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SUMMARY
Obesity is a major cancer risk factor, but how differences in systemic metabolism change the tumor micro-
environment (TME) and impact anti-tumor immunity is not understood. Here, we demonstrate that high-fat
diet (HFD)-induced obesity impairs CD8+ T cell function in the murine TME, accelerating tumor growth. We
generate a single-cell resolution atlas of cellular metabolism in the TME, detailing how it changes with
diet-induced obesity. We find that tumor and CD8+ T cells display distinct metabolic adaptations to obesity.
Tumor cells increase fat uptake with HFD, whereas tumor-infiltrating CD8+ T cells do not. These differential
adaptations lead to altered fatty acid partitioning in HFD tumors, impairing CD8+ T cell infiltration and
function. Blocking metabolic reprogramming by tumor cells in obese mice improves anti-tumor immunity.
Analysis of human cancers reveals similar transcriptional changes in CD8+ T cell markers, suggesting inter-
ventions that exploit metabolism to improve cancer immunotherapy.
INTRODUCTION

Obesity is an epidemic in the Western world and a risk factor for

at least 13 types of cancer, including colorectal carcinoma

(Lauby-Secretan et al., 2016). Of cancers in patients >30 years

of age in the United States, �5% and 10% are attributable to

excess body weight in men and women, respectively (Islami

et al., 2018). Moreover, while overall cancer incidence has

decreased over the past 10 years in the United States, rates

are rising for several obesity-related cancers, such as liver,

pancreatic, thyroid, and uterine cancer, as well as for colorectal

cancer in patients under 55 (Lauby-Secretan et al., 2016; Siegel

et al., 2019; Sung et al., 2019). Thus, it is crucial to elucidate

mechanisms by which obesity increases tumor burden.
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Obesity induces systemic perturbations to organismal meta-

bolism, leading to dyslipidemia, hypercholesterolemia, insulin

resistance, altered hormone levels, and baseline changes in

inflammation (Deng et al., 2016). Cellular changes associated

with obesity include transcriptional and epigenetic alterations

in the intestinal epithelium favoring colorectal tumor

initiation (Beyaz et al., 2016; Li et al., 2014, 2018) and progres-

sion (Li et al., 2014). Previous studies on obesity and cancer

have focused on tumor-intrinsic effects or on the endocrine-tu-

mor cell regulatory axis. It has not yet been reported how

changes in systemic metabolism induced by obesity affect im-

mune cells in the local tumor microenvironment (TME).

The TME is a unique metabolic niche, containing cellular com-

ponents (tumor cells, immune cells, and stromal cells) as well as
Elsevier Inc.

mailto:arlene_sharpe@hms.harvard.edu
mailto:marcia_haigis@hms.harvard.edu
https://doi.org/10.1016/j.cell.2020.11.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2020.11.009&domain=pdf


ll
Article
the contents of the tumor interstitial space. A hallmark feature of

tumor cell metabolism is increased nutrient consumption tomeet

energetic, anabolic, and pro-survival demands (Pavlova and

Thompson, 2016; Spinelli and Haigis, 2018). Activated T cells

are highly proliferative and rely on specific metabolic pathways

to sustain T cell effector functions (Buck et al., 2015). Given the

limited blood supply of solid tumors, high nutrient consumption

by tumor cells may pose a barrier to the metabolic requirements

of intratumoral T cells (Chang et al., 2015; Ho et al., 2015). Tumor

cell metabolism is known to alter many aspects of the local meta-

bolic landscape in ways that inhibit anti-tumor immunity (Sugiura

and Rathmell, 2018). However, it is not well understood how sys-

temic metabolism affects local metabolism within the TME or

how obesity impacts the interplay between tumor and immune

cells (Drijvers et al., 2020).

Here, we investigate how obesity shifts the metabolic land-

scape of the TME to inhibit T cell function and promote tumor

growth. Using metabolic, proteomic, and genomic approaches,

as well as multiplexed tissue imaging, we systematically dissect

how diet-induced obesity reshapesmetabolism in the TME using

syngeneic mouse tumor models. We use single-cell RNA

sequencing (RNA-seq) to characterize metabolic responses to

obesity by immune subsets in the TME. These multi-omic data

reveal a detailed map of the dynamic landscape of tumor-im-

mune cell interactions with HFD-induced obesity at single-cell

resolution. Tumor cells, but not CD8+ T cells, dynamically

respond to HFD by upregulating pathways that mobilize free

fatty acids (FFAs). This shift results in altered fuel partitioning

among cell populations, contributing to a TME that is paradoxi-

cally depleted for major fatty acid fuel sources during obesity.

Genetic intervention to block metabolic reprogramming in tumor

cells increases the availability of major FFA fuel sources and pro-

motes tumor control by the immune system. Thus, adaptive

metabolic plasticity in tumors with obesity instigates a tug of

war in the TME between tumor cells and CD8+ T cells for bene-

ficial fatty acids.

RESULTS

HFD Accelerates MC38 Tumor Growth in a CD8+ T Cell-
Dependent Manner
To model human obesity in mice, we randomized C57BL/6J an-

imals at 5 weeks of age to control diet (CD) or HFD groups fed ad

libitum (Figure 1A). Although CD chow contains 13.2% kilocalo-

ries from fat, 60% of the kilocalories in the HFD come from satu-

rated and unsaturated fats (Figure S1A). After 8–10 weeks of

feeding, HFD mice gained significantly more weight (Figure S1B)

and exhibited systemic obesity-associated metabolic changes,

such as hypercholesterolemia and mild hyperglycemia, as well

as changes in circulating levels of leptin, resistin, adiponectin,

and interleukin (IL)-6, but without changes in fed or fasting insulin

levels (Figures S1C–S1I).

After adaptation to CD or HFD, mice were injected with synge-

neic MC38 colorectal adenocarcinoma cells, which establish

highly immunogenic tumors. As observed previously, MC38

tumors grewmore rapidly in mice fed HFD compared to CD (Fig-

ure 1B; Algire et al., 2011; Nimri et al., 2015). We also studied the

growth kinetics of three other C57BL/6J syngeneic tumor
models of varying immunogenicity: E0771 breast adenocarci-

noma, B16 melanoma, and Lewis lung carcinoma (LLC) (Crosby

et al., 2018; Lechner et al., 2013; Mosely et al., 2017). Highly

immunogenic orthotopic E0771 breast tumors grew faster in

HFD animals (Figure 1C), while moderately immunogenic B16

melanoma tumors demonstrated a modest increase in growth

rate with HFD (Figure 1D), and the growth rate of poorly immuno-

genic LLC tumors did not change with diet (Figure 1E). To further

investigate how immunogenicity affects growth kinetics, we

monitored growth of B16 tumors expressing the immunogenic

model antigen ovalbumin (B16-OVA-RFP) for 11 days and found

that even at this early time point, HFD tumors were substantially

larger than CD tumors (Figure S1J). We also measured the effect

of HFD on the growth of CT26 (colon carcinoma) and RENCA

(renal adenocarcinoma) tumors, which are syngeneic in BALB/

cJ mice. CT26 tumors grew faster in HFD- than CD-fed mice,

but RENCA tumors did not (Figures S1K and S1L).

To interrogate whether the reduced growth rates of tumors in

CD animals were due to control by T cells, we implanted MC38

tumors in T cell receptor a chain knockout (TCRa-KO) mice,

which lack conventional ab T cells. Although TCRa-KO mice

exhibited similar weight gain on HFD aswild-type (WT)mice (Fig-

ure S1B), there was no difference in the growth rate of MC38 tu-

mors in TCRa-KO mice fed CD compared to HFD (Figure 1F).

Similarly, there were no diet-dependent changes in tumor

growth rate in mice depleted of CD8+ T cells (Figures 1G, S1M,

and S1N). Although CD8+ T cell depletion expectedly acceler-

ated tumor growth in both conditions, the difference between tu-

mors in mice with and without CD8+ T cell depletion was smaller

in the HFD context (Figures S1O and S1P). Taken together, these

data provide evidence that HFD-induced changes inmetabolism

increase MC38 tumor growth by limiting anti-tumor CD8+ T cell

responses.
HFD Feeding Reduces the Number and Functionality of
Intratumoral CD8+ T Cells
To understand how HFD feeding alters the immune landscape of

MC38 tumors, we used flow cytometry to profile tumor-infil-

trating immune cell populations in tumors 10–14 days after im-

plantation, when tumors were similar in volume (Figures 1B

and 2A). In HFD tumors, we observed large changes in the

lymphocyte compartment, including cytotoxic T cell populations

capable of performing antigen-specific cell killing. Specifically,

HFD MC38 tumors contained fewer CD8+ T cells as a fraction

of the CD45+ leukocyte infiltrate (Figures 2B and S2A). The

reduction in CD8+ T cells was specific to the tumor, because

we did not observe this in the spleen or draining lymph node

(dLN) (Figure 2B). To determine whether the reduced CD8+

T cell fraction corresponded to an overall reduction in number,

we used GFP-expressing MC38 cells and counted the number

of CD45+ leukocytes and CD8+ T cells relative to tumor cells

by flow cytometry. This showed that HFD mice had a decreased

leukocyte-to-tumor cell ratio (Figures 2C and S2B), as well as a

lower CD8+ T cell-to-tumor cell ratio (Figures 2D and S2B). The

ratio of CD4+ T cells to tumor cells was not significantly changed

(Figures S2B and S2C), and the proportion of regulatory FOXP3+

CD4+ T cells (Tregs) of all CD4+ T cells was comparable in CD
Cell 183, 1848–1866, December 23, 2020 1849



Figure 1. MC38 Tumor Growth Is Accelerated by HFD Feeding in a CD8+ T Cell-Dependent Manner

(A) Schematic depicting experimental setup.

(B–E) Tumor growth curves of WT C57BL/6J mice inoculated with 105 MC38 (B), 2 3 105 E0771 (C), 105 B16 melanoma (D), or 105 Lewis lung carcinoma (E)

tumor cells.

(F) Tumor growth curves of TCRa-KO mice fed CD or HFD inoculated with 105 MC38 tumor cells.

(G) Tumor growth curves ofWTC57BL/6Jmice inoculated with 105MC38 tumor cells and treatedwith isotype control (left) or depleting anti-CD8 (right) antibodies

after CD or HFD feeding for 8–10 weeks.

Data represent R2 independent experiments with R5 mice per group. Statistical significance was assessed by two-way ANOVA followed by the Bonferroni

posthoc correction (B–G). (*p % 0.05, **p % 0.01, ***p % 0.001, ****p % 0.0001.) Graphs display mean ± SEM (B–G).

See also Figure S1.
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and HFD tumors (Figures S2A and S2D). As a result, the ratio of

CD8+ T cells to Tregs was lower in HFD tumors (Figure S2E).

In addition to CD8+ T cells, we also evaluated the effects of

HFD on other immune cell populations in MC38 tumors. Natural

killer (NK) cell numbers were comparable across conditions (Fig-

ure S2F). However, the percentage of CD11b+ myeloid cells

increased with HFD (Figures S2A and S2G), corresponding to

an expansion of both GR1+ CD11b+myeloid-derived suppressor

cell numbers (Figures S2A and S2H) and F4/80+ GR1� CD11b+

tumor-associated macrophages (TAMs) (Figures S2A and S2I),

two populations known to promote tumor growth. The ratio of

CD11b+ myeloid cells to tumor cells did not increase, because
1850 Cell 183, 1848–1866, December 23, 2020
there were fewer infiltrating immune cells in HFD tumors (Fig-

ure S2J). We also looked at CD11c+ dendritic cells, which stim-

ulate T cells by presenting antigen. The percentage of CD11c+

dendritic cells in tumors was similar in CD and HFD, as were

the expression levels of MHC-I, MHC-II, and CD40 on CD11c+

cells (Figures S2K–S2N). Diet did not alter MHC-I and PD-L1

levels on MC38 tumor cells (Figures S2O and S2P). These find-

ings suggest that CD8+ T cells are the immune cell type in the

MC38 TME most dramatically impacted by HFD.

To study the effect of HFD on the activity and function of CD8+

T cells in tumors, we assayed markers indicative of T cell func-

tion. CD8+ tumor-infiltrating lymphocytes (TILs) from HFD mice

mailto:Image of Figure 1|tif


Figure 2. HFD Reduces Intratumoral CD8+ T Cell Numbers and Functionality

(A) Schematic depicting experimental setup.

(B–L) Flow cytometry analysis of MC38 (B and E–L), MC38-GFP (C and D), E0771 (M) or B16-OVA-RFP (N) tumors on days 10–14 after inoculation.

(B) Quantification of the percentage of CD8+ T cells among intratumoral CD45+ cells.

(C and D) The ratio of CD45+ cells (C) or CD8+ T cells (D) to MC38-GFP tumor cells.

(E–G) Quantification of Ki67 (E), ICOS (F), and PD-1 (G) expression among CD8+ TILs.

(H and I) Representative flow plot (H) and quantification (I) of GZMB expression among CD8+ TILs.

(J–L) Quantification of IFNg (J), TNFa (K) and IL-2 (L) expression among CD8+ TILs after ex vivo phorbol myristate acetate (PMA)/ionomycin stimulation.

(M and N) Quantification of GZMB expression among CD8+ TILs in E0771 (M) and B16-OVA-RFP (N) tumors.

Data representR2 independent experiments withR6mice per group. Statistical significance was assessed by Student’s t test (B–G, I–N). (not significant [ns], p >

0.05, *p % 0.05, **p % 0.01). Graphs display mean ± SD (B–G and I–N.)

See also Figure S2.
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were less proliferative, based on Ki67 levels (Figures 2E and

S2Q). A smaller proportion of HFD CD8+ TILs expressed the cos-

timulatory receptor ICOS (Figures 2F and S2R). We also exam-

ined PD-1 expression, which is induced during activation, and

observed fewer CD8+ TILs expressing PD-1 in HFD animals (Fig-
ure 2G). Thus, CD8+ TILs express lower levels of both co-stimu-

latory and co-inhibitory receptors, consistent with decreased

activation. Accordingly, we found that fewer CD8+ TILs ex-

pressed the cytolytic molecule granzyme B (GZMB) with HFD

compared to CD (Figures 2H and 2I), suggesting reduced
Cell 183, 1848–1866, December 23, 2020 1851
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functionality. HFD did not alter the ability of CD8+ T cells to pro-

duce the inflammatory cytokines interferon gamma (IFNg) and

tumor necrosis factor alpha (TNF-a), but increased IL-2 produc-

tion (Figures 2J–2L). We also analyzed the expression of key

T cell functional markers from the diet-sensitive E0771 and

B16-RFP-OVA tumor models, finding similar functional deficits

in intratumoral T cells. GZMB and PD-1 expression were signif-

icantly lower in CD8+ T cells from HFD tumors, whereas CD8+

T cell infiltration was reduced in B16-OVA, but not E0771, tumors

(Figures 2M, 2N, and S2S–S2V). In contrast, CD8+ T cell infiltra-

tion and functionality did not change with HFD in CT26 tumors in

BALB/cJ mice (Figures S2W and S2X). Thus, HFD reduces intra-

tumoral T cell function across many, but not all, diet-sensitive tu-

mor models.

We then asked whether obesity altered the activation of CD8+

T cells ex vivo after antibody stimulation. HFD-derived naive

splenic CD8+ T cells performed similarly or better than their

CD-derived counterparts in terms of proliferation, GZMBexpres-

sion, and Ki67 expression when stimulated with anti-CD3/anti-

CD28 antibodies in vitro (Figures S2Y–S2AA). Thus, changes in

CD8+ T cell proliferation and state were specific to the HFD envi-

ronment in vivo and did not appear to involve an intrinsic defect in

T cell activation.

Single-Cell RNA-Seq Shows Diet-Induced Alterations in
Tumor-Infiltrating Immune Populations
Next, we used single-cell RNA-seq of tumor-infiltrating CD45+

leukocytes from CD and HFD MC38 tumors to map the tumor-

immune transcriptional landscape in an unbiased and

comprehensive manner (Figure 3A). To define major cell pop-

ulations, we performed unsupervised clustering analysis on in-

tegrated single-cell datasets from CD and HFD tumors. This

identified 16 distinct clusters (Figure 3B), where each of the

16 clusters contained cells from both diet conditions (Fig-

ure S3A). We annotated clusters based on the expression of

known genetic markers (Figure S3B) and categorized those

cell populations into groups with common pro- or anti-tumor-

igenic properties. Lymphocytes were significantly reduced in

animals on HFD, whereas the relative proportions of immuno-

suppressive myeloid cell populations did not change

(Figure 3C).

To map metabolic alterations with obesity at a single-cell res-

olution, we projected a curated set of 61 KEGG metabolic gene

signatures onto all cells (DeTomaso et al., 2019). KEGG signa-

tures enriched in leukocytes from CD tumors included sugar

metabolism (fructose/mannose metabolism, glycolysis/gluco-

neogenesis, galactose metabolism, and inositol phosphate

metabolism) as well as redox pathways (cysteine andmethionine

metabolism and the pentose phosphate pathway) (Figure 3D). By

contrast, leukocytes fromHFD tumors were enriched formultiple

pathways involved in fat and cholesterol metabolism (glyco-

sphingolipid biosynthesis, steroid biosynthesis, fatty acid meta-

bolism, and TCA cycle), folate biosynthesis, and pentose and

glucuronate interconversion (Figure 3D). Next, we calculated

KEGG metabolic signature scores for each cluster and

compared average scores in CD versus HFD (Figures 3E–3G

and S3C–S3H). These comparisons largely corroborated the

KEGG signatures for the complete dataset. For example, glycol-
1852 Cell 183, 1848–1866, December 23, 2020
ysis and gluconeogenesis were significantly enrichedwith CD for

9 out of 16 clusters (Figures 3D and 3F), and fatty acid meta-

bolism was significantly enriched with HFD across multiple clus-

ters (Figures 3D and 3G).

We also identified cluster-specific metabolic adaptations that

were not reflected in the overall cell analysis. For example, oxida-

tive phosphorylation was enriched with CD in four clusters,

including T lymphocytes, and enriched in HFD in cluster #10,

corresponding to M2 macrophages (Figure S3F). Interestingly,

some pathways related to fat synthesis, including glycerolipid

and sphingolipid metabolism, were not altered by HFD (Figures

S3G and S3H). Clusters #6, #8, and #10, corresponding to

monocytes, T cells, and M2 TAMs, were particularly sensitive

to HFD, as each of these populations showed significant differ-

ences for three out of four of the major metabolic signatures

that direct carbon into glycolysis and the TCA cycle (Figures

3E–3G, S3E, and S3F).

We next profiled KEGG signaling signatures involved in meta-

bolic regulation and immune activity. As expected, transcrip-

tional signatures of insulin signaling were enriched with HFD,

but only in certain myeloid clusters (Figure S3I). Likewise,

mTOR signaling was more associated with HFD, but only altered

in myeloid populations (Figure S3J). On the other hand, phos-

phatidyl inositol signaling was enriched in CD for T lymphocytes

(Figure S3K). We saw other signatures consistent with impaired

T cell function with HFD. In T lymphocytes (cluster #8), we

observed significant reductions in chemokine signaling and

T cell receptor signaling with HFD (Figures 3H and 3I). Collec-

tively, these data reveal the existence of both common and

cell-type-specific modes of metabolic adaptations to HFD.

Because our initial clustering did not resolve different T

lymphocyte populations, we re-clustered T lymphocytes (cluster

#8) into subsets, which identified four sub-clusters (Figure 3J)

that all express Cd3g (Figure S3L). Lymphocyte sub-clusters

were identified as CD4+ or CD8+ T cells by the expression of

Ikzf2 and Cd8a, respectively (Figures S3M and S3N). CD8+

T cells were further characterized as proliferating, Tim3+ cyto-

toxic, or Slamf6+ stem cell-progenitor subsets based on the

expression of the corresponding cell signature (Figures S3O–

S3R; Kowalczyk et al., 2015; Miller et al., 2019). We then scored

KEGG metabolic signatures within all CD8+ T cells, which re-

vealed metabolic pathways enriched with CD versus HFD (Fig-

ure 3K). We observed metabolic signatures enriched with CD

that have been correlated with T cell activation, including sugar

and amino acid metabolism (Figure 3K; Geiger et al., 2016; Ma-

cIver et al., 2013; Sinclair et al., 2013;Wei et al., 2017). Due to the

small number of cells in clusters T-2 and T-3, we focused subse-

quent analysis on the T-0 Tim3+ cytotoxic CD8+ T cell

population.

When we performed differential expression analysis on Tim3+

cytotoxic CD8+ T cells, the top five genes enriched in CD CD8+

T cells were involved in T cell effector function and included

Gzmb, Tnfrsf9, Ifng, Ccl3, and Ccl4 (Figure 3L). To examine

changes associated with diet, we scored CD8+ T cells in cluster

T-0 against the C7 immunological signature database for

MSigDB. We manually curated gene sets to focus on genes

involved in CD8+ T cell stimulation and filtered for signatures

that were significantly autocorrelated in R1 condition (Figures



Figure 3. Single-Cell Analysis Reveals Global Metabolic Remodeling of Tumor-Immune Infiltrate

(A) Schematic depicting single-cell RNA-seq experiment and analysis.

(B) Identification of tumor-infiltrating immune cell populations. Uniform manifold approximation and projection (UMAP) embeddings of single-cell RNA-seq

profiles from 9,104 CD45+ leukocyte cells showing 16 clusters identified by integrated analysis, colored by cluster. Representative of one experiment, n = 6

pooled CD mice and n = 3 pooled HFD mice.

(C) Barplot depicting proportional differences in leukocyte infiltrate from HFD versus CD tumors. Each class contains the following clusters from 3B: immuno-

suppressive (all M2 macrophage clusters #0, #3, #7, #10, #12; neutrophils #1; and MDSCs #4), pro-immune (all M1 macrophage clusters #2 and #5), dendritic

cells (clusters #11 and #14), monocytes (clusters #6 and #9), and lymphocytes (T lymphocytes #8 and natural killer cells #13).

(D) Enrichment of KEGG metabolic signature scores in all single-cell transcriptomes for HFD versus CD tumors.

(E) Schematic depicting the interpretation of (F)–(I).

(F–I) Scatterplots showing average signature score, calculated in VISION, for curated KEGG pathways on a cluster-by-cluster basis in HFD versus CD for

glycolysis and gluconeogenesis (F), fatty acid metabolism (G), chemokine signaling pathway (H), and T cell receptor signaling (I).

(J) Subset and re-clustering of T lymphocytes from cluster #8 (top), colored by diet (lower left) or cluster (lower right).

(K) Enrichment of KEGGmetabolic signature scores that are altered by diet in single-cell transcriptomes from re-clustered CD8+ T cells. CD and HFD q values are

depicted in positive and negative directions, respectively.

(L) Heatmap of the top 5 differentially expressed genes enriched in Tim3+ cytotoxic CD8+ tumor-infiltrating lymphocytes from CD animals (cluster #T-0).

(M) Scatterplot comparing autocorrelation scores computed in Vision for curated immune gene signatures in Tim3+ cytotoxic CD8+ tumor-infiltrating lymphocytes

(cluster #T-0). Plot depicts immune signatures that are significantly autocorrelated in at least one diet condition, and the point size reflects the magnitude of the

difference in autocorrelation between HFD and CD.

(N) Correlation between KEGG metabolic pathway signatures involved in major carbon-handling pathways and KEGG T cell receptor signaling (left) or naive

versus activated CD8+ T cell (GSE15324) signature (right) in Tim3+ cytotoxic CD8+ T cells (cluster #T-0).

Statistical significance was assessed by two-sided binomial test (C), Wilcoxon rank sumwith FDR correction using themethod of Benjamini and Hochberg (D, F-I,

K), empirical p value calculation with FDR-correction within Vision (M), and by asymptotic t approximation (N). (not significant [ns], p > 0.05, *p% 0.05, **p% 0.01,

***p % 0.001, ****p % 0.0001.)

See also Figure S3.
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Figure 4. Multiplexed Imaging Reveals Metabolic Remodeling in Tumors with HFD

(A–E) CyCIF analysis of MC38 HFD versus CD tumors.

(A) Representative image of CD tumors depicting segregation of immune lineage markers. Scale bars, 50 mm.

(legend continued on next page)
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S3S and S3T), which represent features that are associated with

the cell cluster. Overall, signatures associated with naive or un-

stimulated T cells tended to be enriched with HFD, whereas

those corresponding to stimulated T cells were enriched with

CD (Figures 3M and S3T). To determine if cells scoring higher

for T cell stimulation signatures also scored higher for specific

metabolic signatures (or vice versa), we calculated the correla-

tion between T cell stimulation signatures and a core set of

KEGG metabolic pathways for CD and HFD CD8+ T cells.

Indeed, metabolic pathways were more significantly correlated

with T cell activation in the HFD TME (Figure 3N). In sum, sin-

gle-cell profiling revealed that immune cells in the TME undergo

unique metabolic adaptations in response to HFD and the differ-

ences are distinctive in the T cells, which display altered expres-

sion of major central carbon metabolic pathways.

HFD Remodels the Tumor-Immune Landscape in
the TME
For tumor cell killing, CD8+ T cells require direct cell-cell contact

and sufficient metabolic resources. Thus, we sought to under-

stand if obesity affects the location of TILs within the TME as

well as whether the positions of T cells in a tumor relate to

changes in the intratumoral metabolic niche. We mapped the lo-

cations and states of cells in the TME using cyclic immunofluo-

rescence (CyCIF), which enables multiplexed tissue imaging.

The resulting 23-plex, sub-cellular resolution images of formalin

fixed paraffin embedded (FFPE) tissue sections made it possible

to generate an atlas of immune, tumor, and stromal cell popula-

tions, map their locations within the TME, and identify key fea-

tures of their metabolic state (Lin et al., 2018).

Cell clusters were defined computationally, based on patterns

of marker expression and the score for their metabolic signature

(see STAR Methods for details; Figures 4A, 4B, S4A, and S4B).

We assigned identities to individual clusters based on the

expression of lineage markers (Figure 4C). Overall, nine distinct

cell types could be identified and mapped (Figure 4C). Similar

to our earlier findings, CyCIF analysis independently showed

that HFD tumors contained fewer CD8+ T cells, and further re-

vealed that T cells were not concentrated at the tumor margin,

a hallmark of T cell exclusion (Figures 2D and S4C).

We observed substantial variation in the expression of meta-

bolic and cell state markers with cell type and across the TME.

Of note, the expression of glycolytic markers (GLUT1, PKM2,

and LDH) was non-uniform across tumors with regions of both

bright and dim staining (Figure 4D). By contrast, the spatial dis-
(B) Cell populations identified by t-distributed stochastic neighbor embedding (t-

per population.

(C) Heatmap depicting cell populations identified by HDBSCAN from (B).

(D) Expression pattern of glycolytic genes in CD and HFD tumors.

(E) Representative t-CyCIF image showing GLUT1 (purple) and CD8a (green) exp

(F andG) Representative images depicting real and simulated data used for spatia

representing the x,y coordinates of cells classified as CD8+ T cells (F) or a simila

generated by Poisson-disc sampling (G). Data points are colored according to th

Scale bars, 500 mm.

(H and I) Normalized fraction of CD8+ (H) and CD4+ (I) T cells overlapping areas

Statistical significancewas assessed by Student’s t test (H and I). (not significant [n

and I).

See also Figure S4.
tributions of other metabolic markers such as GLUD1, ACO2,

COX4, and VDAC1 were more uniform across tissue sections

(Figure S4D). To determine whether variation in metabolic state

across tumors correlated spatially with the locations of immune

cells, we measured the overlap between immune cell popula-

tions and regions of the tumor with high expression of GLUT1

or ACO2. GLUT1- and ACO2-high regions were defined by pro-

tein expression and were not associated with any particular cell

type. For this analysis, the proportion of intratumoral CD8+

T cells located in GLUT1-high or ACO2-high regions (Figures

4E and 4F) was compared to a simulated null distribution

involving the same number of CD8+ T cells (Figures 4G and

S4E). This analysis showed that both CD4+ and CD8+ T cells

were significantly less abundant in GLUT1-high regions than ex-

pected by chance (Figures S4F and S4G). Exclusion was not

observed either for CD8+ T cells in ACO2-high regions (Fig-

ure S4F) or for other immune cell types, such as CD11b+

LY6G+ myeloid cells (Figure S4H). To determine if diet changes

the propensity for T cells to avoid GLUT1-high regions, we

controlled for differences in cell density for each tissue by

normalizing the percent overlap between CD8+ T cells and

GLUT1-high regions to the corresponding simulated distribution.

The normalized overlap between CD8+ and CD4+ T cells and

GLUT1 was reduced in HFD tumors (Figures 4H and 4I), with

CD8+ T cells significantly more excluded fromGLUT1-high areas

in HFD than in CD. Thus, although CD8+ T cells are found within

HFD tumors, our data suggest that HFD feeding changes meta-

bolic niche interactions within tumors and impacts local T cell

infiltration patterns.

HFD Causes Opposing Metabolic Changes in CD8+ T
Cells versus Tumor Cells
CD8+ T cells rely on many of the same fuel sources and meta-

bolic pathways as tumor cells to support proliferation, survival,

and effector functions. To study how diet impacts metabolic re-

programming in different types of cells within tumors, we used

bulk RNA-seq on sorted populations of GFP+ MC38 tumor cells,

CD8+ TILs, and CD8+ T cells residing in the dLN from day 12 tu-

mors in CD- or HFD-fed mice. By comparing CD8+ T cells from

the tumor and dLN, we identified patterns of gene expression

specific to the TME. Principal component (PC) analysis revealed

robust separation along PC1 of T cells derived from tumor versus

dLN, involving geneswith well-described roles in T cell activation

(Figures 5A, S5A, and S5B). PC2 distinguished TILs isolated from

HFD and CD animals (Figure 5A). Thus, PC analysis revealed a
SNE) and density-based clustering, showing the top three markers expressed

ression in the MC38 TME (HFD tumor shown). Scale bar, 500 mm.

l analysis. GLUT1 expression in the HFD TME superimposed with scatter points

r number of uniformly distributed data points across the same tissue area as

eir inclusion (orange) or exclusion (blue) from areas of high GLUT1 expression.

of high GLUT1 or ACO2 expression in the MC38 tumor microenvironment.

s], p > 0.05, *p% 0.05, **p% 0.01, ***p% 0.001.) Graphs display mean ±SD (H
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larger effect of diet on the transcriptional profiles of CD8+ T cells

in tumors than in dLNs, suggesting that the differences in CD8+

T cells with obesity are specific to the TME.

To understand TME-specific adaptive responses in CD8+

T cells, we studied transcriptional changes in CD8+ TILs. Only

four genes exhibited false discovery rate (FDR)-corrected statis-

tically significant differential expression with HFD (Figure 5B),

and three of these geneswere involved in fat synthesis or choles-

terol metabolism: ELOVL6, DGAT1, and LDLRAP1. To determine

whether tumor cells displayed similar adaptations to HFD, we

profiled gene expression in sorted MC38 tumor cells. 32 genes

were differentially expressed between CD and HFD in MC38 tu-

mor cells (GEO subseries GSE157994) and gene set enrichment

analysis (GSEA) revealed hallmarks of hypoxia (FDR q value =

0.022) and inflammation (TNF-a signaling via nuclear factor kB

[NF-kB], FDR q value = 0.027) enriched in CD tumors (Fig-

ure S5C). Transcriptional changes in CD8+ TILs were non-over-

lapping with tumor cells (Figures 5C–5F), providing evidence

for distinct metabolic adaptations to HFD. Using a less stringent

cut-off for significance (p value <0.01, non-FDR corrected), only

12 out of 703 differentially expressed genes were common be-

tween tumor and CD8+ T cells (Figure S5D). Diet did not alter

the expression of genes involved in antigen presentation and

immunogenicity in MC38 tumor cells (Figure S5E). These data

indicate that HFD has different effects on T cells and tumor cells,

and changes in T cells are specific to the TME.

To probe for metabolic adaptations with HFD, we profiled

changes in >1,800 metabolic genes and known metabolic regu-

lators belonging to four GO categories (GO:0006520,

GO:0005975, GO:0006629, and GO:0006099). We identified a

significant reduction in Phd3 (prolyl hydroxylase-3, alternatively

known as Egln3) and Nmnat2 expression in tumor cells as the

top significantly changed genes with diet-induced obesity (Fig-

ure 5C). We confirmed by qPCR that Phd3 mRNA expression
Figure 5. HFD Induces Distinct Metabolic Adaptations in MC38 Tumor

(A–C and E–J) Analysis of RNA-seq data performed on cells sorted from day 12

(A) Principal component analysis of the top 400 genes with the largest variance f

(B) Volcano plot comparing gene expression levels in CD8+ TILs from CD and HFD

indicate 1.5-fold change.

(C) Volcano plot depicting differentially expressed metabolic genes in MC38-GF

gene subsets: GO:0006520 cellular amino acid metabolic process, GO:0005975

GO:0006099 tricarboxylic acid cycle, excluding transcription factors. Dotted line

(D) Phd3 expression in day 23 MC38 tumors measured by qPCR.

(E and F) Heatmaps showing relative expression in CD8+ TILs (E) and MC38 tumo

HFD tumor cells (Phd3) or CD8+ TILs (Cherp, Dgat1, Elovl6, and Ldlrap1).

(G and H) Average expression for genes involved in FAO from tumor cells (G) an

(I and J) Heatmaps depicting glycolytic genes in CD8+ TILs (I) versus tumor cells

(K and L) Ex vivo LipidTox neutral lipid staining in CD8+ TILs (K) and GFP+ MC38

(M) Quantification of C16-BODIPY uptake ex vivo in MC38-RFP tumor cells.

(N–P) Quantification of C16-BODIPY uptake in ex vivo CD8+ T cells (N). Represen

dLN (O) or tumor (P) from days 10–14 MC38 tumors.

(Q–S) Quantification of C16-BODIPY uptake ex vivo from dissociated tumors: B1

E0771 tumors (S) or dLN.

(T and U) Expansion index (T) and representative flow plots (U) measuring prolifera

on 1, 2, or 4 mg/mL each of plate-bound anti-CD3 and anti-CD28, with or withou

Data representR2 independent experimentswithR6mice per group. p values for

Hochberg (B and C). Statistical significance was assessed by Student’s t test

comparisons (T). (not significant [ns], p > 0.05, *p % 0.05, **p % 0.01.) Graphs d

See also Figure S5.
was reduced with HFD in later stage (day 23) tumor lysates (Fig-

ure 5D). By contrast, Phd3 expression did not change in the

CD8+ TILs (Figure 5E).

PHD3 is a member of the prolyl hydroxylase family, best

known for regulating the response to hypoxia by hydroxylating

the transcription factor HIF1a (Kaelin and Ratcliffe, 2008).

PHD3 has been associated with a number of signaling pathways

important in inflammation and immune control (Fu and Taubman,

2010; Garvalov et al., 2014; Xue et al., 2010; Yano et al., 2018).

Another study in tumor cells found that PHD3 regulates fatty

acid oxidation (FAO) by repressing the import of long-chain fatty

acids into mitochondria (German et al., 2016). Thus, we hypoth-

esized that HFD might reprogram tumor cell metabolism at the

expense of local CD8+ T cells. We therefore compared average

expression levels of a panel of FAO genes within the two RNA-

seq datasets. We found that although HFD tumor cells displayed

overall changes in gene expression that would promote FAO

(Figure 5G), these changeswere absent in CD8+ TILs (Figure 5H).

In addition, transcript levels for glycolytic genes tended to

decrease with HFD in MC38 tumor cells to a greater extent

than in CD8+ TILs (Figures 5I and 5J). These data reveal that

the metabolic adaptations to the systemic stress of HFD,

including changes in fat metabolism, differ between tumor cells

and CD8+ TILs.

HFD Reprograms Fat Utilization in the TME
Tomonitor lipid storage profiles in CD8+ TILs and tumor cells, we

measured neutral lipid accumulation using LipidTOX staining.

We found that both CD8+ TILs and MC38 tumor cells contained

similar levels of neutral lipids in both diets (Figures 5K, 5L, and

S5F). To test whether diet alters fatty acid uptake, we measured

palmitate influx ex vivo using BODIPY-labeled palmitate (C16-

BODIPY). Tumor cells derived from HFDmice took up more fatty

acid than CD tumor cells (Figure 5M). We reasoned that
Cells and CD8+ TILs

MC38 tumors from CD-fed and HFD-fed animals.

rom CD8+ TILs versus CD8+ T cells from the dLN in animals fed HFD or CD.

tumors. Genes with FDR-corrected p value <0.05 are highlighted. Dotted lines

P tumor cells. Metabolic genes were defined as the union of the following GO

carbohydrate metabolic process, and GO0006629 lipid metabolic process, or

s indicate 1.5-fold change.

r cells (F) of genes that are significantly differently expressed between CD and

d CD8+ TILs (H).

(J).

cells (L) in days 10–14 tumors.

tative histograms for ex vivo C16-BODIPY uptake in CD8+ T cells isolated from

6-OVA-RFP tumor cells (Q) or CD8+ TILs isolated from B16-OVA-RFP (R) and

tion of CTV-labeled CD- and HFD-derived naive CD8+ T cells after 48 and 72 h

t supplementation of BSA-conjugated free fatty acids (FFAs).

RNA-sequencing datawere FDR-corrected using themethod of Benjamini and

(D, K–N, and Q–S) or two-way ANOVA with Tukey’s correction for multiple

isplay mean ± SD (D, K–N, and Q–T).
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Figure 6. Protein-Level Analysis Confirms Enhanced Fatty Acid Uptake and Oxidation by HFD Tumor Cells

(A) Schematic depicting TMT-proteomics experiment.

(B) Enrichment analysis using Hallmark gene sets from MSigDB.

(legend continued on next page)
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alterations in tumor-intrinsic fat utilization might impact fat up-

take by CD8+ T cells in the same microenvironment. Whereas

diet did not alter baseline palmitate uptake by CD8+ T cells in

the dLN (Figures 5N and 5O), CD44+ CD8+ TILs from HFD-fed

mice acquired less palmitate from media than their CD counter-

parts (Figures 5N and 5P). This was also true in B16-OVA-RFP

and E0771 tumors (Figures 5Q–5S). Data on CD44+ CD8+ TILs

contrasted with other tumor-infiltrating leukocyte populations

from HFD tumors, such as CD11b+ myeloid cells, which did

not reduce fatty acid uptake (Figures S5G–S5I). Thus, tumor

and CD8+ T cells appear to rewire their metabolism differently:

tumor cells adapt and increase fatty acid utilization, whereas

CD8+ T cells do not.

Enhanced fatty acid uptake by tumor cells may leave T cells

deprived of fatty acids in the TME. Consistent with this hypothe-

sis, naive CD8+ T cells activated in vitro in charcoal-stripped

serum-containingmedia, which contains few fatty acids, prolifer-

ated better with fatty acid supplementation (Figures 5T and 5U).

In contrast, FFA supplementation did not affect MC38 tumor cell

proliferation (Figure S5J), demonstrating a cell-type-specific

vulnerability to fat availability. In total, these findings provide

functional evidence that individual cell populations in the TME

mount distinct responses to systemic metabolic perturbations

(obesity), resulting in differences in fatty acid utilization between

immune and tumor cells.
Proteomic Analysis Reveals Fatty Acid Uptake and
Oxidation Signatures by HFD Tumor Cells
To gain a deeper molecular understanding of tumor cell adapta-

tions to HFD, we compared the proteome of GFP+ tumor cells

sorted from CD or HFD tumors using tandem mass tag (TMT)-

based quantitative proteomics (Figure 6A). Principal component

analysis and hierarchical clustering of 7,178 proteins showed

that CD- and HFD-derived MC38 cells have distinct proteomes

(Figures S6A and S6B). Using fast pre-ranked GSEA, we found

that fatty acid metabolism and oxidative phosphorylation were

among thepathwaysmostenriched inHFD tumorcells (Figure6B).

IFNg response in HFDwas reduced relative to CD, which could be

explained by reduced CD8+ T cell infiltration (Figure 6B).

Proteomic analysis revealed additional mechanisms whereby

HFD supports fat utilization in tumors, via induction of trans-

porters (SLC27A1), fatty acid binding proteins (FABP5), and pro-

teins involved in mitochondrial beta-oxidation (CPT1A, ACSM3,

ACADVL, ETFB, and ECHS1) (Figures 6C, 6D, and 6F). By

contrast, glycolytic enzymes catalyzing irreversible and/or rate-

limiting steps were downregulated with HFD (Figures 6C–6F).

There was no clear change in proteins involved in fat synthesis,

whereas the expression of several TCA cycle proteins increased

with HFD, in line with the GSEA (Figures 6F, S6C, and S6D). The
(C) Bar graph showing relative expression of key proteins involved in fat oxidatio

(D and E) Heatmaps depicting relative expression levels of proteins involved in fa

(F) Schematic depicting key upregulated (red) or downregulated (blue) proteins i

(G–J) Relative abundance of indicated DAG (G and H) and TAG (I and J) lipid spe

DAG, diglyceride; ES, enrichment score; TAG, triglyceride; TIF, tumor interstitial

nificant [ns], p > 0.05, *p % 0.05, **p % 0.01, ***p % 0.001, ****p % 0.0001.) Gra

See also Figure S6.
expression of proteins mediating antigen processing and pre-

sentation was not significantly changed with diet, suggesting

that reduced anti-tumor immunity with HFD was not caused by

altered antigen presentation, in line with RNA-seq data (Figures

S5E and S6E). Overall, these proteomic data support that HFD

MC38 tumor cells rewire metabolism to increase fatty acid

uptake and oxidation.
HFD Alters the Neutral Lipid Composition of the TME
Because fat oxidation signatures were highly enriched in tumor

cells with HFD, we performed targeted lipidomics to measure

the effect of HFD on lipid levels in the circulation and in the

TME.We analyzed the lipid composition of plasma and two intra-

tumoral compartments: sorted GFP+ MC38 tumor cells and tu-

mor interstitial fluid (TIF). Whereas few lipid species were signif-

icantly altered in tumor cells (Figure S6F), HFD had a larger

impact on lipid availability in both plasma and TIF (Figures S6G

and S6H). Because circulating nutrients are amain source ofme-

tabolites in TIF, we anticipated many metabolites would scale

uniformly between TIF and plasma (Sullivan et al., 2019). Thus,

we plotted the TIF-to-plasma ratio for each lipid with either diet

to identify the lipid classes specific to the TME that were most

altered by HFD. As expected, there was a strong positive corre-

lation between the TIF-to-plasma ratios in CD and HFD for all

lipids analyzed (Pearson r = 0.8071, p < 0.0001), showing that

TIF composition primarily reflects lipid levels in circulation (Fig-

ure S6I). However, we noticed that triglyceride (TAG) and, to a

lesser extent, diglyceride (DAG) species tended to occupy off-di-

agonal positions (Figures S6I–S6L). Removing these lipid clas-

ses increased the correlation between HFD and CD (Pearson

r = 0.9543, p < 0.0001), and improved the goodness-of-fit to a

linear scaling model (Figures S6L and S6M), indicating that

DAG and TAG levels are major differences in the TME in mice

fed HFD. Indeed, the top four TAG and DAG species (by peak in-

tensity) revealed significant enrichment in TIF with HFD, but not

in plasma (Figures 6G–6J). To check if local lipoprotein lipase

(LPL) activity could account for the lipid enrichment in TIF with

HFD, we measured LPL activity in homogenized tumor lysates

andmouse heart for comparison.We observed similar LPL activ-

ity in CD and HFD tumors (Figure S6N), suggesting that HFD tu-

mors contain a lipid-rich microenvironment with local lipase ac-

tivity that facilitates cellular uptake.
Tumor Cell PHD3 Expression Controls Fatty Acid
Availability in the HFD TME
Because we found that HFD reprograms the TME to enhance fat

uptake in tumors, we hypothesized that these HFD-induced

changes in tumor cell fat metabolismmay impact FFA availability

and CD8+ T cell function in the TME. We postulated that
n or glycolysis.

t uptake and oxidation (D) or glycolysis (E).

n fat uptake and oxidation, glycolysis, and TCA cycle.

cies in CD and HFD plasma (G and I) and TIF (H and J).

fluid. Statistical significance was assessed by Student’s t test (C–J). (not sig-

phs display mean ± SD.
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preventing HFD-induced metabolic rewiring may restore CD8+

T cell responses and prevent increased tumor growth on HFD.

To test this idea, we overexpressed PHD3 in MC38 cells

(MC38 PHD3-OE), which is one of the main metabolic regulators

changed in MC38 cells with HFD (Figure S7A). PHD3-OE cells

had higher levels of hydroxyl ACC2, which is a PHD3 substrate

that regulates fat oxidation and readout of PHD3 activity (Fig-

ure S7B). MC38 PHD3-OE cell lines grew at the same rate as

control cells in vitro (Figure S7C). PHD3 overexpression was

maintained when cells were injected into CD and HFD animals

(Figures S7D and S7E). Moreover, PHD3 overexpression did

not alter the expression of MHC-I or PD-L1, but did significantly

reduce fatty acid uptake by the tumor cells (Figures S7F–S7H).

To test the hypothesis that PHD3 expression in tumor cells

modulates local availability of FFAs, we used targetedmetabolo-

mics tomeasure FFAs in plasma and TIF fromMC38 tumors (Fig-

ure 7A). To verify the purity of our TIF isolation, we compared

normalized NAD+ levels between TIF and whole tumor tissue

lysate, which indicated little contamination of our TIF preparation

with intracellular contents (Figure S7I). HFD increased circulating

levels of many FFAs, including palmitic and oleic acid (C16:0 and

C18:1) (Figures 7B, 7C, and S7J). By contrast, local FFA levels in

TIF were reduced in animals on HFD as compared to CD (Fig-

ure 7D). Notably, most metabolites in TIF were unchanged by

diet (data not shown), indicating a unique role for FFAs in the

HFD TME. Depletion of fatty acids in the TME is paradoxical

given the high level of dietary fatty acids in HFD and suggests

that local metabolic reprogramming may affect FFA availability.

Next, we compared relative FFA levels in TIF from MC38

PHD3-OE and empty vector (EV) control tumors. Whereas

PHD3 overexpression had no significant impact on FFA levels

in CD TIF (Figure 7E), several FFAs increased in PHD3-OE TIF
Figure 7. Modulating Phd3 Expression in Tumor Cells Increases CD8+

(A–G) Metabolomic analysis for FFA content of TIF and plasma from CD- or HFD

(A) Experimental schematic for fractionation of interstitial fluid.

(B andC) Comparison of palmitate (B) and oleate (C) levels in plasma from tumor-b

OE tumors and diamonds correspond to mice bearing empty vector-transduced

(D–F) Volcano plots comparing FFA abundance in TIF that change with diet (D), or

and HFD-fed (F) animals. Blue circles represent FFAs that decrease across the te

blue corresponds to FFAs with p value <0.05. Pink circles represent FFAs that in

value <0.1 and dark pink corresponds to FFAs with p value <0.05.

(G) Comparison of palmitate (C16:0) levels in TIF among HFD versus CD and PH

(H–J) Histological analysis of PHD3-OE versus EV-transduced day 12 MC38 tum

(H) Schematic depicting experimental setup with paired tumors in HFD- or CD-fe

(I) Images showing tissue architecture as well as numbers and localization of CD

(J) Blinded quantification of CD8+ T cell numbers in tissue sections.

(K and L) Tumor growth curves of CD-fed and HFD-fedWTC57BL/6J (K) or TCRa-

(M) Tumor growth curves of HFD-fedWT C57BL/6J mice inoculated with 105 EV-t

or depleting anti-CD8 (right) antibodies.

(N–Q) Bioinformatics analysis of colon adenocarcinoma (COAD) RNA-seq TCGA

(N) PHD3 expression in obese and non-obese COAD patients.

(O) PHD3 expression in cancer versus normal tissue in COAD patients.

(P) CD8+ T cell Immune Score from severely obese and non-obese COAD patients

in (Q).

(Q) COAD samples clustered by CD8+ T cell expression signature. PHD3 expressio

results.

Data represent one independent experiment with >6 mice per group (K–M). Statis

two-way ANOVA followed by the Bonferroni posthoc correction (K–M), or Fisher

0.001, ***p % 0.0001.) Graphs display mean ± SD (B, C, G, N–P) or mean ± SEM

See also Figure S7.
with HFD (Figure 7F). FFAs constituting major lipid carbon sour-

ces in circulation, including palmitate and oleate (C16:0 and

18:1), were among the significantly changed fatty acids (Fig-

ure 7F). Of note, tumor cell PHD3 overexpression was sufficient

to restore palmitate availability in the TME (Figure 7G). Thus,

restoring PHD3 expression in tumor cells is sufficient to alter

nutrient availability in the TME.

Tumor Cell PHD3 Overexpression Promotes CD8+ T Cell
Tumor Control
If metabolic reprogramming and depletion of FFAs within the

TME diminish local anti-tumor immunity, then counteracting

this local metabolic rewiring may improve tumor control by infil-

trating CD8+ T cells. We therefore tested whether altering PHD3

expression in MC38 cells would affect tumor control by CD8+

T cells. As numbers of CD8+ TILs might be reduced in a TME

depleted for critical fuels, we asked whether raising PHD3 levels

in tumor cells would increase CD8+ infiltration in HFD tumors.We

injected EV-transduced and PHD3-OE MC38 tumor cells in

opposing flanks of mice fed CD or HFD and measured intratu-

moral CD8+ T cell numbers and localization (Figure 7H). MC38

tumor sections were stained with DAPI to reveal overall architec-

ture, and then for CD8 to reveal infiltration of CD8+ T cells (Fig-

ure 7I). Quantification of images revealed depletion of CD8+

T cells in HFD, without major changes to CD8+ T cell localization

around or within the tumors (Figure 7J). PHD3 overexpression in

tumor cells significantly increased CD8+ T cell infiltration in HFD

animals (Figure 7J), providing evidence that changing a meta-

bolic pathway in tumor cells can impact tumor control via a

non-cell autonomous mechanism.

We investigated the effect of PHD3 overexpression on tumor

growth in vivo. Ectopic PHD3 expression did not alter tumor
T Cell Infiltration and Reduces Tumor Growth Kinetics during HFD

-fed day 14 MC38 tumors.

earingmice fed HFD versus CD. Open circles correspond tomice bearing PHD-

tumors.

PHD3-OE versus empty vector (EV)-transducedMC38 tumors from CD-fed (E)

sted conditions, where light blue corresponds to 0.05 < p value <0.1 and dark

crease across the tested conditions, where light pink corresponds to 0.05 < p

D3-OE versus EV-transduced MC38 tumors.

ors.

d mice.

8+ T cells.

KO (L) mice inoculated with 105 EV-transduced or PHD3-OEMC38 tumor cells.

ransduced or PHD3-OEMC38 tumor cells and treated with isotype control (left)

data.

, calculated as the gene-wise Z score sum of CD8+ T cell marker genes shown

nwas stratified based on a percentile cut-off and combinedwith the clustering

tical significance was assessed by Student’s t test (B–G, N–P), paired t test (J),

’s Exact Test (Q). (not significant [ns], p > 0.05, *p % 0.05, **p % 0.01, ***p %

(K–M).
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growth kinetics in mice fed a CD (Figure 7K). However, MC38

PHD3-OE tumor growth was reduced compared to EV control

in HFD animals (Figure 7K). To test the hypothesis that this

finding was a result of better tumor control by CD8+ T cells,

we examined tumor growth in TCRa-KO mice (Figure 7L) and

in CD8+ T cell-depleted mice (Figure 7M). PHD3-OE had no ef-

fect on tumor growth in TCRa-KO mice on HFD (Figure 7L),

which shows that PHD3-OEMC38 cells do not have an intrinsic

reduction in growth over control MC38 cells. Moreover,

although PHD3-OE reduced tumor growth rates in HFD mice

treated with isotype control antibody, PHD3 expression status

did not affect tumor growth rate in CD8+ T cell-depleted mice

(Figure 7M). These data show that maintaining high PHD3

expression in MC38 tumor cells improves the anti-tumor

T cell response in HFD mice and mitigates the effects of HFD

on anti-tumor immunity. Overall, multiple lines of evidence

reveal that HFD-induced local metabolic rewiring in the tumor

alters fuel partitioning and reduces anti-tumor immunity in

the TME.

PHD3 Loss Correlates with Reduced Anti-Tumor CD8+ T
Cell Function across Multiple Human Cancers
To explore whether obesity alters the tumor metabolic land-

scape in human patients, we analyzed the colon adenocarci-

noma (COAD) RNA-seq dataset available on the public domain

of The Cancer Genome Atlas (TCGA) with corresponding BMI

data. Expression of PHD3, but not of PHD1 or PHD2, was signif-

icantly lower in tumors from obese patients with BMIR30 kg/m2

(Figures 7N and S7K). We also observed a reduction in PHD3

expression in cancer compared to normal tissue from COAD pa-

tients (Figure 7O; Radhakrishnan et al., 2016; Rawluszko

et al., 2013).

Based on these findings, we hypothesized that obesity might

reduce T cell infiltration or function in human tumors. We scored

COAD tumors based on the expression of a CD8+ gene signa-

ture. Using this metric, CD8+ T cell infiltration was reduced in tu-

mors from severely obese patients (BMIR35 kg/m2) (Figure 7P),

consistent with a recent study that found fewer CD8+ TILs in

colorectal tumors from obese patients (Wang et al., 2019). We

also analyzed the association between PHD3 transcript levels

andmarkers of CD8+ T cell-mediated immunity and inflammation

in human patient samples. There were significant positive corre-

lations betweenMHC-I andGZMBwith PHD3 expression across

multiple cancer types (Figures S7L and S7M), suggesting that

PHD3-low tumors are less inflamed.

Next, we asked whether patient samples with low PHD3

expressionmight be enriched among immunologically ‘‘cold’’ tu-

mors. We tested this hypothesis in five TCGA datasets

composed of the most significantly correlated cancers from

the Spearman analysis (COAD, PRAD, KIRC, LUAD, and

THCA) (Figures S7L and S7M) as well as melanoma (SKCM) for

comparison. Patient samples were stratified as PHD3-high or

PHD3-low based on percentile cut-offs for PHD3 expression of

10% or 20%. We then clustered patient samples into immuno-

logically ‘‘hot,’’ ‘‘intermediate,’’ or ‘‘cold’’ categories based on

CD8+ gene signature score (Figure 7Q). Not only was PHD3

expression lower in cold COAD tumors (Figure S7N), we also

found that PHD3-low samples were significantly enriched
1862 Cell 183, 1848–1866, December 23, 2020
among cold tumors for five out of six cancer types, and for all

cancer types tested with a strong correlation between PHD3

and MHC-I or GZMB expression (Figures S7L, S7M, and S7O).

As a control, GLUD1 expression, an unrelated metabolic gene

involved in glutaminolysis, was not enriched in immunologically

cold tumors (Figure S7O). These data show that PHD3 downre-

gulation occurs in human cancers and correlates with reduced

immunity.

DISCUSSION

In this paper, we identify systemic metabolism, as altered by

diet, to be a critical determinant of metabolic programs in the

TME. Tumors develop in metabolically diverse contexts,

because patients have a broad spectrum of dietary habits, blood

chemistry parameters, adiposity, and basal metabolic proper-

ties. Previous studies have focused primarily on tumor cell-

intrinsic metabolic rewiring associated with these variables.

Our work demonstrates that cellular components of the TME

(e.g., immune and tumor cells) can behave differently. Adapta-

tions by tumor cells to HFD cause T cell dysfunction due to

altered fatty acid partitioning and local depletion of essential me-

tabolites, revealing that the metabolic states of cells within tu-

mors can be coupled. These findings highlight the complexity

of local metabolism within tumors and demonstrate that it is crit-

ical to consider metabolic reciprocity between intratumoral cell

populations as a factor regulating immune control over tumor

growth.

Several recent studies have found that dietary perturbations

altering systemic metabolic state can also impact anti-tumor im-

munity (Di Biase et al., 2016; Pietrocola et al., 2016; Rubio-Patiño

et al., 2018). For example, low-protein diet enhances cytokine

production by tumor cells, which promotes the anti-tumor im-

mune response (Rubio-Patiño et al., 2018). Another study

showed that obesity diminished CD8+ T cell function in the

PyMT tumor model, which was associated with increased FAO

and reduced glycolysis in T cells (Zhang et al., 2020). One key dif-

ference with our study is that PyMT tumors occur in the lipid-rich

environment of the mammary fat pad. Also, we do not see

changes in glycolytic gene expression with diet in CD8+ T cells

(Figure 5I). Finally, a recent study found that diet-induced obesity

enhances responses to PD-1/PD-L1 therapy in the B16 mouse

melanoma model (Wang et al., 2019), which matches clinical

data showing better outcomes for obese melanoma patients

treated with immune checkpoint blockade (Cortellini et al.,

2019; McQuade et al., 2018; Murphy and Longo, 2019; Woodall

et al., 2020). In agreement with these studies, we also find a

defective baseline anti-tumor T cell response with HFD. Mela-

noma is not among the cancer types in which we find a correla-

tion between low PHD3 expression and reduced CD8+ T cell sig-

natures (Figure S7O), suggesting that metabolic properties

unique to specific cancer types may impact intratumoral

changes in response to obesity. Clearly, metabolic state may

have profound effects on therapeutic outcomes, and these ef-

fects are under-explored.

The current study provides insight into the immunometabolic

landscape within tumors at single-cell resolution. Our studies

reveal that tumor metabolism may significantly differ in a lean
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versus an obese setting, and that dietary stress may amplify the

metabolic tug of war in tumors with a direct effect on the local

function of CD8+ T cells. We show that obesity potentiates tran-

scriptional and metabolic reprogramming events leading to

altered nutrient availability in the TME and immune dysfunction.

Thus, the full impact of metabolic reprogramming in tumors

cannot be captured by studying tumor cells in culture without

pressures imposed by the microenvironment. Rather, to fully

harness the power of targeting metabolism in patients, we

must understand the interplay between systemic metabolism,

changes in the TME, and the potential for different effects on

the metabolism of tumor and immune cells. An improved under-

standing of how systemic metabolism affects nutrient partition-

ing and immune function in the TME may have implications for

therapeutic interventions targeting cancer metabolism and/or

anti-tumor immunity with impacts on precision medicine and

future patient care.

Limitations of Study
The study presented here has several important consider-

ations. First, our data are suggestive of a T cell activation

defect in tumors, rather than terminal, irreversible exhaustion,

and it would be interesting for future studies to dissect this

further. Second, we show that HFD alters the nutrient content

within the TME, which can be reversed by PHD3 overexpres-

sion in MC38 tumor cells to improve anti-tumor CD8+ T cell re-

sponses. Although these data provide proof of concept that the

transcriptional changes with HFD in tumor cells dampen anti-

tumor immunity, we did not formally demonstrate this is

caused by enhancing fat oxidation in MC38 cells. As diet-

induced obesity leads to systemic perturbations and PHD3

overexpression only partially rescues CD8+ T cell infiltration

and tumor growth kinetics, other mechanisms likely contribute

to reduced anti-tumor CD8+ T cell responses. For instance, our

studies do not rule out the role of other immune cell types in

these phenotypes. Alternatively, HFD may induce the produc-

tion of a metabolite downstream of altered metabolism within

the TME that is inhibitory to immune cells. Finally, as tumors

display an array of metabolic reprogramming, the full spectrum

of cancer adaptation to systemic stress will depend upon tu-

mor types, as well as the systemic physiology of the individual.

Our data determine conclusively that an individual’s systemic

metabolism can transmit signals to the TME. It will be exciting

for future investigation to study other systemic perturbations in

this context, such as other models of metabolic dysfunction

and aging.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

DYKDDDDK Tag Antibody (FLAG) Cell Signaling Cat#2368S; RRID: AB_2217020

PHD3 Polyclonal Antibody ThermoFisher Scientific Cat#PA1-20196; RRID: AB_2096876

Anti-Actin antibody produced in rabbit Sigma Cat#A2066; RRID: AB_476693

Acetyl-CoA Carboxylase (C83B10) Rabbit mAb #3676 Cell Signaling Cat#C83B10; RRID: AB_2219397

Acetyl-CoA Carboxylase 2 (D5B9) Rabbit mAb #8578 Cell Signaling Cat#D5B9; RRID: AB_10949898

Anti-Hydroxyproline antibody (ab37067) Abcam Cat#ab37067; RRID: AB_873885

aTubulin Antibody (B-7) Santa Cruz Biotechnology Cat#sc-5286; RRID: AB_628411

Rabbit IgG HRP Linked Whole Ab GE Healthcare/ Sigma Cat#NA934-1ML; RRID: AB_2722659

Mouse IgG HRP Linked Whole Ab GE Healthcare/ Sigma Cat#NA931-1ML; RRID: AB_772210

InVivoMAb anti-mouse CD3ε, Clone #145-2C11 BioXCell Cat#BE0001-1; RRID: AB_1107634

InVivomAb anti-mouse CD28, Clone #37.51 BioXCell Cat#BE0015-1-A050MG;

RRID: AB_1107624

InVivoMAb rat IgG2b isotype control, anti-keyhole

limpet hemocyanin

BioXCell Clone: LTF-2; Cat#BE0090;

RRID AB_1107780

InVivoMAb anti-mouse CD8a BioXCell Clone: 2.43; Cat#BE0061;

RRID: AB_1125541

InVivoMAb rat IgG1 Isotype control, anti-trinitrophenol BioXCell Clone: TNP6A7; Cat#BE0290;

RRID: AB_2687813

InVivoMAb anti-mouse CD8b (Lyt 3.2) BioXCell Clone: 53-5.8; Cat#BE0223;

RRID: AB_2687706

TruStain FcX (anti-mouse CD16/32) Antibody BioLegend Clone: 93; RRID: AB_1574973

PE anti-mouse CD45.1 Antibody BioLegend Clone: A20; RRID: AB_313496

Alexa Fluor� 647 anti-mouse CD45.2 Antibody BioLegend Clone: 104; RRID: AB_492870

APC anti-mouse CD45.2 Antibody BioLegend Clone: 104; RRID: AB_389210

Brilliant Violet 421 anti-mouse CD45.2 Antibody BioLegend Clone: 104; RRID: AB_10900256

BUV395 Mouse Anti-Mouse CD45.2 BD Biosciences Clone: 104; RRID: RRID: AB_2738867

APC anti-mouse CD3ε Antibody BioLegend Clone: 145-2C11; RRID: AB_312676

PE anti-mouse CD3ε Antibody BioLegend Clone: 145-2C11; RRID: AB_312672

FITC anti-mouse CD3ε Antibody BioLegend Clone: 145-2C11; RRID: AB_312670

Alexa Fluor� 700 anti-mouse CD4 Antibody BioLegend Clone: RM4-5; RRID: AB_493701

APC/Cy7 anti-mouse CD4 Antibody BioLegend Clone: RM4-5; RRID: AB_312726

BUV737 Rat Anti-Mouse CD4 BD Biosciences Clone: RM4-5; RRID: AB_2732918

Pacific Blue anti-mouse CD4 BioLegend Clone: RM4-5; RRID: AB_493375

Brilliant Violet 421 anti-mouse CD8a Antibody BioLegend Clone: 53-6.7; RRID: AB_10897101

Brilliant Violet 510 anti-mouse CD8a Antibody BioLegend Clone: 53-6.7; RRID: AB_2561389

FITC anti-mouse CD8b Antibody BioLegend Clone: YTS156.7.7; RRID: AB_961293

V500 Rat anti-Mouse CD8a BD Biosciences Clone: 53-6.7; RRID: AB_1937317

Pacific Blue anti-mouse CD8b.2 Antibody BioLegend Clone: 53-5.8; RRID: AB_10641278

Alexa Fluor� 700 anti-mouse CD8b Antibody BioLegend Clone: YTS156.7.7; RRID: AB_2563948

APC/Cy7 anti-mouse CD8b Antibody BioLegend Clone: YTS156.7.7; RRID: AB_2563950

PE/Cy7 anti-mouse/human CD11b Antibody BioLegend Clone: M1/70; RRID: AB_312798

V500 Rat anti-CD11b BD Biosciences Clone: M1/70; RRID: AB_10893815

Brilliant Violet 510 anti-mouse/human CD11b Antibody BioLegend Clone: M1/70; RRID: AB_2561390

Brilliant Violet 605 anti-mouse/human CD11b Antibody BioLegend Clone: M1/70; RRID: AB_11126744

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

PerCP/Cy5.5 anti-mouse/human CD44 Antibody BioLegend Clone: IM7; RRID: AB_2076206

FITC anti-mouse/human CD44 Antibody BioLegend Clone: IM7; RRID: AB_312956

PE anti-mouse/human CD44 Antibody BioLegend Clone: IM7; RRID: AB_312958

PE/Cy7 anti-mouse CD62L Antibody BioLegend Clone: MEL-14; RRID: AB_313102

FOXP3 Monoclonal Antibody (FJK-16 s),

eFluor 450; eBioscience

ThermoFisher Scientific Clone: FJK-16 s; RRID: AB_1518812

PerCP-Cy5.5 Mouse anti-Ki-67 BD Biosciences Clone: B56; RRID: AB_10611574

FITC anti-human/mouse Granzyme B Antibody BioLegend Clone: GB11; AB_2114575

Pacific Blue anti-human/mouse Granzyme B Antibody BioLegend Clone: GB11; RRID: AB_2562195

PE/Cy7 anti-mouse CD279 (PD-1) Antibody BioLegend Clone: RMP1-30; RRID: AB_572016

Brilliant Violet 605 anti-mouse CD279 (PD-1) Antibody BioLegend Clone: 29F.1A12; RRID: AB_11125371

Brilliant Violet 605 anti-mouse CD19 Antibody BioLegend Clone: 6D5; RRID: AB_11203538

PerCP/Cy5.5 anti-mouse CD11c Antibody BioLegend Clone: N418; RRID: AB_2129642

APC/Cy7 anti-mouse NK-1.1 Antibody BioLegend Clone: PK136; RRID: AB_830870

Ly-6G/Ly-6C Monoclonal Antibody (RB6-8C5),

FITC, eBioscience

ThermoFisher Scientific Clone: RB6-8C5; RRID: AB_465314

Pacific Blue anti-mouse F4/80 Antibody BioLegend Clone: BM8; RRID: AB_893487

Brilliant Violet 421 anti-mouse CD11c antibody BioLegend Clone: N418; RRID: AB_10897814

Alexa fluor� 647 anti-mouse H-2Kb/H-2Db antibody BioLegend Clone: 28-8-6; RRID: AB_492931

FITC anti-mouse I-Ab antibody BioLegend Clone: AF6-120.1; RRID: AB_313724

PE/Cy7 anti-mouse CD274 (PD-L1) antibody BioLegend Clone: 10F.9G2; RRID: AB_10639934

PE anti-mouse CD273 (PD-L2) antibody BioLegend Clone: TY25; RRID: AB_2299418

Brilliant Violet� 711 anti-mouse CD40 antibody BD Biosciences Clone: 3/23; RRID: AB_2740384

APC anti-mouse IFN-g antibody BioLegend Clone: XMG1.2; RRID: AB_315403

PerCP/Cy5.5 anti-mouse TNF-a antibody BioLegend Clone: MP6-XT22; RRID: AB_961435

PE anti-mouse IL-2 BioLegend Clone: JES6-5H4; RRID: AB_315301

CD8a Monoclonal Antibody (4SM15) eBioscience Cat#14-0808-82; Clone: 4SM15;

RRID: AB_2572861

Anti-CD68 antibody Abcam Clone: ab125212; RRID: AB_10975465

Recombinant Anti-Lactate Dehydrogenase

antibody-Alexa Fluor� 488

Abcam Cat#ab202652; Clone: EP1566Y

CD4 Monoclonal Antibody (4SM95), eFluor 570 eBioscience Cat#41-9766-82; Clone: 4SM95;

RRID: AB_2573637

FOXP3 Monoclonal Antibody (FJK-16 s),

Alexa Fluor 488, eBioscience

eBioscience Cat#53-5773-82; Clone: FJK-16 s;

RRID: AB_763537

EOMES Monoclonal Antibody (Dan11mag),

PE, eBioscience

ThermoFisher Scientific Cat#12-4875-82; Clone: Dan11mag;

RRID: AB_1603275

Alexa Fluor� 647 anti-mouse Ly-6G Antibody BioLegend Clone: 1A8; RRID: AB_1134159

Ki-67 (D3B5) Rabbit mAb (Alexa Fluor� 488 Conjugate) Cell Signaling Cat#11882S; Clone: D3B5;

RRID: AB_2687824

Anti-CD11b antibody [EPR1344] (Alexa Fluor� 647) Abcam Cat#ab204471; Clone: EPR1344

Recombinant Anti-GLUD1 antibody [EPR11370]

(Alexa Fluor� 488)

Abcam Cat#ab204001; Clone: EPR11370

Vimentin (D21H3) XP� Rabbit mAb (Alexa

Fluor� 555 Conjugate) #9855

Cell Signaling Cat#9855; Clone: D21H3;

RRID: AB_10859896

Recombinant Anti-Glucose Transporter

GLUT1 antibody [EPR3915]

(Alexa Fluor� 647)

Abcam Cat#ab195020; Clone: EPR3915;

RRID: AB_2783877

PCNA (PC10) Mouse mAb (Alexa

Fluor� 488 Conjugate)

Cell Signaling Cat#8580; Clone: PC10; RRID: AB_11178664

(Continued on next page)
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Recombinant Anti-COX IV Antibody

[EPR9442(ABC)] - Mitochondrial

Loading Control (Alexa Fluor� 555)

Abcam Cat#ab210675; Clone: EPR9442;

RRID: AB_2857975

Phospho-mTOR (Ser2448) Monoclonal

Antibody, eFluor 660

eBioscience Cat#50-9718-41; Clone: MRRBY;

RRID: AB_2574351

Recombinant Anti-iNOS antibody

[EPR16635] (Alexa Fluor� 555)

Abcam Cat#ab209594; Clone: EPR16635

Anti-Aconitase 2 antibody [6F12BD9]

(Alexa Fluor� 647)

Abcam Cat#ab198050; Clone: 6F12BD9;

RRID: AB_2857971

TCF1/TCF7 (C63D9) Rabbit mAb

(Alexa Fluor� 488 Conjugate)

Cell Signaling Cat#6444S; Clone: C63D9;

RRID: AB_2797627

PKM2 (D78A4) XP� Rabbit mAb

(PE Conjugate)

Cell Signaling Cat#89367; Clone: D78A4;

RRID: AB_2800137

mTOR (7C10) Rabbit mAb (Alexa

Fluor� 647 Conjugate)

Cell Signaling Cat#5048; Clone: 7C10;

RRID: AB_10828101

Recombinant Anti-c-Myc antibody

[Y69] (Alexa Fluor� 555)

Abcam Cat#ab201780; Clone: Y69;

RRID: AB_2728791

Anti-VDAC1 / Porin antibody

[20B12AF2] (Alexa Fluor� 647)

Abcam Cat#ab179840; Clone:

20B12AF2

Bacterial and Virus Strains

Stbl3 Chemically Competent E. coli ThermoFisher Scientific Cat#C737303

Chemicals, Peptides, and Recombinant Proteins

DMEM (high glucose, glutamine, no pyruvate) ThermoFisher Scientific Cat#11965118

RPMI 1640 Medium ThermoFisher Scientific Cat #11875093

1X DPBS ThermoFisher Scientific Cat#14190250

1X DPBS (calcium, magnesium) ThermoFisher Scientific Cat#14040133

Penicillin-Streptomycin ThermoFisher Scientific Cat#15140122

Fetal Bovine Serum (FBS) Sigma Cat#F2442 Lot#17L189

Charcoal-Stripped Fetal Bovine Serum (FBS) ThermoFisher Scientific Cat#A3382101

2-mercaptoethanol ThermoFisher Scientific Cat#21985023

EDTA (0.5 M) ThermoFisher Scientific Cat#15575020

HEPES ThermoFisher Scientific Cat#15630080

Fugene 6 Transfection Reagent Promega Cat#E2691

Hexadimethrine bromide (Polybrene) Santa Cruz Cat#sc-255611

Collagenase, Type I Worthington Biochemical

Corporation

Cat#LS004194

Collagenase P Roche Cat#11249002001

Percoll density gradient media GE Healthcare LifeSciences Cat#17089101

Complete Mini Protease Inhibitor Sigma Cat#11836170001

Phosphatase Inhibitor Cocktail 2 Sigma Cat#P5726-5ML

Phosphatase Inhibitor Cocktail 3 Sigma Cat#P0044

Blasticidin Sigma-Aldrich Cat#15205

BamH I-HF Restriction Endonuclease NEB BioLabs Cat#R3136S

SalI-HF Restriction Endonuclease NEB BioLabs Cat#R3138S

Xho I Restriction Endonuclease NEB BioLabs Cat#R0146S

EcoR V-HF Restriction Endonuclease NEB BioLabs Cat#R3195S

CloneAmpTM HiFi PCR Pre-Mix Clontech Cat#639298

Quick Ligation Kit NEB BioLabs Cat#M2200S

TRIzol Reagent ThermoFisher Scientific Cat#15596018

iScript cDNA Synthesis Kit BioRad Cat#1708891

(Continued on next page)
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PerfeCTa SYBR� Green FastMix Quantabio Cat#101414-270

Buffer RLT QIAGEN Cat#79216

LB Broth LB Sigma-Aldrich Cat#L7275

HCS LipidTOX Deep Red Neutral

Lipid Stain, for cellular imaging

ThermoFisher Scientific Cat#H34477

BODIPY FL C16 (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,

4a-Diaza-s-Indacene-3-Hexadecanoic Acid)

ThermoFisher Scientific Cat#D3821

Prolong Glass Antifade Mountant ThermoFisher Scientific Cat#P36982

Recombinant Mo–se IL-7 (carrier-free) - 10 ug BioLegend Cat#577802

Ionomycin from Streptomyces conglobatus Sigma Aldrich Cat#I9657-1MG

GolgiStop Protein transport inhibitor BD Biosciences Cat#554724

Bovine Serum Albumin (BSA), 398%, Fatty Acid-free MP Biomedicals Cat#IC15240110

Sodium palmitate Sigma Cat#P9767

Sodium oleate Sigma Cat#O7501

Critical Commercial Assays

LIVE/DEAD Fixable Near-IR stain ThermoFisher Scientific Cat#L10119

Naive CD8a+ T Cell Isolation Kit, mouse Miltenyi Biotec Cat#130-096-543

CD45 MicroBeads, mouse Miltenyi Biotec Cat#130-052-301

eBioscience Foxp3 / Transcription Factor

Staining Buffer Set

ThermoFisher Scientific Cat#00-5523-00

Fixation/Permeabilization Solution Kit BD Biosciences Cat#554714

Direct-zol RNA Miniprep Kit Zymo Research Cat#R2050

RNeasy Micro Kit QIAGEN Cat#74004

Pierce BCA Protein Assay Kit ThermoFisher Scientific Cat#23227

Western Lightning ECL Pro Perkin Elmer Cat#NEL120001EA

Cell TraceTM Violet Cell Proliferation Kit,

for flow cytometry

ThermoFisher Scientific Cat#C34557

10’ Chromium Single Cell 3’ v2 10X Genomics Cat#PN-120267

Chromium Single Cell A Chip Kit 10X Genomics Cat#PN- 1000009

Chromium i7 Multiplex Kit, 96 rxns 10X Genomics Cat#PN-120262

Lipoprotein Lipase Assay Kit (Fluorometric) Abcam Cat#ab204721

Deposited Data

TMT-proteomics of sorted MC38

tumor cells with high-fat diet

This manuscript

(ProteomeXchange)

Accession#PXD019495

SuperSeries containing all raw and

analyzed RNA-sequencing datasets

This paper (GEO repository) GSE157999

SubSeries containing single cell

RNA-sequencing datasets

This paper (GEO repository) GSE157990

SubSeries containing tumor cell

RNA-sequencing datasets

This paper (GEO repository) GSE157994

SubSeries containing CD8+ tumor-infiltrating

lymphocyte RNA-sequencing datasets

This paper (GEO repository) GSE157998

Experimental Models: Cell Lines

MC38 colorectal adenocarcinoma Laboratory of D. Vignali,

University of

Pittsburgh School of Medicine,

Pittsburgh, PA

RRID: CVCL_B288

Lewis Lung Carcinoma N/A RRID: CVCL_4358

(Continued on next page)
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B16.F10 Melanoma Gift from G. Dranoff (Novartis

Institutes for

Biomedical Research)

RRID: CVCL_0159

E0771 breast cancer cell line Corporate Cell

Line Sales (CH3

Biosystems)

Cat#94A001; RRID: CVCL_GR23

RENCA kidney renal

adenocarcinoma cell line

ATCC Cat#CRL-2947; RRID: CVCL_2174

CT26 colon carcinoma cell line N/A RRID: CVCL_7256

HEK293T N/A RRID: CVCL_0063

Phoenix-ECO ATCC Cat#CRL-3214; RRID: CVCL_H717

Experimental Models: Organisms/Strains

C57BL6/J The Jackson Laboratory #000664; RRID: IMSR_JAX:000664

TCRa knock-out mice: B6.129S2-Tcratm1Mom/J The Jackson Laboratory #002116; RRID: IMSR_JAX:002116

OT-1 mice: C57BL/6-Tg(TcraTcrb)1100Mjb/J The Jackson Laboratory #003831; RRID: IMSR_JAX:003831

Oligonucleotides

Cloning mouse PHD3-OE vector with C-terminal FLAG:

Fwd - CGTAGAGGATCCATGCCTCTGGGACACAT

Rev -GGACGCGTCGACCTACTTGTCGTCGTCGTCC:

TTGTAGTCGATGTCGTGGTCCTTGTAGTCACCGTC:

GTGGTCCTTGTAGTCGTCTTTAGCAAGAGCA

This manuscript N/A

Cloning RFP to generate MSCV-PIR:

Fwd - cttccgctcgagATGGCCTCCTCCGAGGACG

Rev - gattcggatatcTTAGGCGCCGGTGGAGTG

This manuscript N/A

PHD3 qPCR Primers (mouse):

Fwd - CAGACCGCAGGAATCCACAT

Rev - TTCAGCATCGAAGTACCAGACAGT

German et al., 2016 N/A

b-Actin qPCR Primers (mouse):

Fwd - AGCCATGTACGTAGCCATCC

Rev - CTCTCAGCTGTGGTGGTGAA

German et al., 2016 N/A

Recombinant DNA

pCMV-SPORT6 Egln3 (Phd3) Harvard PlasmID Database MmCD00320451

MSCV-PIG (Retroviral vector containing

puromycin-IRES-GFP)

Addgene Addgene#18751

MSCV-PIR (Retroviral vector containing

puromycin-IRES-RFP)

This manuscript N/A

pLenti CMV GFP Blast (659-1) Addgene Addgene#17445

pLenti CMV Phd3 Blast (C-terminal FLAG-tag) This manuscript N/A

Software and Algorithms

GraphPad Prism V7 GraphPad Software https://www.graphpad.com

FlowJo 10.4.1 FlowJo LLC https://www.flowjo.com

CLC Genomics Workbench Version 8.0.1 QIAGEN https://digitalinsights.qiagen.com/

products-overview/analysis-and-

visualization/qiagen-clc-

genomics-workbench/

GEPIA (Gene Expression Profiling Interactive Analysis) Laboratory of Z. Zhang,

Peking University,

Beijing Shi, China

http://gepia.cancer-pku.cn/

GenePattern Broad Institute https://www.genepattern.org/

Other

PicoLab� Rodent Diet 20 LabDiet Cat#5053

(Continued on next page)

ll

Cell 183, 1848–1866.e1–e12, December 23, 2020 e5

Article

https://www.graphpad.com
https://www.flowjo.com
https://digitalinsights.qiagen.com/products-overview/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/analysis-and-visualization/qiagen-clc-genomics-workbench/
http://gepia.cancer-pku.cn/
https://www.genepattern.org/


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Rodent Diet With 60 kcal% Fat Research Diets Cat#D12492

GentleMACS C Tubes Miltenyi Cat#130-093-237

Criterion TGX gel 4-20% BioRad Cat#5671095

Nitrocellulose Membrane 0.2uM BioRad Cat#162-0112

Lithium Heparin Tubes (2 mL) VWR Cat#454237

MICROVETTE CB300 EDTA/PK100 Sarstedt Inc Cat#NC9141704

Nylon Net Filters EMD Millipore Cat#NY2004700
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Marcia C.

Haigis (Marcia_Haigis@hms.harvard.edu).

Materials Availability
Plasmids generated in this study will be made available by request to the lead contact.

Data Code and Availability
The SuperSeries accession number for all RNA-sequencing datasets reported in this paper is GEO: GSE157999. The SubSeries

accession number for the single cell RNA-sequencing datasets reported in this paper is GEO: GSE157990. The SubSeries accession

number for the tumor cell RNA-sequencing datasets reported in this paper is GEO: GSE157994. The SubSeries accession number for

the CD8+ tumor-infiltrating lymphocyte RNA-sequencing datasets reported in this paper is GEO: GSE157998. The accession number

for the TMT-proteomics data reported in this paper is ProteomeXchange: PXD019495. All other relevant data are available from the

corresponding author on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
MC38, LLC, B16, Phoenix, and 293T cells were cultured in normal DMEM without pyruvate supplemented with 10% FBS and 1%

penicillin/streptomycin. E0771 and CT26 cells were cultured in RPMI 1640 supplemented with 10% FBS, 10 mM HEPES and 1%

penicillin/streptomycin. RENCA cells were cultured in RPMI 1640 supplemented with 10% FBS, 1% penicillin/streptomycin,

0.1 mM non-essential amino acids, 1 mM sodium pyruvate, and 2 mM extra L-glutamine. Cells derived from dissociated tumors

were cultured in R10 or R2, which consists of RPMI 1640 medium supplemented with either 10% or 2% FBS, 1% penicillin/strep-

tomycin, 10 mM HEPES, and 0.05 mM 2-mercaptoethanol. MC38, Phoenix, 293T and E0771 cells are female. B16 and RENCA cells

aremale. The sex of LLC andCT26 cell lines is not published. All cells were cultured at 37�C in a humidified 5%CO2 incubator. All FBS

was heat-inactivated prior to use.

Mice
4-week old C57BL/6, TCRa knock-out (B6.129S2-Tcratm1Mom/J), and C57BL/6-Tg(TcraTcrb)1100Mjb/J (OT-1) female mice were

purchased from Jackson Laboratories. OT-1 CD8+ TCR-transgenic mice have been previously described (Hogquist et al., 1994).

For all experiments, 5-week old mice were assigned to CD (PicoLab Rodent Diet 20 5053; Lab Diet) or HFD (#12492; Research Diets,

Inc.) for 8-10 weeks. All mouse colonies and experimental animals were maintained in the same animal facility at Harvard Medical

School and housed in specific pathogen-free conditions. All animals were used in accordance with animal care guidelines from

the Harvard Medical School Standing Committee on Animals and the National Institutes of Health. All mouse protocols were

approved by the Harvard Medical Area Standing Committee on Animals.

METHOD DETAILS

Cloning
PHD3-overexpression vectors were constructed by PCR-amplifying mouse PHD3 (Egln3) using CloneAmp HiFi PCR Premix (Clon-

tech) from a plasmid containing full-length PHD3 (MmCD00320451) using primers containing BamHI and SalI restriction sites. The

digested insert was ligated into pLenti CMV GFP Blast (659-1) using Quick Ligase (NEB BioLabs) according to the manufacturer’s

instructions. Resulting ligation reactions were transformed in Stbl3 E. coli for vector propagation and validation. RFP-overexpression
e6 Cell 183, 1848–1866.e1–e12, December 23, 2020
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vectors were constructed in the same way, but using primers containing Xho I and EcoR V restriction sites. The digested insert was

ligated into MSCV-PIG (Puro-IRES-GFP, Addgene #18751), which was digested with the same enzymes, to replace GFP with RFP.

For the generation of B16-OVA-RFP cells fromB16melanoma cells, plasmids were generated by replacing the puromycin resistance

cassette with OVA and replacing GFP with RFP in the MSCV-PIG plasmid.

Ectopic Gene Overexpression
Phoenix-ECO packaging cells were transfected with MSCV-PIG, which constitutively expresses GFP, or MSCV-PIR (generated in

this paper, which constitutively expresses RFP) or MSCV OVA-IRES-RFP to produce retrovirus. Fluorescent MC38 cell lines were

generated by infecting MC38 cells with viral supernatants for 24 hours, and then sorting for the brightest 20% of GFP+ or RFP+ cells

after 48 hours of resting in normal DMEM. Cells were sorted a second time 7-14 days later and the brightest 20% of GFP+ or RFP+

cells were collected and maintained in vitro under standard culture conditions. B16-OVA-RFP cells were created following the same

protocol, infecting B16 melanoma cells with OVA-IRES-RFP retrovirus. Cell stocks were frozen and stored in liquid nitrogen. Fluo-

rescent cell lines were routinely selected for 24-48 hours in puromycin after recovery to ensure retention of the fluorescent marker.

Lentivirus containing PHD3-OE plasmid or empty vector control were produced by co-transfecting HEK293T cells with the target

plasmid plus four helper plasmids (5 mg target, 2 mg pHRD8.2, 2 mg CMV-VSVG, 0.5 mg pMD.G, and 0.5 mg CMVDR8.2) using a 1:3

ratio of Fugene 6 to DNA. Virus was harvested 48 hours post-infection and filtered through a 0.45 mm filter. Lentivirus was frozen at

�80�C for long-term storage or used immediately. For MC38 infection, MC38 cells were trypsinized and resuspended in media con-

taining 10 mg/mL Polybrene (Santa Cruz). Trypsinized cells were diluted 1:1 with fresh or thawed lentivirus and then plated for 24

hours before changing the media. 48 hours post-infection, MC38 cells were selected with 7 mg/mL blasticidin (Sigma-Aldrich) for

48-72 hours before using for assays. Frozen MC38 PHD3-OE cell lines were cultured for 24 hours in the presence of 7 mg/mL blas-

ticidin before expanding for tumor injections.

Mouse Tumor Models
After 8-10 weeks of CD or HFD feeding, mice were anesthetized with 2.5% Avertin diluted in 1X DPBS, shaved at the injection site,

and then injected subcutaneously in the abdominal flank with 105 (MC38, LLC, and B16) or 2.5x105 (B16-OVA-RFP, CT26, and

RENCA) cells, or in the mammary gland with 2x105 E0771 cells. Once palpable tumors were present, tumors measurements

were performed using a caliper every 2-3 days. Tumor volumes were calculated using the following formula for ellipsoid volume:

0.5 x D x d2, where D is the long and d is the short diameter. Mice were sacrificed at humane endpoints or day 10-14 for tissue

harvest.

Metabolic Phenotyping
Plasma glucose concentrations were measured in blood collected from the tail vein using a Contour blood glucose meter. To

measure plasma insulin, leptin, IL-6, adiponectin, resistin, and cholesterol concentrations, mice were separated into fed or

fasted groups and fasted overnight for 16 hours before blood was collected via cardiac puncture into EDTA-coated tubes.

Whole blood was spun at 1500 g for 15 minutes at 4�C and the upper plasma layer was moved to a new tube. Plasma samples

were sent for analysis at the Vanderbilt University Medical Center (VUMC) Lipid Core or VUMC Hormone Assay & Analytical

Services Core.

Antibody-Mediated T Cell Depletions
Mice were treated with six doses of depleting antibodies or isotype control delivered by intraperitoneal injection on days�1 (300 mg),

1 (200 mg), 4 (200 mg), 8 (200 mg), 12 (200 mg), and 16 (200 mg) relative to tumor injection (day 0). Depletion efficiency was checked by

flow cytometry on cheek bleeds on days 3, 10, and 18 using antibodies targeting non-competing CD8 epitopes. For depletion ex-

periments with MC38 cell lines, the following antibodies were used: rat IgG2b isotype control (BioXCell, Clone #LTF-2) or anti-

CD8a (BioXCell, Clone #2.43). For depletion experiments with PHD3-OE cell lines, the following antibodies were used: rat IgG1 iso-

type control (BioXCell, Clone #TNP6A7) or anti-CD8b (BioXCell, Clone #53-5.8)

Protein Extraction and Western Blotting
MC38 cells were washed oncewith ice-cold 1XDPBS and then lysed directly in ice-cold RIPA lysis buffer (150mMNaCl, 5mMEDTA,

50 mM Tris pH 8.0, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with 1 mM DTT, EDTA-free protease inhibitor

(Sigma), phosphatase inhibitor cocktail 2 (Sigma), and phosphatase inhibitor cocktail 3 (Sigma). Cells were scraped into Eppendorf

tubes and incubated on ice for 15 minutes with occasional vortexing before clarification by centrifugation at > 16,000 g in a micro-

centrifuge at 4�C for 10 minutes. Protein concentrations were determined by BCA assay (ThermoFisher Scientific). Equal concentra-

tions of protein were diluted into 1X SDS-PAGE loading buffer, boiled at 95�C for 10minutes, and then loaded ontoCriterion TGX 4%–

20% gels (Biorad). Proteins were transferred onto nitrocellulose membranes (Biorad) and transfer quality was assessed by Ponceau

staining. All western blotting solutions were prepared in 1X TBST. The membrane was blocked for 1 hour at room temperature in 5%

nonfat milk and then incubated overnight at 4�C with the indicated antibodies diluted in 3% BSA: aPHD3 (ThermoFisher Scientific,

Cat# PA1-20196, 1:1000), aFLAG (Cell Signaling, Cat# 2368, 1:1000), aBeta-Actin (Sigma, Cat# A2066, 1:10,000). The membrane

was washed three times for 5 minutes with 1X TBST and then incubated for one hour at room temperature with the corresponding
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secondary HRP-conjugate antibody diluted in 5% nonfat milk. Themembrane was washed three times with 1X TBST and then devel-

oped using ECL solution (Perkin Elmer).

Protein Immunoprecipitation (IP)
ACC2 immunoprecipitation from MC38 cells and western blotting for hydroxy-proline post-translational modifications was per-

formed as previously described (German et al., 2016).

Tumor Dissociation and Tumor-Infiltrating Leukocyte Isolation
Tumors were harvested on day 10-14 post-injection and digested in 1X DPBS containing calcium, magnesium, and 250 units/mL of

Type 1 Collagenase (Worthington Biochemical Corporation). For samples that were not run through Percoll gradients, this buffer also

contained 20 units/mL DNase I. Samples were dissociated by GentleMACS (MiltenyI), incubated for 20 minutes at 37�C with gentle

rocking, dissociated by GentleMACS again, and then filtered through a 70 mm filter. In some experiments, TILs were enriched by

centrifuging samples through a Percoll gradient. Briefly, dissociated tumor cells were resuspended in 5mL 40%salt-adjusted Percoll

(GE Healthcare Lifesciences), which was layered over 2 mL 70% salt-adjusted Percoll. Samples were spun at room temperature for

20 minutes at 800 g with the acceleration and brake off. Leukocytes were recovered from the interface of the 40% and 70% Percoll

layers.

Flow Cytometry and Staining
Primary mouse cells isolated from spleen, draining lymph node, and tumor were stained with fluorescent antibodies and analyzed by

flow cytometry. For experiments with live/dead criteria, cells were first stained with LIVE/DEAD Fixable Near-IR stain (ThermoFisher

Scientific) in 1X DPBS according to the manufacturer’s instructions. Subsequent surface marker staining was performed in MACS

buffer containing 1X DPBS supplemented with 1% FBS and 2mMEDTA. Intracellular staining for flow panels containing nuclear pro-

teins was performed using the eBioscience FoxP3/ Transcription Factor Staining Buffer Set (ThermoFisher Scientific). For intracel-

lular staining of cytoplasmic proteins, such as cytokines, the Fixation/Permeabilization Solution Kit (BD Biosciences) was used. Intra-

cellular cytokine staining was performed after a 4 hour stimulation with PMA (100 ng/mL) and ionomycin (500 ng/mL) in the presence

of GolgiStop at 37�C. Please see Key Resources Table for the fluorescently labeled antibodies used for staining.

To stain for neutral lipids, TILs or dissociated GFP+ tumors were incubated with HCS LipidTOX Deep Red (ThermoFisher Scientific)

diluted 1:200 inMACS buffer for 1 hour at 37�C. After LipidTox staining, TIL samples were stained with the flow cytometry antibodies.

Ex vivo palmitate uptake was measured in purified TIL samples or dissociated RFP+ tumors after overnight incubation at 37�C in R2

with 1 mM BODIPY FL C16 added. The following morning, TIL samples were stained with flow cytometry antibodies.

Data collection was performed on a BD FACSymphony or LSR II flow cytometer and analyzed using FlowJo v10.4.1.

T Cell Isolation and Activation
Naive CD8+ T cells were isolated from the spleens of 13-15 week old female wild-type or OT-1 mice using negative magnetic selec-

tion (Miltenyi Biotec) and stained with Cell Trace Violet (CTV, ThermoFisher Scientific) as per the manufacturer’s instructions. 50,000

CD8+ T cells were plated per well on 96-well plates pre-coatedwith aCD3/aCD28 antibodies at concentrations ranging from 0 to 8 mg/

mL and incubated at 37�C in a humidified 5% CO2 incubator. For free fatty acid supplementation, palmitate and oleate were individ-

ually conjugated to fatty acid-free BSA (MP Biomedicals) in 150 mMNaCl at a 6:1 molar ratio to make a 4 mM, pH-adjusted FA stock

solution. For fatty acid supplementation, 100 mM each of BSA-conjugated palmitate and oleate was added to the culture medium

containing charcoal-stripped serum, or an equivalent concentration of BSA alone as a control. After 48-72 hours of stimulation,

cell numbers, viability, and proliferation were measured by flow cytometry. A naive control was maintained with 10 ng/mL IL-7

(BioLegend).

Lipoprotein Lipase Activity Assays
LPL activity assays were performed using a commercially available fluorometric assay from Abcam. Briefly, dissected tissues were

weighed on an analytical balance, rinsed in ice-cold PBS, and then homogenized using 10-15 strokes in a dounce homogenizer. The

LPL assay was performed in accordance with the manufacturer’s instructions.

RNA Extraction and qPCR
RNA was extracted from flash-frozen, powderized tumor tissue using TRIzol reagent (ThermoFisher Scientific) and purified using the

Direct-zol RNA miniprep kit (Zymo Research) according to the manufacturer’s instructions. cDNA was synthesized using the iScript

cDNA synthesis kit (BioRad). Quantitative real-time PCR was performed with PerfeCTa SYBR� Green FastMix (Quantabio) on a

Roche Lightcycler 480 and analyzed using DDCt calculations. b-actin was used as a reference gene for normalization.

RNA-Sequencing
For RNA-sequencing experiments, CD8+ TILs and GFP+ tumor cells were sorted from dissociated MC38-PIG tumors, as were CD8+

T cells from dLNs, after staining with the following antibodies for mouse antigens: CD45.2-AF647 (BioLegend, Clone #104), CD3ε-PE

(BioLegend, Clone#145-2C11), CD8a-BC510 (BioLegend, Clone #53-6.7), CD4-PacBlue (BioLegend, Clone #RM4-5), and CD11b-
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PE/Cy7 (BioLegend Clone #M1/70). 20-100K CD8+ T cells were sorted by gating away from debris and then gating for singlets that

were CD45+, CD3+/CD11b-, CD8+/CD4-. 200K GFP+ tumor cells were sorted from each sample by gating away from debris and then

gating for singlets that were CD45-/GFP+. Samples were sorted into tubes containing R10 supplemented with an extra 10% FBS,

stored on ice, and then spun at 750 g for 10 minutes at 4�C. Cell pellets were resuspended in 30 mL RLT buffer (QIAGEN) with 1%

(v/v) 2-mercaptoethanol added and frozen at �80�C. RNA-seq library preparations were performed as previously described

(Sage et al., 2016).

Single-Cell RNA-Sequencing
CD45+ tumor-infiltrating leukocytes were enriched by positive selection from dissociated day 12 MC38 tumors for single-cell anal-

ysis. Prior to magnetic enrichment, MC38 tumors were minced in RPMI containing 2% FBS, 2 mg/mL collagenase P (Roche), and 50

mcg/mLDNase I (Sigma) and then incubated at 37�Cwith gentle rocking for 10minutes. CD45+ leukocytes weremagnetically labeled

and enriched by positive selection (Miltenyi Biotec). Cells were dilutedwith Trypan Blue and counted using a hemocytometer. Tumors

from three different mice were pooled per sample, and two samples were prepared per diet condition. For a target recovery of 5,000

single cells, �8-9,000 live cells were loaded onto the Chromium Controller (10X genomics) and processed according to the manu-

facturer’s instructions. One sample failed at this step, leaving two CD and one HFD sample, which were sequenced on an Illumina

NextSeq500 sequencer using a 75-bp kit with paired-end reads.

Metabolite Extractions
12-14 days after tumor injections, plasma, tumor interstitial fluid, and tumor tissue were harvested for metabolomics analysis. Blood

was collected by heart puncture into heparinized tubes (VWR) and separated into plasma by centrifugation at 1500 g for 20minutes at

4�C. Tumor interstitial fluid was collected as previously described (Wiig et al., 2003). Briefly, dissected tumors were wrapped in nylon

net filters (EMD Millipore) and placed over Eppendorf tubes on ice. Tumors were spun at 400 g for 15 minutes at 4�C. Tumor tissue

wasmoved to a new tube so that both the tumor interstitial fluid and tumor tissue could be snap-frozen in liquid nitrogen and stored at

�80�C. Tumor tissue was manually powderized by mortar and pestle and accurately weighed prior to metabolite isolation.

To extract metabolites from serum and tumor interstitial samples, 50 mL of cold extraction solvent (40:40:20methanol:acetonitrile:-

water stored at �20�C) was added to 1.5 mL of sample. After vortexing, the samples were incubated on ice for 20 minutes, and then

centrifuged at 16,000 g for 20minutes at 4�C. Finally, the supernatants were transferred to LC vials. For tissue samples, the volume of

the extraction solution (mL) was 40 x the weight of tissue (mg) tomake an extract of 25mg tissue permL solvent. Metabolite extraction

from tissues was performed by adding the extraction solution to the powderized tissues followed by vortexing. Samples were incu-

bated at �20�C for 2 hours, then centrifuged at 16,000 g for 20 minutes at 4�C and the clean supernatants transferred to LC vials

(Jang et al., 2018).

For lipidomics analysis, 2 mL TIF or plasmawas extracted with water: methanol: chloroform (1:1:1) containing 4 mMTAG (19:0/19:0/

19:0) as internal standard. Samples were vortexed and sonicated for 5 minutes. After centrifugation at 3000 g for 20 minutes, the

chloroform phase was dried under nitrogen gas and then reconstituted in 50 mL methanol: chloroform (9:1).

LC-MS Analysis
For untargeted metabolomics of polar metabolites, extracts were analyzed using a quadrupole-orbitrap mass spectrometer (Q Ex-

active, Thermo Fisher Scientific, San Jose, CA) coupled to hydrophilic interaction chromatography via electrospray ionization. lC sep-

aration was on a XBridge BEH Amide column (2.1mm x 150mm, 2.5 mmparticle size; Waters, Milford, MA) using a gradient of solvent

A (20mM ammonium acetate, 20mM ammonium hydroxide in 95:5 water: acetonitrile, pH 9.45) and solvent B (acetonitrile). Flow rate

was 150 mL/minute, column temperature was 25�C, autosampler temperature was 5�C, and injection volume was 10 mL. The LC

gradient was: 0 min, 90% B; 2 min, 85% B; 3 min, 75% B; 7 min, 75% B; 8 min, 70% B; 9 min, 70% B; 10 min, 50% B; 12 min,

50% B; 13 min, 25% B; 14 min, 25% B; 16 min, 0% B; 21 min, 0% B; 22 min, 90% B; 25 min, 90% B. The mass spectrometer

was operated in negative ion or positive ionizations mode to scan from m/z 70 to 1000 at 1Hz and a resolving power of 140,000

(Jang et al., 2018).

For the analysis of free fatty acids, extracts were analyzed using an orbitrap mass spectrometer (Exactive, Thermo Fisher Scien-

tific, San Jose, CA) coupled to ion-pairing reverse phase chromatography via electrospray ionization. LC separation was on a Luna

C8 reversed-phase column (2.03 150mm, 3 mmparticle size, 100 Å poresize, Phenomenex, Torrance, CA) using a gradient of solvent

A (97/3 water/methanol with 10 mM tributylamine and 15 mM acetic acid, pH 4.5) and solvent B (methanol). Flow rate was 250 mL/

minute, column temperature was 25�C, autosampler temperature was 5�C, and injection volume was 10 mL. The LC gradient was:

0 min, 80%B; 10 min, 90%B; 11 min, 99%B; 25 min, 99%B; 26 min, 80%B; 30 min, 80%B. Themass spectrometer was operated

in negative ion mode to scan from m/z 120 to 400 at 1Hz and a resolving power of 100,000 (Kamphorst et al., 2011).

For lipidomics analysis, the lipid extract was separated by using a Kinetex evo C18 column (2.6 um, 150 mm 3 2.0 mm I.D., Phe-

nomenex) coupled to a Thermo Scientific SII UPLC system. The C18 column was used with the following buffers and linear gradient:

A = water with 0.1% formic acid, B = 90% isopropanol, 10% methanol; 5% to 100% from 0-20min, 100% for additional 5min; flow

rate 200 mL/min. Mass spectrometry detection was carried out on a Q Extractive HF-X orbitrap mass spectrometer with an HESI

source operated in positive mode. Metabolite quantification was done using TraceFinder software (ThermoFisher). The identity of

the metabolite was confirmed by matching accurate mass or MS/MS fragmentation pattern to databases.
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Histology
Empty vector-transduced andPHD3-OE tumor cells were implanted intomice on opposing abdominal flanks as described above. On

day 12 post-implantation, both left and right flank tumors were excised and immediately frozen in Optimal Cutting Temperature com-

pound (OCT) on dry ice. Tumors sections were cut at 7 mm, fixed in ice-cold acetone, and stored at�20�C until staining. Before stain-

ing, slides were re-fixed in ice-cold acetone for 10 minutes. Tissues were then re-hydrated in 1X PBS and blocked at room temper-

ature with 5% BSA/1X PBS solution for one hour. The slides were incubated with CD8-PE antibody (BioLegend, Clone#YTS156.7.7)

diluted in 1X PBS for one hour in a humidified chamber at room temperature. Slides were then washed 3 times with 1X PBS and

stained with DAPI for an additional 10 minutes. Finally, slides were washed once in 1X PBS andmounted with Prolong Glass Antifade

Mountant (Thermofisher Scientific). Slides were imaged with a confocal Olympus FV3000microscope and the resulting images (each

1024 3 1024 pixels) were stitched together using microscope software to generate the final reconstructed tissue sections with a

scale of 1 mm = 1.6091 pixels. CD8+ T cell numbers were counted by two independent blinded observers and obtained by counting

the number of positive signals in randomly drawn 1000x1000 pixel boxes throughout the tissue image.

TMT-Proteomics
Cell pellets were processed using the streamlined TMT labeling protocol (Navarrete-Perea et al., 2018). Samples were lysed in

8M urea in 200 mM EPPS pH 8.5 with protease (Pierce A32953) and phosphatase (Pierce A32957) inhibitors, and passed through

a 21-guage needle 10x. Samples were reduced with 5 mM TCEP, alkylated with 10 mM iodoacetamide, and quenched with

5 mM DTT, followed by methanol/chloroform precipitation of protein. Pellets were reconstituted in 200 mM EPPS pH 8.5, digested

overnight with LysC protease (Wako 129-02541) at 1:100 while shaking at room temperature, followed by digestion with trypsin

(Pierce 90305) at 1:100 while shaking at 37�C. Anhydrous acetonitrile (Honeywell AS017-0100) was added to �30%, followed by la-

beling with TMT10 (Thermo 90110) reagent. 1% of each labeled sample was combined and analyzed unfractionated to ensure label-

ing efficiency was > 97%. After confirmation, the reaction was quenched by adding �0.3% hydroxylamine, and incubating at RT for

15min. The samples were then mixed at a 1:1 (total amount) ratio across all conditions. After mixing, labeled peptide samples were

de-salted using a 200 mg Sep-Pak cartridge (Waters WAT054925), followed by drying in a rotary evaporator. Samples were then re-

constituted in 5% ACN 10 mM ammonium bicarbonate for basic reverse phase fractionation on an Agilent 300extend-C18 column

(3.5 mm, 4.6x250mm) using an Agilent Infinity 1260 HPLC. Peptides were subjected to a 75 min linear gradient from 13% to 42% of

Buffer B (10 mM ammonium bicarbonate, 90% ACN, pH 8) at a flow rate of 0.6 mL/min, resulting in a total of 96 fractions which were

consolidated into 24 by combining (in a chessboard pattern) four alternating wells down columns of the 96-well plate. Assuming adja-

cent fractions contain overlapping peaks, only 12 non-adjacent samples were analyzed by the mass spectrometer. The pooling

scheme has been illustrated previously (Navarrete-Perea et al., 2018; Paulo et al., 2016a). Each eluted fraction was desalted via

StageTip for SPS-MS3 analysis.

Mass spectra were collected on an Orbitrap Lumos mass spectrometer equipped with a Field Asymmetric-waveform Ion-Mobility

Spectrometry (FAIMS) device coupled to a Proxeon EASY-nLC 1200 LCpump (ThermoFisher Scientific). Peptideswere separated on

a 35 cm column (i.d. 100 mm, Accucore, 2.6 mm, 150 Å) packed in-house using a 90 min gradient (from 5% �30% acetonitrile with

0.1% formic acid) at 500 nl/min. A multi-notch FAIMS method was used to additionally separate peptides at 40, 60 and 80 CV

(Schweppe et al., 2019, 2020). Each analysis used an SPS-MS3-based TMT method (McAlister et al., 2014; Ting et al., 2011), which

has been shown to reduce ion interference compared to MS2-based quantification (Paulo et al., 2016b). MS1 data were collected

using the Orbitrap (120,000 resolution; maximum injection time 50 ms; AGC 4e5, 400-1400 m/z). Determined charge states between

2 and 5 were required for sequencing and a 90 s dynamic exclusion window was used. MS2 scans consisted of collision-induced

dissociation (CID), quadrupole ion trap analysis, automatic gain control (AGC) 2E4, NCE (normalized collision energy) 45, q-value

0.25, maximum injection time 35ms, and isolation window of 0.7 Da using a Top10method.MS3 scanswere collected in theOrbitrap

at a resolution of 50,000, NCE of 45%, maximum injection time of 100 ms, and AGC of 1.5e5. Data from all 12 fractions were com-

bined to achieve a < 1% false discovery rate (FDR) at the protein level.

Mass spectra were processed using a SEQUEST-based software pipeline. Data were searched against the UniProt Mouse data-

base (December 2018), using a 20-ppm precursor ion tolerance for total protein-level analysis and 0.9 Da product ion tolerance.

TMT tags on lysine residues and peptide N termini (+229.163 Da) and carbamidomethylation of cysteine residues (+57.021 Da)

were set as static modifications, while oxidation of methionine residues (+15.995 Da) was set as a variable modification. Pep-

tide-spectrum matches (PSMs) were identified, quantified, and filtered to a 1% peptide false discovery rate (FDR) and then

collapsed further to a final protein-level FDR of 1%. Proteins were quantified by summing reporter ion counts across all matching

PSMs. Briefly, a 0.003 Da (3 millidalton) window around the theoretical m/z of each reporter ion was scanned and the maximum

intensity nearest the theoretical m/z was used. Reporter ion intensities were adjusted to correct for the isotopic impurities of the

different TMT reagents according tomanufacturer specifications and adjusted to normalize ratios across labeling channels. Lastly,

for each protein, signal-to-noise (S:N) measurements of the peptides were summed and then normalized to 100.

Cyclic Immunofluorescence
Cyclic immunofluorescence (CyCIF) (Lin et al., 2015, 2018) was performed on formalin-fixed paraffin embedded (FFPE) tissue sec-

tions of mouse MC38 colorectal tumors engrafted into syngeneic mice. Resected tissues were fixed overnight in 10% neutral buff-

ered formalin at room temperature and then moved to 70% ethanol at 4�C. Fourteen tissue sections were taken from a cohort of 7
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mice fed CD and 7 mice fed HFD. Each tissue section was probed with antibodies against the following immune or metabolism tar-

gets: CD8A, CD4, FOXP3, CD11b, CD68, LY6G, NOS2, EOMES, TCF1, MTOR, phospho-MTOR, MYC, GLUT1, PKM2, LDH, COX4,

ACO2, GLUD1, VDAC1, PCNA, KI67, ACTB and VIM. Tissues were imaged at 20x (2x2 binning) using a CyteFinder slide-scanning

fluorescence microscope (RareCyte inc.) equipped with an automated stage controller. Raw imaging data from each of 4 CyCIF cy-

cles were flat-field corrected using a previously described method for background and shading correction (Peng et al., 2017), then

stitched and aligned using ASHLAR: a program for seamless mosaic image processing across imaging cycles (manuscript in prep-

aration). The resulting mosaic images were segmented by first training a convolutional neural network to recognize cell boundaries

using training data, then using the model to predict cell boundaries in each of the 14 tissue sections used in the experiment (Ronne-

berger et al., 2015).

Single-cell data were computationally analyzed using a set of Python-based data analysis libraries (pandas, numpy, scipy, mat-

plotlib, etc.). Several data pre-processing steps were taken; first, cells associated with adipose tissue surrounding many of the tissue

sections were filtered from the analysis by using a Gaussian kernel density estimator to identify and isolate areas of high cell density

(i.e., tumor tissue) (Figure S4B). Second, under- and over-segmented cells were removed by setting lower and upper bounds on cell

area (Figure S4B). Third, DNA signal intensity (Hoechst dye) was correlated across imaging cycles to isolate cells present across all

imaging cycles (Figure S4B). Finally, raw signal intensities were log10-transformed, filtered to remove extreme outliers, and rescaled

between the values of 0 and 1.

Overall, the cleaned dataset consisted of 14 tissues. To identify major cell populations, dimensional reduction using t-Distributed

Stochastic Neighbor Embedding (t-SNE) was performed on the cleaned dataset followed by density-based clustering by HDBSCAN

(Figure 4B) (Campello et al., 2013; van der Maaten and Hinton, 2008). We excluded cell clusters that were comprised of cells from

fewer than two samples (#1, #2, #6, and #9). This approach identified six major clusters (#0, #3, #4, #5, #7, and #8). We next re-clus-

tered the largest cell population (#8), which revealed three sub-clusters (#8.0, #8.1, and #8.2). We noticed that cluster #8.2 contained

a mixture of CD11b+ myeloid cells and tumor/stromal cells, the latter of which do not express immune lineage markers but are dimly

positive for CD11b expression. Thus, we thresholded cluster #8.2 by CD11b expression to separate the tumor/stromal fraction (#8.2)

and CD11b+ myeloid cells (#8.3) (Figures 4B and 4C). We used the expression of lineage markers to identify intratumoral cell pop-

ulations including CD8+ T cells (#7), CD4+ Tconv cells (#4), CD4+ Treg cells (#5), double negative cells expressing T cell transcription

factors (#3), several myeloid populations (#0, #8.1 and #8.3), and tumor/stromal cells (#8.0 and #8.2) (Figures 4B and 4C).

Spatial relationships between immune cells and areas of high metabolic gene expression within the MC38 TME were quantified by

calculating the percentage of immune cells overlapping regions of strong metabolic immunomarker signal intensity (referred to as%

overlap). Poisson-Disc sampling (Bridson, 2007) was used to calculate the % overlap resulting from uniformly distributing a similar

number of cells across the same 2D tissue space to achieve expectation values which assume the absence of spatial patterning with

respect to metabolic gene expression. Independent, two-tailed, Student’s t tests were computed on % overlap values from exper-

iment and simulation to test for the presence of biological patterning within the CD and HFD groups independently. In cases where

biological patterning was detected under both treatment conditions, experimental % overlap values were subtracted from their

respective simulated values and the differences were used to test for differences in the magnitude and direction of biological pattern

between CD and HFD tumors.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analyses
Statistics were computed with GraphPad Prism 7 software using unpaired Student’s t test for comparisons between two groups and

two-way ANOVA for tumor growth curves with multiple variables, followed by the Bonferroni posthoc test for comparison of tumor

sizes at multiple individual time points. Graphs containing tumor growth curves display mean values with error bars corresponding to

standard error of themean (SEM). All other data are represented asmean ± standard deviation. p values are denoted in figures as: not

significant [ns], n > 0.05, *p % 0.05, **p % 0.01, ***p % 0.001, ****p % 0.0001.

Metabolomics Analysis
Fold-changes between experimental groups were computed based on blanked, integrated peak areas for each metabolite. Signif-

icance was determined using an unpaired Student’s t test.

Bulk RNA-Seq Analysis
RNA-seq data was analyzed using the CLC Genomics Workbench version 8.0.1 RNA-seq analysis software package (QIAGEN).

Read alignment was performed to themouse genome using the following parameters: (mismatch cost = 2, insertion cost = 3, deletion

cost = 3, length fraction = 0.8, similarity fraction = 0.8). Samples were normalized to reads per million before performing differential

expression analysis (total count filter cutoff = 5.0). Heatmaps were generated using the pheatmap package from bioconductor in R

(version 3.4.4). Raw and processed RNA-seq data files were uploaded to the GEO repository within the GSE157999 reference series.
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Single-Cell RNA-Seq Analysis
Sample demultiplexing, barcode processing, alignment, filtering, and UMI counting were performed using the Cell Ranger analysis

pipeline (v.1.2). Ambient RNA contamination estimation and removal was performed in R using the SoupX package (v1.2.2) with three

lists of nonexpressed genes: (i) Cd3g, Cd3e, Cd8a, Thy1, Lat, Lck, and Ptprcap, (ii) Cd74, Lyz2, C1qa, C1qb, H2-Ab1, H2-Eb1, Ty-

robp, Tpt1, Fth1, and (iii) Col3a1, Col6a1, Serpinh1, and Sparc (v.1.2.2) (Young and Behjati, 2018). Strained counts from SoupX were

written to a directory in CellRanger format using the R package DropletUtils (v.1.6.1) and used for downstream analysis in R using

Seurat (v.3.1.5) (Stuart et al., 2019). Raw and processed RNA-seq data files were uploaded to the GEO repository within the

GSE157999 reference series.

Data pre-processing, normalization, integration, and clustering was performed using the R package Seurat. After merging all sam-

ples into a single Seurat object, single-cell transcriptomes were initially filtered using four metrics for quality control. First, cells in

which fewer than 400 genes or more than 2,500 genes were detected were removed from the analysis. Second, cells where mito-

chondrial encoded transcripts represented greater than 12% or less than 0.25% of the total library were excluded. Third, cells

with more than 12,000 RNA molecules detected per cell were discarded. Finally, genes detected in fewer than three cells across

the dataset were removed. The resulting expression matrix contained 9,104 cells by 13,484 genes, with 5,721 cells from CD tumors

and 3,383 from HFD tumors. Normalization and variance stabilization was performed using the R package sctransform, which

interfaces directly with Seurat, on each diet condition separately (v0.2.1) (Hafemeister and Satija, 2019). CD and HFD datasets

were integrated using canonical correlation analysis to harmonize the datasets by finding shared sources of variation (Butler

et al., 2018). 2,000 variable gene features were chosen using the SelectIntegrationFeatures function in Seurat, followed by the

PrepSCTIntegration function to make sure that all Pearson residuals required for downstream analysis were calculated. Anchors be-

tween datasets were identified using the FindIntegrationAnchors function and passed to the IntegrateData function using normali-

zation.method = ‘SCT’ to produce an integrated dataset. Dimensional reduction was accomplished by performing principal compo-

nent analysis (PCA) on the integrated dataset and then using the first 48 principal components for Uniform Manifold Approximation

and Projection (UMAP) using default parameters associated with the RunUMAP function. Unsupervised clustering was done by con-

structing a shared nearest neighbor (SNN) graph using the FindNeighbors function and then performing graph-based clustering using

the ‘‘Louvain’’ algorithm with resolution = 0.5 by the FindClusters function. Differential expression analysis between clusters and

comparing diet conditions was performed using aWilcoxon rank sum test. Cluster markers were identified using the FindConserved-

Markers function. Comparisons between population sizes among diet conditions were performed using a two-sided exact bino-

mial test.

Metabolic and signaling pathway gene signatures were curated from the KEGG subset of canonical pathways from the C2 collec-

tion within MSigDB. Immune signatures were curated from the C7 collection of immunologic signatures within MSigDB. Single-cell

signature scores were calculated using the Vision package v.2.1.0 (DeTomaso et al., 2019). Signatures that were highly autocorre-

lated within clusters were evaluated by Geary’s C, using C¿ = 1� C for autocorrelation effect size and computation of an empirical p

value with FDR-correction within Vision for significance. For each cluster, signatures that were significantly altered by diet were as-

sessed by Wilcoxon rank sum test with false discovery rate correction using the method of Benjamini and Hochberg. Pearson cor-

relations and p values between signatures were calculated in R using the rcorr function from the Hmisc package v.4.4.0.

TCGA Data Analysis
Spearman correlation analysis was performed on TCGA data using the GEPIA web portal (http://gepia.cancer-pku.cn/). For each

cancer type represented in TCGA, Spearman correlation coefficients and p values were calculated between PHD3 (Egln3) and

MHC-I or GZMB expression using normalized transcripts per million values (TPM).

To evaluate the impact of body mass index (BMI) on PHD3 expression and how PHD3 expression levels stratify across immuno-

logically ‘‘hot’’ versus ‘‘cold’’ tumors, normalized counts (RNA-seq) were obtained using the TCGAbiolinks package (version 3.8) from

bioconductor in R for the COAD, PRAD, KIRC, LUAD, THCA, and SKCMdatasets, alongwith clinical annotations. Normal tissue sam-

ples and metastases were removed from the analysis, unless otherwise noted. Each sample was ranked within the corresponding

dataset for PHD3 expression and classified as PHD3-high or PHD3-Low using percentile cut-offs of 10% or 20%. Next, patient sam-

ples were clustered based on a list of CD8+ signature genes comprised of CD8+ T cell lineage markers (CD3D and CD8A) as well as

genes involved in CD8+ T cell trafficking, activation, and cytotoxicity (CXCR3, GZMA, GZMB, GZMK, ICOS, and PRF1) using the

Pheatmap package from bioconductor in R, generating sample clusters that were ‘‘hot,’’ ‘‘intermediate,’’ or ‘‘cold’’ for T cell infiltra-

tion and functionality. CD8+ immune scores were calculated as the genewise sum of z-scores for the CD8+ signature genes. For sub-

sequent enrichment analysis the ‘‘intermediate’’ and ‘‘hot’’ groups were combined. PHD3 status was layered over the clustering and

the number of PHD3-Low samples was counted in ‘‘cold’’ tumors versus all others. Fisher’s Exact Test was used to quantify enrich-

ment of PHD3-low samples in ‘‘cold’’ tumors for each TCGA dataset.

Proteomics Analysis
Enrichment analysis was performed using the fgsea package implemented in R (v1.14.0) (Sergushichev, 2016). Pre-ranked lists were

generated by weighting fold-change by the negative logarithm of the p value comparing CD and HFD. The mass spectrometry pro-

teomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier

PXD019495 (Deutsch et al., 2020; Perez-Riverol et al., 2019).
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Figure S1. Related to Figure 1

(A) Comparison of percentages of kilocalories (kcal) derived from fat, protein, and carbohydrate in CD and HFD.

(B) Body weights of WT C57BL/6J and TCRa-KO mice after 8-10 weeks of CD or HFD feeding.

(C–I) Systemic metabolic and inflammatory parameters from WT C57BL/6J mice after 8-10 weeks of CD or HFD feeding in plasma: cholesterol (C), glucose (D),

insulin (E), leptin (F), IL-6 (G), resistin (H) and adiponectin (I).

(J) Tumor volumes 11 days after subcutaneous inoculation with 2.5 3 105 B16-OVA-RFP tumor cells in WT C57BL/6J mice after CD or HFD feeding for 8-

10 weeks.

(K–L) Tumor growth curves of WT BALB/cJ mice inoculated with 2.5x105 CT26 (K) or 2.5x105 RENCA (L) tumor cells.

(M–N) Representative flow cytometry plots, pre-gated on live T cells, showing relative abundance of CD4+ and CD8+ T cells on day 10 after tumor implantation

with isotype control (M) and depleting anti-CD8 (N) antibody treatment.

(O–P) Tumor growth curves of WT C57BL/6J mice inoculated with 105 MC38 tumor cells and treated with isotype control or depleting anti-CD8 antibodies after

CD (O) or HFD (P) feeding for 8-10 weeks.

Statistical significance was assessed by Student’s t test (B–J) or two-way ANOVA followed by the Bonferroni posthoc correction (K–L, O–P). Graphs displaymean

± SD (B–J) or mean ± SEM (K–L, O–P). (ns p > 0.05, *p % 0.05, **p % 0.01, ***p % 0.001, ****p % 0.0001.)
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Figure S2. Related to Figure 2

(A) Gating strategies for flow cytometry analysis in Figures 2B, 2E–2N, D-I, and Q-X.

(B) Gating strategies for flow cytometry analysis in Figures 2C, 2D, C, J, O, and P.

(C) The ratio of CD4+ T cells to MC38-GFP tumor cells, as measured by flow cytometry.

(D–I) Flow cytometry analysis of CD45+ leukocytes isolated from MC38 tumors on day 10-14 after inoculation with 105 tumor cells. Quantification of FoxP3+

regulatory T cells (Tregs) (D), Treg to CD8+ T cell ratio (E), NK1.1+ cells (F), CD11b+ myeloid cells (G), GR1+ CD11b+ cells (H) and F4/80+ Gr1- CD11b+ cells (I).

(J) Leukocyte census enumerating CD8+ T cells, CD4+ T cells, CD11b+ myeloid cells, and all other CD45+ cells per GFP+ tumor cell from HFD- or CD-fed mice.

(K–N) Flow cytometric analysis of CD11c+ cells, showing%CD11c+ cells of CD45+ cells (K), %MHC-I+ of CD11c+ cells (L), %MHC-II+ of CD11c+ cells (M), and%

CD40+ of CD11c+ cells (N).

(O–P) Flow cytometric analysis of GFP+ MC38 tumor cells, showing % PD-L1+ (O) and % MHC-I+ (P).

(Q–R) Representative histograms for Ki67 (Q) or ICOS (R) staining.

(S–V) Flow cytometry analysis of CD8+ T cells from indicated tissues in CD or HFDmice bearing E0771 (S–T) or B16-OVA-RFP (U–V) tumors, quantifying%CD8+

T cells of CD45+ cells (S,U) and % PD-1+ of CD8+ T cells (T,V).

(W–X) Flow cytometry analysis of CD8+ T cells from indicated tissues in CD or HFDBALB/cJmice bearing CT26 tumors, quantifying%CD8+ T cells of CD45+ cells

(W) and % GZMB+ of CD8+ T cells (X).

(Y–AA) Flow cytometry analysis of ex vivo stimulated naive CD8+ T cells from CD and HFDmice on 2, 4, or 8 mg/mL each of plate-bound anti-CD3 and anti-CD28

antibodies, quantifying live cell numbers (Y), GZMB expression (Z), and Ki67 expression (AA).

Data represent two independent experiments. Statistical significance was assessed by Student’s t test (C–I, K–P, S–AA). Graphs display mean ± SD (C–P, S–AA).

(ns p > 0.05, *p % 0.05, **p % 0.01, ***p % 0.001.)
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Figure S3. Related to Figure 3

(A) UMAP embeddings of CD45+ leukocyte infiltrate colored by diet.

(B) Overview of cell populations and key differentially expressed transcripts that define each cell cluster. Quantification of the proportion of each cell cluster

among all CD45+ leukocyte infiltrate (left) and table showing cluster identifications with key differentially transcripts (right). Statistical significance was assessed

by two-sided binomial test.

(C–K) Scatterplots showing average signature score for curated KEGG pathways on a cluster-by-cluster basis in HFD versus CD for fructose and mannose

metabolism (C), folate biosynthesis (D), TCA cycle (E), oxidative phosphorylation (F), glycerolipid metabolism (G), sphingolipid metabolism (H), insulin signaling

pathway (I), mTOR signaling pathway (J), and phosphatidyl inositol signaling pathway (K).

(L–N) Expression of key marker genes within lymphocyte clusters: Cd3g (L), Ikzf2 (M), and Cd8a (N).

(O–Q) Projection of gene signatures onto lymphocyte clusters using AddModuleScore in Seurat: G2M-S signature (O), Slamf6+ stem cell progenitor signature (P),

and Tim3+ cytotoxic signature (Q).

(R) Table showing sub-cluster identifications within T lymphocytes with key differentially transcripts and associated signatures.

(S) Schematic for scoring in VISION against Immunological Signatures (C7) from ImmuneSigDB.

(T) Table of filtered/curated immunological signatures and whether they correspond to the activated/stimulated or naive/unstimulated state.

Statistical significance was assessed by Wilcoxon rank sum with FDR correction using the method of Benjamini and Hochberg (C-K). (ns p > 0.05, *p% 0.05, **p

% 0.01, ***p % 0.001, ****p % 0.0001.)
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Figure S4. Related to Figure 4

(A) Representative CyCIF image of CD tumors showing staining for non-lineage antibody targets. Scale bar is 2000 mm (full tissue section) and 100 mm (regions of

interest).

(B) Schematic showing CyCIF analysis pipeline.

(C) Representative CyCIF images of CD and HFD tumors showing infiltration and general localization of cells bearing lymphocyte markers. Scale bars are

1000 mm.

(D) Expression pattern of mitochondrial metabolic genes in CD or HD tumors. Scale bars are 2000 mm.

(E) This panel is a control for subsequent spatial overlap analysis (F-H), showing a comparison between the number of simulated CD8+ T cells and the actual

number of CD8+ T cells per CyCIF tissue sample. For each tissue, the number ofmeasuredCD8+ T cells (y axis) is plotted versus the number of simulated Poisson-

Disc sample points (x axis), the latter of which represent randomly distributed CD8+ T cells within the tissue section. There is a strong correlation between the

number of events used to compute fractional overlap under actual and simulated conditions.

(F-H) Spatial overlap between GLUT1-high or ACO2-high regions of tumors and CD8+ T cells (F), CD4+ T cells (G), and CD11b+ LY6G+ myeloid cells (H). Graphs

depict measured and simulated data.

Statistical significance was assessed by Student’s t test (F–H). Graphs display mean ±SD (F-H). (ns p > 0.05, *p% 0.05, **p% 0.01, ***p% 0.001, ****p% 0.0001.)
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Figure S5. Related to Figure 5

(A–E) Analysis of RNA-sequencing data performed on cells sorted out of day 12 MC38 tumors from CD-fed and HFD-fed animals.

(A) Screen plot depicting variation explained by the first ten principal components.

(B) Heatmap of genes with the highest loadings that contribute to PC#1.

(C) Significantly enriched gene sets from GSEA analysis against the Hallmarks MSigDB collection for tumor cell RNA-seq data.

(D) Venn diagram depicting overlap between significantly altered genes with HFD in CD8+ TILs and MC38 tumor cells using a p value cut-off = 0.01.

(legend continued on next page)
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(E) Heatmap depicting expression of genes related to T cell stimulation and suppression in MC38 tumor cells.

(F) Representative flow plot of ex vivo LipidTox neutral lipid staining in MC38-GFP tumor cells in day 10–14 tumors.

(G–I) Quantification of C16-BODIPY uptake ex vivo in CD11b+ myeloid cells in MC38 (G), E0771 (H) and B16-OVA-RFP (I) tumors.

(J) MC38 tumor cell number after 48 hours of growth in the presence of 200 mM each of BSA-conjugated palmitate plus BSA-conjugated oleate versus BSA

control.

Statistical significance was assessed by Student’s t test (G–J). Bar graphs display mean ± SD (G-J). (ns p > 0.05, *p % 0.05, **p % 0.01, ***p % 0.001.)
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Figure S6. Related to Figure 6

(A) Principal component analysis of proteomics data.

(B) Hierarchical clustering of proteomics samples.

(C–E) Heatmaps showing relative expression of proteins involved in fat synthesis (C), TCA cycle (D), or T cell stimulation and suppression (E).

(F–M) Lipidomics analysis of plasma, TIF and FACS-sorted GFP+ tumor cells from day 13 MC38-GFP tumor-bearing mice fed CD or HFD for 8-10 weeks.

(F–H) Volcano plots of lipid species in GFP+ tumor cells (F), plasma (G) and TIF (H).

(I–L) Correlation between the TIF to plasma ratio of lipid abundance in the CD and HFD context, displaying all lipids (I), all lipids except DAG (J), all lipids without

TAG (K), and all lipids without DAG and TAG (L).

(M) Plot displaying the strength of correlation in panels I–L.

(N) Lipoprotein lipase (LPL) activity in homogenized mouse hearts and MC38 tumors.

Key abbreviations: DAG, diglyceride. TAG, triglyceride. TIF, tumor interstitial fluid. Statistical significance was assessed by Student’s t test (C–H, N). Bar graphs

display mean ± SD (N).
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Figure S7. Related to Figure 7

(A–C) Characterization of PHD3-OE MC38 cell lines.

(A) western blot of C-terminally FLAG-tagged PHD3-OE cell lines.

(B) IP-Western blot for hydroxylated ACC2 from PHD3-OE versus empty vector-transduced MC38 cell lines.

(C) In vitro growth curve of PHD3-OE and EV-transduced MC38 cells in DMEM media.

(D–E) Phd3 expression inMC38 EV-transduced versus PHD3-OE tumors measured by qPCR in mice fed CD (D) and HFD (E) and sacrificed at humane endpoints.

(F–G) Flow cytometric analysis of MHC-I (F) and PD-L1 (G) expression on RFP+ tumor cells from day 14 MC38-PHD3-OE and control tumors.

(H) Quantification of C16-BODIPY uptake ex vivo in RFP-expressing MC38-PHD3-OE and control tumor cells from dissociated tumors isolated from mice

fed HFD.

(I) NAD+ levels in TIF versus tumor tissue from targeted metabolomics analysis of day 14 tumors. NAD+ signal is internally normalized to the alanine signal, which

represents an abundant metabolite in both sample types that is not altered by diet (data not shown).

(J) Volcano plot depicting metabolomics analysis of circulating FFAs from the plasma of tumor-bearing HFD and CD mice. Pink corresponds to FFAs with p

value < 0.05 that increase with HFD relative to CD and blue corresponds to FFAs with p value < 0.05 that decrease with HFD relative to CD.

(K–O) Bioinformatics analysis of TCGA RNA-seq data across multiple cancer types.

(K) Expression of PHD1, PHD2, and PHD3 in colorectal cancer in obese and non-obese patients.

(L–M) Graph depicting Spearman correlation coefficients and p values comparing PHD3 versusMHC-I (L) or GZMB (M) expression across patient samples in all

TCGA datasets available from the GEPIA web portal.

(N) Quantification of PHD3 expression in cold tumors versus all others (Int+Hot).

(O) Chart detailing quantification for the enrichment of PHD3-low samples in immunologically cold tumors using Fisher’s Exact Test acrossmultiple cancer types,

as well as GLUD1 as a control.

Statistical significance was assessed by two-way ANOVA (C), Student’s t test (D–K, N), or Fisher’s Exact Test (O). Graphs display mean ± SD (C–I, K, N). (ns p >

0.05, *p % 0.05, **p % 0.01, ***p % 0.001.)
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