumptions about the properties of the underlying model or

what biological processes it describes. In particular, as the employed optimization approach is a

gradient-free method, it could also be applied to, for example, stochastic agent-based models.

For some cell-lines and regularizers, we observed that optimization can yield a continuum

of equivalent optimal treatments, which indicates ill-conditioning of the problem. Looking at

the PCA (Figs 5 and 6) revealed that this behavior is limited to low penalization strengths that

do not reduce the total concentration of the optimal treatment beyond the 8 μM maximum.

Accordingly, we concluded that this ill-conditioning did not substantially effect the results pre-

sented here and that the regularization approaches, as expected, improved the conditioning of

the problem.

The regularization functions we used provide an empirical way to minimize drug concen-

trations and respective adverse toxicities. In practice, concentrations at which adverse toxici-

ties occur may be specific to drugs, tissues, and individuals. In the absence of large-scale

toxicological and pharmacokinetic screenings, it seems difficult to design a more rational type

and strength of penalization. Our regularization functions penalize total drug burden and do

not consider cooperativity. The study of drug cooperativity is in itself an active area of research

[66–71].

Conclusions

In this paper we proposed a framework for in silico combination treatment optimization. To

the best of our knowledge this is the first time a large-scale pan-cancer pathway model was

used to identify candidates for effective combination therapies. Multiple treatment optimiza-

tion problems were proposed which required us to balance reduction in proliferation with

adverse side effects. In order to solve these problems, we combined the CMA-ES algorithm

with a significantly more scalable sampling scheme, based on a Hamiltonian Monte-Carlo

method. We evaluated the approach in an extensive simulation study of cancer cell lines origi-

nating from multiple tissues. We studied the treatment of individual cell lines and heteroge-

neous populations of cell lines. We also studied the generation of sequential time-varying and

time-invariant treatment plans. The combination treatment candidates identified by our algo-

rithm achieved significantly better predicted proliferation scores at lower drug concentrations

compared to the conventional therapy approaches. This serves as an early proof of concept of

how in silico simulations can be used to identify potentially novel combination therapies.

Future research is required to evaluate the performance of the discovered treatments in labora-

tory studies.

Supporting information

S1 Appendix. Further single-step single-cell simulations. Results of the single-step single-

cell optimization process for A2058 and MDAMB43S cancer cell lines. For A2058 we observed

that for all three types of regularization the optimized combination treatments achieve signifi-

cantly lower relative proliferation values at lower concentrations than the single-drug and two-

drug baselines. For MDAMB43S the discovered combination treatments only slightly

improved upon the PD0325901/PLX-4720 two-drug baseline. In both cases the type of regular-

ization impacts the composition of the returned combination treatments. When using loga-

rithmic regularization we observed large variance in returned treatments and low objective

values did not always indicate effective treatments.
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S2 Appendix. Further single-step multi-cell simulations. Results of the single-step multi-cell

optimization process for melanoma, pancreatic and breast cancer cell lines. For all three tissues

and regularizers, the discovered combination treatments achieve significantly lower maximum

relative proliferation values than the single-drug and PD0325901/PLX-4720 combination base-

lines at medium and high dosages. Especially for pancreatic cell lines, the optimized treatments

reduce the cancer cell viability by a factor of more than two. For breast cancers, the optimiza-

tion process leads to drug combinations that achieve notable treatment effects even at low dos-

age. The type of used regularization effects the composition of the combinations. When using

logarithmic regularization we observed large variance in returned treatments and low objective

values did not always indicate effective treatments.

(PDF)
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