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Abstract

The developmental process of embryos follows a monotonic order. An embryo can progressively 

cleave from one cell to multiple cells and finally transform to morula and blastocyst. For 

time-lapse videos of embryos, most existing developmental stage classification methods conduct 

per-frame predictions using an image frame at each time step. However, classification using 

only images suffers from overlapping between cells and imbalance between stages. Temporal 

information can be valuable in addressing this problem by capturing movements between 

neighboring frames. In this work, we propose a two-stream model for developmental stage 

classification. Unlike previous methods, our two-stream model accepts both temporal and image 
information. We develop a linear-chain conditional random field (CRF) on top of neural network 

features extracted from the temporal and image streams to make use of both modalities. The 

linear-chain CRF formulation enables tractable training of global sequential models over multiple 

frames while also making it possible to inject monotonic development order constraints into 

the learning process explicitly. We demonstrate our algorithm on two time-lapse embryo video 

datasets: i) mouse and ii) human embryo datasets. Our method achieves 98.1% and 80.6% for 

mouse and human embryo stage classification, respectively. Our approach will enable more 
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pro-found clinical and biological studies and suggests a new direction for developmental stage 

classification by utilizing temporal information.
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1 Introduction

Biological developments often follow a monotonic order. A mammalian embryo’s 

developmental process is a typical example of the monotonic constraint, which develops 

through cell cleavages (from 1 cell to multiple cells), morula, and blastocyst. This 

monotonic constraint does not allow transitions to previous developmental stages, e.g., a 

transition from 2 cells to 1 cell. Automated developmental stage classification can advance 

studying an embryo’s cellular function, a basic but hard biological problem. Besides, 

developmental stage classification of embryos is important for in vitro fertilization (IVF). 

To achieve a pregnancy, clinicians select embryos with the highest viability and transfer 

them to a patient. Division timing is one of the main biomarkers to assess an embryo’s 

viability [11]. The current standard of choosing the most promising embryos is a manual 

examination by clinicians via a microscope. However, manual inspection is time-consuming 

and prone to inter-person variability. As such, it is essential to develop a model for 

automated developmental stage classification.

In automated developmental stage classification for time-lapse videos, difficulties mainly 

come from overlaps between cells and imbalance between stages. Even though cells 

are transparent, their overlaps confuse a classifier when identifying their developmental 

stage. Also, a few developmental stages (e.g., 1, 2 cells) dominate most of the frames in 

time-lapse videos, which can induce class imbalance in learning. Temporal information 

is valuable for addressing these two challenges. It can differentiate overlapping cells 

based on their movements and transitions between stages regardless of their frequencies. 

Existing developmental stage classification methods [11,9,12] usually classify per-frame 

stages and apply dynamic programming to make use of the monotonic constraints. 

However, they do not incorporate temporal information, potentially solving the overlap and 

imbalance problems. Besides, they do not include dynamic programming in the learning 

process, making classification models may not learn to maximize the accuracy of dynamic 

programming.

In this work, we propose a two-stream model for the developmental stage classification 

of embryos as displayed in Fig. 1. We first introduce a two-stream convolutional neural 

network (CNN) model, which consists of an image model and a transition detector. While 

the image model identifies a stage of the current frame, the transition detector returns a high 

value when the current frame has a different label compared to the previous frame. Unlike 

the previous methods, we exploit temporal information in our transition detector, which can 

better suppress the overlap and stage imbalance issues. We build a linear-chain conditional 

random field (CRF) [16] upon our two-stream model for the monotonic constraints. 
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Unlike conventional methods, our method effectively combines two-stream outputs using 

linear-chain CRF and enables learning of sequential predictions while constraining the 

monotonic order. We demonstrate our algorithm’s efficacy by comparing it with existing 

stage classification approaches on two time-lapse video datasets: i) mouse and ii) human 

embryos.

We have two main contributions. First, our method improves the performance for rare cell 

stages by combining image and temporal information in a two-stream model. Second, we 

inject the monotonic constraint into the learning process using linear-chain CRF to optimize 

the sequential predictions. Our code will be publicly available upon acceptance.

2 Related Work

Developmental Stage Classification of Embryos:

Researchers have proposed many stage classification methods due to their importance for 

IVF. With the emergence of deep learning methods, most state-of-the-art methods rely on 

CNN. Khan et al. [9] adopt CNN for human embryonic cell counting over the first five 

cell stages. Ng et al. [12] introduce late fusion nets, where multiple images are input for 

CNN, and additionally exploit dynamic programming to ensure a monotonical progression 

over time. Lau et al. [10] detects a region of interest and uses LSTM [5] for sequential 

classification. Rad et al. [13] use CNN to parse centroids of each cell from embryo 

images. Recently, Leahy et al. [11] develop computer vision models that extract five key 

morphological features from time-lapse videos, including stage classification. They improve 

a baseline by using multiple focuses, a soft loss, and dynamic programming.

However, most previous methods focus on improving a per-frame prediction and utilize 

dynamic programming during testing to incorporate the monotonic development order 

constraint. In this work, we make use of temporal information and directly inject the 

monotonic condition into the learning process with CRFs for sequential stage prediction.

Two-Stream Models:

Researchers widely use two-stream models for action recognition. Two-stream 2D CNN [15] 

classifies an action by averaging predictions from image and motion branches. 3D-fused 

two-stream [4] blends features from image and motion information using 3D convolution. 

I3D [1] replaces 2D convolutions in the two-stream 2D CNN to 3D convolutions to 

incorporate temporal information better.

In their two-stream models, image and motion branches’ objectives are the same; predicting 

an action from the input video. However, the embryo’s temporal information could be 

useful for detecting stage transition timing rather than stage classification. Besides, their 

architectural designs are for action recognition, which outputs a per-video prediction. 

Since embryo stage classification requires per-frame classification, the previous two-stream 

models may not fit sequential prediction. For sequential prediction, one may use recurrent 

neural networks, e.g., long short-term memory [5]. However, it is hard to incorporate the 

monotonic constraint of embryo development. Instead, we adopt a linear-chain CRF [16] to 

encode the constraints.
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3 Model

We construct a two-stream approach for the developmental stage classification of embryos. 

The input is a sequence of frames X = [x(1), …, x(T)], and the output is a sequence of 

stage predictions Y = [y(1), …, y(T)]. As depicted in Fig. 2, we use features extracted from 

the two-stream model as input to a linear-chain conditional random field, where the unary 

potentials are from the image stream, and the pairwise potentials are from the temporal 

stream. Our parameterization of the pairwise potentials (to be explained below) makes it 

possible to incorporate the monotonic constraint into the learning process. The entire model 

is trained end-to-end.

3.1 Two-Stream Feature Encoding

Our model uses temporal information in addition to image data to address the problems of 

overlapping cells and imbalance between stages, in contrast to many prior works, which 

often only use image information [9,10,11]. While the temporal information may not be 

valid for stage classification, it can be useful when there is a stage transition between 

two frames. To make use of this, we adopt a two-stream approach, which consists of 

an image model and a transition detector. While the image model outputs scores (i.e., 
unary potentials) for each frame’s stage, the transition detector outputs transition scores 

(i.e., pairwise potentials) that recognize the existence of a stage transition between two 

consecutive frames.

The image model infers a stage from an input frame using ResNet50 [6] pretrained on the 

ImageNet dataset [3]. Concretely, the unary potential for class c ∈ {1, …, C} (i.e., there are 

C possible stages) at time step t is given by,

ΦI x(t); θI c = softmax WIResNet x(t) + bI c,

where WI, bI are the parameters of the linear layer that outputs class scores from ResNet 

features, and the softmax(·) function normalizes the output to turn them into probabilities.1

Our transition detector outputs a score for whether the current frame is in a different stage 

compared to the previous frame. Even though many two-stream methods [4,15,1] exploit 

optical flow [7] as temporal information, it cannot distinguish stage transition from cell 

movements. Hence, we feed two consecutive frames into the detector instead. For the 

transition detector, we use ResNet50 [6] also pretrained on the ImageNet dataset [3], but 

we modify the first convolution layer to make it accept two consecutive frames as the input, 

x(t−1) and x(t). The detector returns a probability of stage change existence defined as,

ρM x(t − 1), x(t); θM k = softmax WMResNet x(t − 1), x(t) + bM k,

1Since the potentials in a CRF do not need to be probabilities, normalization via the softmax function is not strictly necessary. 
However, we found the normalization to be helpful for stable training. Note that if the unary potential is defined to be the output of a 
log-softmax function (which is not the case in our approach), the model will reduce to a Maximum Entropy Markov Model.
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where k ∈ {0, 1} indicates whether there was a stage change between x(t−1) and x(t). The 

detector also implicitly parameterizes the pairwise potentials via,

ΦM x(t − 1), x(t); θM c, c′ =

ρM x(t − 1), x(t); θM 0,  if c = c′

ρM x(t − 1), x(t); θM 1,  if c < c′

−∞,  otherwise, 

where we penalize inverse transitions with −∞ to incorporate the monotonic constraint. We 

use these potentials as input to the linear-chain CRF, which enables sequential classification 

of the input sequences taking into account the pairwise correlations that exist among the 

output labels.

3.2 Linear-Chain Conditional Random Field

We define a probability distribution over the output sequence Y given the input sequence X 
with a linear-chain CRF

p Y ∣ X; θI, θM = 1
Z(X) ∏

t = 1

T
exp Φ y(t − 1), y(t), x(t); θI, θM ,

where Φ is a score for transitioning from y(t−1) to y(t), which is given by combining the 

unary and pairwise potentials from above,

Φ y(t − 1), y(t), x(t); θI, θM = ΦI x(t); θI y(t) + ΦM x(t − 1), x(t); θM y(t − 1), y(t) .

Here Z(X) is a normalizing constant,

Z(X) = ∑
y(1) = 1

C
… ∑

y(T ) = 1

C
∏

t = 1

T
exp Φ y(t − 1), y(t), x(t); θI, θM ,

which can be calculated in O(TC2) with dynamic programming.

Training: During training, we also found it helpful to minimize the CRF negative log 

likelihood along with single-model losses derive from the image and transition models. The 

single-model loss for the image model is defined as,

ℒI = ∑
c = 1

C
− qc(t)log ΦI x(t); θI c,

where q(t) is the one-hot representation of the ground truth stage at frame t, and the single

model loss for the transition detector is defined as,
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ℒM = ∑
k = 0

1
− 1 − q(t − 1)Tq(t) logρM x(t − 1), x(t); θM c .

Thus the final loss is given by,

−log p Y ∣ X; θI, θM + ℒI + ℒM,

and we perform end-to-end training with gradient-based optimization using the Torch-struct 

library [14].2 We use a batch size of four and a learning rate of 0.0001 with the Adam 

optimizer. To construct a batch, we randomly sample 50 frames from each video and then 

sort them in a consecutive order. We also perform data augmentation by random resized 

cropping, rotation, and flipping.

Inference: For prediction, our aim is in obtaining the most likely sequence of labels given a 

new test video X, i.e.,

Y = argmax
Y

p Y ∣ X; θI, θM .

We obtain this maximum a posteriori sequence with standard dynamic programming (i.e., 
the Viterbi algorithm). At inference time only, we also smooth the unary potentials from the 

image model by modifying the potential for class c,

1
13 ⋅ ΦI[c − 2] + 3

13 ⋅ ΦI[c − 1] + 5
13 ⋅ ΦI[c] + 3

13 ⋅ ΦI[c + 1] + 1
13 ⋅ ΦI[c + 2],

and using the above weighted average as the input to the Viterbi algorithm. This reweighting 

values, which were found via a search on the validation set, take into account the ordinal 

nature of the output space (boundaries are zero-padded).

4 Experimental Results

We evaluate our method’s performance, demonstrating each design choice’s effect in the 

models with ablation studies. We evaluate stage classification algorithms on two embryo 

datasets: i) mouse and ii) human embryo datasets.

Compared Methods: We compare our method with a general classification model, 

ResNet50 [6], one state-of-the-art embryo stage classification method, AutoIVF [11], an 

early fusion method [8] that leverages temporal information, and a sequential model [10] 

based on LSTM. For a fair comparison, we re-implement AutoIVF using a single focus and 

the same backbone as ours. The early fusion takes five successive frames as input and learns 

2The single-model losses and the CRF negative log likelihood are complementary each other by taking into account local and global 
predictions, respectively.
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to predict the middle frame’s stage. We adopt the PyTorch 1.7 library to implement all the 

methods.

Evaluation Metric: We evaluate classification accuracy as the number of correct 

predictions over the number of data (Global). Since the majority stages, such as 1 cell 

and 2 cells, can dominate the average accuracy, we calculate the per-stage accuracies and 

the mean of them (Per-Stage). We train all methods for five seeds and report their average 

performances with standard deviations.

4.1 Developmental Stage Classification of Mouse Embryos

Dataset: We use the NYU Mouse Embryo dataset consisting of 100 videos of developing 

mouse embryos [2]. The videos contain 480 × 480 resolution images taken every seven 

seconds, with a median of 314 frames per embryo, totaling an average length of 36.6 

minutes per embryo. The videos have frames with up to 8 cells, i.e., eight developmental 

stages. For training and evaluation, we randomly split the data 80/10/10 into train, 

validation, and test videos, respectively. We use the validation set to select hyper-parameters 

and models for evaluation.

Result: In Table 1, we list overall and per-stage classification performances of the embryo 

stage classification methods. Our method outperforms all other methods on average for 

various stages. The frequency imbalance between the stages allows LSTM to achieve 

comparable results on average over all the data.

4.2 Developmental Stage Classification of Human Embryos

Dataset: We evaluate the stage classification methods on the human embryo dataset [11]. 

There are 13 stage labels: empty well, 1 cell to 9+ cells, morula (M), blastocyst (B), and 

degenerate embryo. To focus on the embryo development’s monotonicity, we only use 11 

stages, excluding frames with the empty well and degenerate embryo labels. The dataset 

includes 341 training, 73 validation, and 73 test time-lapse videos of embryos. Each video 

consists of 325 frames on average. As the network input, we crop zona-centered patches 

from each frame to exclude outside regions of interest and resize the frames to 112 × 112 

resolution.

Result: Table 2 benchmarks the developmental stage classification methods. Overall, 

our approach surpasses the other classification methods. In terms of the mean per-stage 

accuracy, the performance gain over the existing methods is much higher, which indicates 

our method notably performs better for rare developmental stages. Since we incorporate 

the transition detector and use it to force the predictions of our model to be monotonic, 

our method outperforms the two spatiotemporal methods; Early Fusion and LSTM. Unlike 

AutoIVF, our model learns the features for the stage change detection, which are helpful for 

the monotonic predictions.

Our method runs in 268 frames per second on a single TITAN X GPU. Our model has 47M 

parameters and requires up to 4 GB GPU memory in the inference phase. Fig. 3 visually 

compares our method with AutoIVF [11]. Our method is better at detecting cell division 
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timings. As one example of failure cases, our model fails to detect the transition between 

9+ cells and morula in Fig. 3 (b) since it takes two consecutive frames as the input, which 

visually have no major difference in this example.

4.3 Ablation Study

We analyze our method’s efficacy by conducting an ablation study on the human embryo 

dataset. To this end, we add one of our components to the baseline at a time. By performing 

dynamic programming without pairwise potentials, our model improves the baseline’s 

accuracy from 76.7% to 80.0%. Using both unary and pairwise terms in linear-chain CRF, 

our two-stream model yields 80.6% score, which performs the best. In conclusion, our full 

setting enables the maximum performance for developmental stage classification.

5 Conclusion and Future Work

Our method will enable better clinical and embryological studies by improving the 

accuracies on rare stages, which are infrequent in videos but equally important as frequent 

stages when analyzing embryos. Since we measure stage transition probabilities, cell 

division timings predicted by our method are highly interpretable, which will allow tractable 

inspection in clinical practice. Our future work includes further improving performance 

on rare stages by combining a stage classifier and a cell detector, developing sequential 

models for other developmental features of embryos, and experimenting with different ways 

of acquiring unary and pairwise potentials, e.g., calculating the transition probability over 

longer sliding windows of frames.
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Fig. 1. Developmental Stage Classification of Embryo Time-Lapse Videos.
Our two-stream model accepts the current and the previous frames as the input. We feed the 

current frame into the image model. For the transition detector, we input the concatenation 

of the current and the previous frames to capture motion information between them. We 

apply the two-stream model to all the frames in a video and obtain sequential predictions 

using a linear-chain CRF.
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Fig. 2. Linear-Chain CRF Model.
For each image, we compute the unary potential using a image model. For pairwise ones, we 

use predictions from a transition detector.
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Fig. 3. Qualitative Stage Classification Results.
We visualize frames with ground truths (lower left corner), where our method and AutoIVF 

[11] predict different stages.
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Table 1.

Accuracies (%) of stage classification methods on the test mouse embryos [2].

Method Global Per-Stage 1 2 3 1 5 6 7 8

A. Per-Image Classification Model

ResNet50 [6] 90.9±0.6 59.4±1.2 99.0 98.3 89.1 90.7 25.1 15.8 26.5 30.4

AutoIVF [11] 96.4±0.1 60.9±3.1 99.8 99.9 92.3 99.9 4.3 33.5 50.8 6.2

B. Spatioteniporal Classification Model

Early Fusion [8] 91.9±0.1 57.1±0.2 98.8 99.9 74.0 93.2 0.0 14.9 37.9 37.6

LSTM [10] 98.0±0.1 45.0±1.7 96.9 98.7 22.9 42.2 0.0 9.2 90.1 0.0

Ours 98.1±0.3 76.8±5.4 99.9 99.9 94.9 99.9 35.1 84.6 71.4 29
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Table 2.

Scores (%) of stage classification methods on the test human embryos [11].

Method Global Per-Stage 1 2 3 1 5 6 7 8 9+ M B

A. Per-Image Classification Model

ResNet50 [6] 74.6±1.0 58.2±1.6 97.6 93.8 24.3 80.8 24.1 16.2 19.8 55.2 63.5 70.7 93.9

AutoIVF [11] 77.8±1.2 60.9±2.2 98.2 96.6 22.9 88.2 26.5 15.6 22.4 59.3 67.3 77.0 96.1

B. Spatiotemporal Classification Model

Early Fusion [8] 75.1±0.6 55.7±0.7 97.5 93.4 10.2 84.5 11.5 7.9 12.8 63.5 65.7 72.5 93.7

LSTM [10] 77.1±0.9 61.8±0.9 97.8 92.7 31.4 79.9 21.4 25.4 28.8 58.3 67.6 79.3 97.0

Ours 80.6±0.7 66.3±1.9 99.4 96.2 41.2 89.4 43.3 27.6 19.7 69.8 67.0 78.7 96.7
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