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SUMMARY
Lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis. However, we lack
well-validated, high-throughput in vitromodels that predict animal outcomes. Here, we provide an extensible
approach to rationally prioritize combination therapies for testing in in vivomousemodels of tuberculosis.We
systematically measured Mycobacterium tuberculosis response to all two- and three-drug combinations
among ten antibiotics in eight conditions that reproduce lesion microenvironments, resulting in >500,000
measurements. Using these in vitro data, we developed classifiers predictive ofmultidrug treatment outcome
in a mouse model of disease relapse and identified ensembles of in vitro models that best describe in vivo
treatment outcomes. We identified signatures of potencies and drug interactions in specific in vitro
models that distinguish whether drug combinations are better than the standard of care in two important
preclinical mouse models. Our framework is generalizable to other difficult-to-treat diseases requiring com-
bination therapies. A record of this paper’s transparent peer review process is included in the supplemental
information.
INTRODUCTION

Tuberculosis (TB), caused by infection with Mycobacterium

tuberculosis (Mtb), remains a major global health issue. In

2019, an estimated ten million people fell ill with TB, and about

1.4 million people died (World Health Organization, 2020). Devel-

opment of shorter treatment regimens is a key part of the third

pillar of the WHO End TB Strategy (World Health Organization,

2014). Multidrug treatment regimens were developed to treat

active TB infections by shortening treatment duration, reducing

disease relapse, and decreasing antibiotic resistance develop-

ment (Fox et al., 1999). The standard TB treatment is six to

nine months of multidrug treatment with an estimated 85%

cure rate (World Health Organization, 2020; Kerantzas and Ja-

cobs, 2017; Tiberi et al., 2018a). The first two months of treat-

ment (intensive, bactericidal phase) consist of four drugs (isoni-

azid, rifampicin, pyrazinamide, and ethambutol) that reduce

sputum Mtb levels but are less effective against non-replicative

bacilli (Mitchison, 1996; Kerantzas and Jacobs, 2017; Fox

et al., 1999). The following four to seven months of treatment

(continuation phase) consist of two drugs (isoniazid and rifam-
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picin) aimed at reducing disease relapse by treating persisting

bacteria that survived the intensive phase (Fox et al., 1999; Ker-

antzas and Jacobs, 2017; Mitchison, 1996). New regimens that

canmore efficiently treatMtb are needed to shorten the intensive

phase of treatment and reduce or eliminate the bacteria that

persist and require continuation phase treatment (Kerantzas

and Jacobs, 2017).

Due, in large part, to the heterogeneity of TB lesions and treat-

ment response among the Mtb population, combination therapy

is required to treat active TB. Therapies should therefore be

designed as combinations of antibiotics rather than single antibi-

otics alone. There are many drug options for new treatment reg-

imens using existing drugs and drugs in development (Evans and

Mizrahi, 2018), which creates an enormous number of possible

drug combinations (Tiberi et al., 2018a). Despite the size of the

combination space, new TB regimens are built by augmenting

well-studied drug combinations with the substitution or addition

of new drugs (Ginsberg and Spigelman, 2007; Kerantzas and Ja-

cobs, 2017; Tiberi et al., 2018a, 2018b; Wallis et al., 2016; Lien-

hardt et al., 2019; Dooley et al., 2019), often based on the results

of iterative in vitro and preclinical studies (Figure 1A). A phase 3
uthor(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. TB drug development pipeline and a ten-drug DiaMOND compendium of Mtb response to drug combination treatment

(A) (Top) Schematic of TB drug regimen evaluation process highlighting in vitro drug discovery and assessment followed by preclinical (e.g., mouse model)

evaluation of drug combinations. A new drug (green) is discovered and evaluated in vitro (1) and evaluated in combination with another drug (orange) in preclinical

studies (2). Another drug (blue) is selected and evaluated in vitro (3) and then in vivo in combination with the previously tested combination (4). Superiority of a

combination over the standard of care in preclinical models leads to clinical trials (5). (Middle) Diagram highlighting notable differences in disease pathology and

drug response in mouse strains (BALB/c and C3HeB/FeJ) used in TB research. (Bottom) Schematic of treatment outcome assessment in mouse studies.

Bacterial burden is assessed by monitoring bacterial burden during and immediately following drug treatment. Disease relapse is assessed by monitoring for

culturable bacteria after drug treatment cessation.

(B) Relative potencies of the ten compendium drugs in eight in vitro conditions (IC90, terminal time point; left) with doubling times for each condition in untreated

Mtb (right). IC90 (mg/mL) values are indicated and color scaled (log10 transformation) within each drug. Hierarchical clustering of potencies as calculated with

cosine distances and average linkage. ND, not determined; NA, not applicable.

(C) (Top) Schematic data cube of the DiaMOND compendium. Mtb were treated with all 1-, 2-, and 3-way drug combinations (175 combinations) among 10 drugs

in dose responses measured in 10-dose resolution in at least biological duplicate. Dose response measurements were made in eight in vitro models and at 3–4

time points, but we focus on 1–2 time points for analysis (Data S1); therefore, this data cube represents ~25% of the total measurements made. (Bottom) Metrics

from DiaMOND dose response curves. IC50 and IC90 are used to calculate drug interactions at the 50% and 90% levels of growth inhibition (FIC50 and FIC90,

respectively). Three potency metrics are derived: AUC25, normalized area under the curve until 25% inhibition; Einf, theoretical maximum inhibition, and (not

shown); Grinf, theoretical maximum normalized growth rate inhibition (Box 1; STAR Methods).
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clinical trial (‘‘Study 31’’) recently demonstrated that treatment

duration could be shortened by substituting two of the drugs in

the standard four-drug regimen with existing TB antibiotics (Dor-

man et al., 2021). Relatively new drugs (bedaquiline, pretomanid,

delamanid, and SQ109) that can target non-replicative bacteria

in in vitro and preclinical studies (Iacobino et al., 2017; Liu

et al., 2018; van den Boogaard et al., 2009) are components of

new treatment-shortening regimens for multidrug resistant TB

(MDR-TB) (Conradie et al., 2020; Pontali et al., 2019; Tiberi

et al., 2018a). The treatment-shortening potential in phase 2b tri-

als (Diacon et al., 2012; Dawson et al., 2015) led to the phase 3

STAND clinical trial to test the use of pretomanid with moxiflox-

acin and pyrazinamide (PaMZ, Table 1) (ClinicalTrials.gov, num-

ber NCT02342886). Augmentation of the PaMZ combination

with the addition of bedaquiline (BPaMZ, Table 1) in a phase

2b trial (Tweed et al., 2019) shortened culture conversion time

of MDR-TB so dramatically that the STAND trial was put on per-

manent hold to start the phase 3 SimpliciTB trial to evaluate

BPaMZ for treating both drug-sensitive TB and MDR-TB

(ClinicalTrials.gov, number NCT03338621). Using an iterative

method of adding or substituting into effective combinations

during TB drug regimen design, these studies have demon-

strated that there is treatment-shortening potential in the drug

combination space. A critical step for developing new treatment
regimens is prioritizing the thousands of other drug combina-

tions before clinical testing. However, it is not practical to eval-

uate thousands of combinations using the current preclinical

regimen design process, which combines in vitro and small ani-

mal studies (Figure 1A). An efficient methodology is needed to

systematically assess drug combinations and prioritize the thou-

sands of multidrug combinations for their treatment-shortening

potential.

Animal models are critical to regimen development, and

mouse models are a primary tool in multidrug therapy design

(Figure 1A (Dooley et al., 2016; Gumbo et al., 2015; Nuermberger

et al., 2008; Tasneen et al., 2011; Nuermberger, 2017)). Mouse

strains where Mtb is primarily intracellular (e.g., BALB/c and

C57BL/6) are the most widely used (Nuermberger, 2017). Mouse

strains that form mixed lesion types (e.g., C3HeB/FeJ) are used

to study drug response because the disease pathology is more

human-like, include granulomas with caseous necrotic cores

(Figure 1A) (Apt and Kramnik, 2009; Gumbo et al., 2015; Kramnik

and Beamer, 2016). Mtb drug response differs between these

two types of mouse models, and both are important preclinical

tools because the model-specific drug response is thought to

result from the different lesion microenvironments present in

each animal model (Figure 1A), and the differential drug expo-

sure in lesion compartments is influenced by lesion structure
Cell Systems 12, 1046–1063, November 17, 2021 1047
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Table 1. Abbreviations used in this study

Drugs

B bedaquiline, DiaMOND compendium drug, ATP synthesis inhibitor

C clofazimine, DiaMOND compendium drug, antimycobacterial/multi-process inhibitor

E ethambutol, DiaMOND compendium drug, cell wall synthesis inhibitor

H isoniazid, DiaMOND compendium drug, cell wall synthesis inhibitor

L linezolid, DiaMOND compendium drug, protein synthesis inhibitor

M moxifloxacin, DiaMOND compendium drug, DNA synthesis inhibitor

Pa pretomanid, DiaMOND compendium drug, cell wall synthesis inhibitor/ nitric oxide production

Z pyrazinamide, DiaMOND compendium drug, antimycobacterial/multi-process inhibitor

R rifampicin, DiaMOND compendium drug, transcriptional inhibitor

P rifapentine, DiaMOND compendium drug, transcriptional inhibitor

D delamanid, validation drug, cell wall synthesis inhibitor/ nitric oxide production

Su sutezolid, validation drug, protein synthesis inhibitor

Sq SQ109, validation drug, multi-process inhibitor

G gatifloxacin, validation drug, DNA synthesis inhibitor

Cy d-cycloserine, validation drug, cell wall synthesis inhibitor

Drug combinations

PaMZ bedaquiline + pretomanid + moxifloxacin

BPaMZ bedaquiline + pretomanid + moxifloxacin + pyrazinamide

HRZE isoniazid + rifampicin + pyrazinamide + ethambutol - four-drug standard of care

HRZ isoniazid + rifampicin + pyrazinamide - three-drug standard of care

BPaL bedaquiline + pretomanid + linezolid

MRZ moxifloxacin + rifampicin + pyrazinamide

RZ rifampicin + pyrazinamide

R-CHOP rituximab + cyclophosphamide + doxorubicin hydrochloride + vincristine sulfate + prednisone – anti-cancer drug combination

Treatment outcome classification

C0 as good or worse than standard of care (HRZE or HRZ)

C1 better than standard of care

Mouse models

RMM relapsing mouse modela

BMM bactericidal mouse modelb

BHeB bactericidal outcome in C3HeB/FeJ mouse strainc

In vitro models

a acidic

b butyrate

c cholesterol (0.05 mM)

d dormancy

h cholesterol-high (0.2 mM)

i intracellular

s standard

v valerate

Data and model metrics

C constant time point

T terminal time point

CT constant and terminal time point are the same

ICn inhibitory concentration at n % growth inhibition

FICn fractional inhibitory concentration at n % growth inhibition

AUC25 normalized area under the dose response curve to the 25% inhibition point

Einf effect at infinite drug concentration (maximum achievable effect)

GRinf normalized growth inhibition effect at infinite drug concentration (maximum achievable effect)

(Continued on next page)
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Table 1. Continued

ROC receiver operator characteristic

AUC area under the ROC curve

PR precision-recall

F1 harmonic mean of the precision and recall

Abbreviations along with brief descriptions are listed.
aThe RMM outcome assesses lasting cure months after cessation of drug treatment in the most commonly used mouse strains (e.g., BALB/c, C56BL/

6, and Swiss).
bThe BMM outcome assesses reduction of bacterial burden immediately following drug treatment in the most commonly used mouse strains.
cThe BHeB assesses reduction of bacterial burden immediately following drug treatment but in the pathologically distinct C3HeB/FeJ mouse strain.
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(Driver et al., 2012; Lanoix et al., 2015b; Lenaerts et al., 2015;

Nuermberger, 2017). Drug treatment efficacies are often evalu-

ated first by directly measuring bacterial burden followed by

monitoring disease relapse once treatment is completed (Fig-

ure 1A). Enumerating bacterial burden at different times during

treatment is an efficient method for assessing drug treatment

and is often used to eliminate treatments with moderate effects

from further consideration (Tasneen et al., 2016; Li et al., 2015;

De Groote et al., 2011; Gumbo et al., 2015; Nuermberger,

2008). In contrast, monitoring relapse is considered a more reli-

able outcome for assessing the durability of cure and is more

comparable with the clinical outcome of treatment success

(Gumbo et al., 2015; Nuermberger, 2008; Dooley et al., 2016).

Despite their utility for regimen development, comprehensive

drug combination measurements in mice are not feasible. It is

only practical to perform systematic drug combination studies

in vitro, but in vitro studies do not clearly map to in vivo outcomes

(Parish, 2020; Nuermberger, 2017). Many in vitro models mimic

aspects of the host microenvironment encountered in the

different TB lesion types. Some of these in vitro models are

well suited for systematic drug combination studies, but none

have been validated to prioritize drug combinations against

preclinical animal models. Mtb drug response is environment

specific, underscoring the need to validate in vitro models. For

example, compared with standard (neutral) glucose-rich growth

conditions, pyrazinamide is more effective in acidic in vitro con-

ditions (Tarshis and Weed, 1953; McDermott and Tompsett,

1954), whereas bedaquiline ismore effective in lipid-richmedium

(Koul et al., 2014). Environment-specific drug efficacies are also

observed in vivo; whereas treating C3HeB/FeJ mice with either

pyrazinamide or bedaquiline results in both responding and

non-responding populations of Mtb, treatment of BALB/c mice

resulted in only responding populations. Drug response differ-

ences among mouse strains were attributed to lesion type and

microenvironment differences and differential drug exposure in

specific lesion compartments (Lanoix et al., 2016b, Lanoix

et al., 2016a, 2015b; Irwin et al., 2016;). The dependency of treat-

ment efficacy on growth environment highlights the challenges in

simplifying the complex in vivo environment into manageable

in vitro growth conditions.

We propose to realize the potential of drug combinations to

improve treatment by developing a workflow to link in vitromea-

surement of drug response to outcomes in mouse models. Our

long-term goal is to extensively search the drug combination

space empirically using practical in vitro measurement to priori-

tize combinations to be tested in preclinical animalmodels. Here,

we utilized the efficiency of an experimental design and analysis
method called DiaMOND (diagonal measurement of n-way drug

interactions) (Cokol et al., 2017) to create a compendium of drug

combination responses in Mtb using multiple in vitromodels that

were designed to reproduce aspects of the environments

encountered in different lesion types. The compendium contains

information that can be linearly combined to distinguish drug

combinations that outperform the standard of care. Applying

machine learning to this comprehensive in vitro dataset, we iden-

tified signatures of drug potency and interaction that could also

predict treatment outcome in vivo. Classifiers based on these

signatures also enabled us to establish a mapping between

in vitro models and the different mouse models, which differ in

lesion type (microenvironment) and outcome. Overall, our study

establishes a logistical path to optimize combination therapies

for TB that is consistent with current regimen design strategies

and uses systematic measurement in validated in vitro growth

models and computational modeling.

RESULTS

Drug combination compendium construction
We developed an experimental and computational workflow to

efficiently prioritize drug combinations early in regimen develop-

ment based on drug combination measurements from in vitro

models. Using the DiaMOND methodology (Cokol et al., 2017),

we designed a compendium of drug combinationmeasurements

to survey informative drug-dose combinations (DiaMOND com-

pendium). To compare in vitro data with treatment responses in

animal models, our DiaMOND compendium focused on (1) first-

and second-line agents, for which there are abundant animal

data, and (2) measurements in in vitro growth conditions that

model environments encountered during infection.

Mtb encounters a diversity of environmental niches during

infection that influence response to drug treatment. We aimed

to model drug response by aggregating measurements from a

suite of in vitro models. We focused on modeling factors previ-

ously shown to influence Mtb growth and/or drug response,

such as different carbon sources and abundance, low pH, low

oxygen tension, and the intracellular environment (Gumbo

et al., 2015; Parish, 2020; Lee et al., 2013; Early et al., 2016;

Pethe et al., 2010; Guerrini et al., 2018; Baker et al., 2019; Vandal

et al., 2009; Gold and Nathan, 2017; de Miranda Silva et al.,

2019; Drusano et al., 2021). We developed or adapted eight

in vitro models that were reproducible and scalable for system-

atic, high-throughput drug combination assays for this study.

We varied carbon sources, with an emphasis on cholesterol

and fatty acids, to model the lipid-rich environment in TB
Cell Systems 12, 1046–1063, November 17, 2021 1049



ll
OPEN ACCESS Article
granulomas, using butyrate, valerate, cholesterol, and higher

levels of cholesterol (cholesterol-high) as sole carbon sources.

We used 7H9-based medium to compare against the most

commonly utilized in vitro growth model with glycerol as a car-

bon source (standard). We also included in vitro models that

mimic important factors encountered during infection including

in low pH (acidic) and in infection of macrophages (with a J774

model, intracellular). Mtb in a non-replicative state are particu-

larly challenging to sterilize (Sarathy et al., 2018). Many models

of non-replicative state have been developed for laboratory

study that involve single or multiple stresses (Deb et al., 2009;

Early et al., 2019; Del Portillo et al., 2018; Parish, 2020; Gold

et al., 2015). Based on some of these previously published

models, we chose to develop a model that would be amenable

to large-scale, multi-well experiments with drug combinations.

Our dormancy model is a low-oxygen multi-stress model that

induces dormancy using butyrate as a carbon source, sodium

nitrate to respire (Cunningham-Bussel et al., 2013a, 2013b; So-

haskey, 2008), and plate seals to limit oxygen (dormancy). The

doubling times varied considerably among the models, ranging

from 16 h to one week (Figure 1). We scaled the timing of the ex-

periments relative to the doubling time of each model so that

drug response measurements would not be biased by changes

in growth rate (Table S1).

Drug combination dose response measurements
For the DiaMOND compendium, we selected ten antibiotics in

first- and second-line TB treatment regimens and for which there

are abundant in vivo (mouse) data. These drugs include cell wall

synthesis inhibitors (ethambutol, isoniazid, and pretomanid),

rifamycin transcriptional inhibitors (rifampicin and rifapentine),

protein synthesis inhibitor (linezolid), inhibitors of energy meta-

bolism and cellular respiration (bedaquiline and clofazimine),

DNA replication inhibitor (moxifloxacin), and the antimycobacte-

rial agent pyrazinamide (Table 1). We treated the Mtb Erdman

strain carrying an autoluminescent reporter and measured both

optical density (OD600) and luminescence at multiple time points

after drug treatment. We observed a strong dependency in drug

potency on in vitro model (Figure 1B, inhibitory concentration to

achieve 90% inhibition, IC90), consistent with the idea that drug

efficacy is influenced by bacterial stress (Warner and Mizrahi,

2006). We did not observe remarkable correlations in potency

profiles by in vitro model. However, hierarchical clustering of

drug potencies showed some groupings of drugs consistent

with their target cell process (e.g., rifamycin transcriptional inhib-

itors group together, isoniazid and pretomanid—inhibitors of cell

wall synthesis—group together). We also observed clustering of

similar in vitro models. For example, potency profiles from

growth media with short-chain fatty acids butyrate and valerate

as the carbon source group together (Figure 1B).

We observed condition-specific drug potencies consistent

with previous reports, suggesting that the models we adapted

for high-throughput drug response measurements may be pre-

dictive of outcomes in animals. For example, the activity of pyr-

azinamide in acidic and intracellular models and inactivity in the

standard model (Figure 1B) was consistent with in vitro (Zhang

et al., 2012b; Lamont et al., 2020) and animal studies (Lamont

and Baughn, 2019; Pires et al., 2015; Rohde et al., 2007). We

also observed pyrazinamide activity with lipid carbon sources,
1050 Cell Systems 12, 1046–1063, November 17, 2021
which has not been previously reported. As previously

described, the rifamycins shared similar potency profiles with

higher potency of rifapentine (Figure 1B) (Alfarisi et al., 2017). Be-

daquiline was more potent in medium with lipids as the carbon

source compared with standard medium with sugars as previ-

ously described (Koul et al., 2014). Isoniazid potency was lower

in the dormancy model, consistent with its inactivity toward non-

replicating bacilli (Xie et al., 2005; Betts et al., 2002; Wayne and

Sramek, 1994) and previous studies showing decreased efficacy

in the presence of nitrite (Cunningham-Bussel et al., 2013a). The

wide range of single-drug responses and consistency with prior

studies suggest that the in vitro models in this study produce

non-redundant drug response data and form a validated set of

conditions to model the lesion-specific variation in drug

response.

Using these eight in vitro models, we constructed a compen-

dium of systematic drug combination measurements by utilizing

the DiaMOND method’s efficiency (see Box 1). DiaMOND is a

geometric optimization of the traditional checkerboard assay of

drug-dose combinations. DiaMOND estimates the effect of

combining drugs using a fraction of possible drug-dose combi-

nations and focuses on the single drug and equipotent drug com-

bination dose responses (Cokol et al., 2017). We measured all

one-, two-, and three-drug combination dose responses (totaling

175 combinations) in at least biological duplicate (Figure 1C), re-

sulting in a compendium of over 51,000 individual dose response

curves. We focused our analysis on up to two time points per

in vitro model to navigate this complex dataset. We chose the

last time point (terminal, T) that is relative to the doubling rate

(four to five doublings for most models) and at a consistent treat-

ment timepoint (constant, C) across in vitromodels,�seven days

post treatment; Figure 1B; Table S1. We also selected the mea-

surement type that best benchmarks against colony-forming

units (OD600 for all models except intracellular and dormancy

models, for which we used luminescence, Figure S1). This

selecteddataset (DataS1) represents approximately one-quarter

of the total number of compendium dose responses.

We analyzed the single- and combination-drug treatments to

derive potency and drug interaction information (see Box 1).

With DiaMOND, we can quantify the degree and directionality

of interactions at different growth inhibition levels using common

null models (e.g., Loewe additivity and Bliss independence).

Drug combinations that are more or less effective than expected

based on single-drug behaviors are considered synergistic and

antagonistic, respectively. Drug interactions are quantified with

fractional inhibitory concentrations (FICs) at different growth in-

hibition levels (e.g., FIC50 and FIC90 are measured at the IC50

and IC90, respectively). FIC measurements were log-trans-

formed to represent synergistic and antagonistic combinations

with negative and positive log2(FIC) values, respectively. Drug

interactionmetrics based on Loewe additivity and Bliss indepen-

dence were correlated (FIC50 and FIC90 for the constant and ter-

minal time points, r = 0.81, p = 1.03 10�4, Pearson’s correlation,

using permutation analysis Figure S2). In our analysis, we pro-

ceeded with Loewe additivity as the null model in our drug

interaction (FIC50 and FIC90) calculations because we have pre-

viously validated additivity measures using sham combinations

using Loewe additivity (Cokol et al., 2017). Dose response curves

provide treatment potency metrics at a low dose (AUC25; a



Box 1. DiaMOND: A primer

A B

Box 1 Figure. Using DiaMOND to efficiently measure drug combination dose responses

DiaMOND (diagonal measurement of n-way drug interactions) is a quantitative framework to efficiently measure drug interactions.

The method is based on geometric sampling of traditional combination checkerboards and can be applied to any number of drugs

in combination. Optical density (OD600) or luminescence measures are normalized to untreated controls and subtracted from 1 to

obtain fractional growth inhibition. The concentrations to achieve a particular effect (e.g., concentration to achieve 90% growth

inhibition, IC90, depicted in the blue and orange circles of A of the inset figure) are experimentally determined for all single drugs

so that dosing in subsequent measurement of drug combinations is equipotent (e.g., the IC90 should be dose #~7 for all drugs).

Doses may be spaced linearly or logarithmically, but the spacing must be consistent between drugs. The single-drug dose re-

sponses (blue and orange boxes) and the equipotent drug combination dose response (black box) are highlighted. Drug interac-

tions can be estimated using only the measurements from these boxes rather than the entire checkerboard by approximating the

shape of isoboles (contours of equal effect). In the diagram, the isobole for IC75 is traced by the circles. If drug A and B are additive,

the isobole would be a straight diagonal, and we calculate the expected IC75 on the combination dose response (orange square)

where the dotted line intersects with the diagonal (combination) dose response curve. In this illustration, the combination reaches

an IC75 at higher dose levels (orange circle) than the expected IC75, indicating an antagonistic interaction. The ratio of observed and

expected doses (observed/expected) is the FIC:

FIC =
observed combination dose

expected combination dose

The DiaMONDmethodology was used to obtain dose response data for every drug and drug combination measured over multiple

time points. A Hill function was fit to these data and several potency and drug interactions metrics were derived from these dose

response curves (see B of the inset figure).

DiaMOND dose response metrics:

Einf (the maximum achievable effect): derived from the fitted Hill function (lower pane, dashed lines, colored by single drug or

drug combination), Einf describes the maximal achievable effect (upper asymptote, dashed lines) of a given drug or drug combi-

nation at a particular time point, where the maximum possible effect is 1.

AUC25: the area under the curve (AUC) simultaneously captures variation in potency and effect of a drug or drug combination, i.e.,

sensitivity to drug. AUC25 captures sensitivity to drug at concentrations with low growth inhibition. To compare low dose potency

with other drugs or drug combinations with different concentration ranges, we normalize the area by dividing by the IC25. The re-

sulting AUC25 values range from 0 (no effect) and 1 (potent).

FIC: drug interactions measure the effect of combining drugs on drug potency, i.e., the dose required to achieve a specific effect.

The FIC) is the ratio of the observed combination dose (black circle) to achieve X effect over the expected combination dose (gray

square), where FIC < 1 indicates synergy, FIC > 1 indicates antagonism, and FIC = 1 indicates additivity. In this example, the FIC50

is approximately additive whereas the FIC90 is antagonistic, which is indicated by the relative position of the combination dose

response (black) near (IC50) and to the right (IC90) of the single dose response curves. We log transform FICS to balance such

that log2FIC < 0 is synergistic and log2FIC > 0 is antagonistic.

GRinf: derived from the growth rate curve (not shown here, see Hafner et al., 2016 for details), GRinf describes themaximal achiev-

able effect of a drug or drug combination on the normalized growth rate, ranging between 1 and�1, where GR(c) is between 0 and

1 in the case of partial growth inhibition, GR(c) = 0 in the case of complete cytostasis, and GR < 0 indicates cell death. This unitless

metric describes the effect of a drug on cells independent of doubling time, enabling comparison of drug effect on cells in different

growth conditions.
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B Figure 2. Drug interaction and potency pat-

terns in the DiaMOND compendium

(A) Drug interaction profiles of all two- and three-

drug combinations among the ten compendium

drugs across the in vitro models (log2(FIC90) at the

terminal time point, hierarchically clustered based

on cosine distance and average linkage).

(B) Drug interaction profiles of selected drug com-

binations ordered by mouse relapse outcome effi-

cacy (Tasneen et al., 2016; Xu et al., 2019; De

Groote et al., 2011, 2012; Nuermberger et al.,

2004a, 2004b, 2008; Rosenthal et al., 2007; Mourik

et al., 2017). See Table 1 for drug combination

abbreviations.

(C) Drug combination potency profiles of all two-

and three-drug combinations among the ten com-

pendium drugs across the in vitromodels (Einf at the

terminal time point, clustered based on cosine

distance). (D) Drug interaction profiles of selected

drug combinations ordered by mouse relapse

outcome efficacy (Tasneen et al., 2016; Xu et al.,

2019; De Groote et al., 2011, 2012; Nuermberger

et al., 2004a, 2004b, 2008; Rosenthal et al., 2007;

Mourik et al., 2017). See Table 1 for drug combi-

nation abbreviations. Gray, ND.
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normalized area under the curve to IC25, see Box 1) or high dose

(Einf; the maximum achievable effect). To compare potency

across models where Mtb have different growth properties, we

calculated the maximum achievable inhibition of normalized

growth rate (GRinf; see Box 1), which allows direct comparison

of treatment effects on cells with very different growth rates (Haf-

ner et al., 2016). Though many other drug response metrics may

be calculated from DiaMOND data, our analysis focused on

these five metrics—FIC50, FIC90, AUC25, Einf, GRinf—because

they represent well-characterized and biologically interpretable

aspects of drug interactions and potencies across low- and

high-dose ranges.

Drug synergy is uncommon and does not distinguish
effective combinations
To identify patterns in drug interactions, we clustered the com-

pendium drug interactions at the terminal time point in all eight

growth environments, using 90% growth inhibition (log2(FIC90),

Figure 2A) and 50% growth inhibition (log2(FIC50), Figure S3A).

Clustering did not reveal obvious model-wide synergy for any

combination. Instead, we observed that most drug interactions

were antagonistic (70% of FIC90>0), consistent with a general

trend toward antagonism in drug interactions observed in other

organisms (Yeh et al., 2006; Cokol et al., 2011; Chandrasekaran

et al., 2016;Mason et al., 2017; Cokol et al., 2017, 2018) and can-

cer (Richards et al., 2020). The tendency toward antagonism de-

pended on the growth model, with some conditions showing a

balance between synergy and antagonism (intracellular and

acidic) and all other conditions showing statistically significant

antagonism (one-sample t test, mu = 0, p < 0.05, adjusted for

multiple hypothesis testing; Figure S3B). Our findings are consis-

tent with those from other organisms and adds to a growing body

of literature that suggests synergy is a property of both drug and

growth environment rather than an intrinsic property of drugs in

combination (Belanger et al., 2020; Sanders et al., 2018; Dillon

et al., 2019; Cokol et al., 2018).
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To understand whether combinations that tend toward in vitro

synergy are more effective in vivo, we compared selected com-

binations with differences in disease relapse from the most

commonly used mouse strains (e.g., BALB/c, C56BL/6, and

Swiss). The relapsing mouse models (RMMs) evaluate drug effi-

cacy months after cessation of drug treatment, somewhat anal-

ogous to the clinical measurement of relapse (Figure 1A) (Lanoix

et al., 2016; Mitchison and Davies, 2008). We did not observe

combination rank ordering by synergy in any growth condition

that matched efficacy in the RMM; e.g., BPaL > MRZ > HRZ >

RZ (Figure 2B) (Tasneen et al., 2016; Xu et al., 2019; De Groote

et al., 2011; Nuermberger et al., 2004a, 2004b, 2008; Rosenthal

et al., 2007; De Groote et al., 2012; Mourik et al., 2017). Instead,

we observed that the three-drug standard of care (HRZ) was the

most synergistic drug combination, and BPaL was the most

antagonistic among this subset (Figure 2B). To understand

whether the drug interactions in high-order (three or more drugs)

combinations were due to lower-order interactions (for example,

by pairwise synergies among the three component pairs of a

three-way combination) or emergent properties from the high-

order combination itself (Cokol et al., 2017; Beppler et al.,

2016; Wood et al., 2012), we evaluated the contributions of

lower-order and emergent interactions on the total interaction

metrics (FICs, as shown in Figures 2A and 2B). The patterns in

total and emergent drug interactions were similar while the

lower-order drug interactions were generally more additive

than the other two interaction types (Figure S3C). The strong

emergent interaction scores indicate that the synergies and an-

tagonismswe observed in total drug interactions are not system-

atically due to lower-order effects. Together, these results sug-

gest that drug interaction scores alone in the measured in vitro

models were poor indicators of in vivo combination efficacy.

Synergistic drug combinations are not necessarily more effec-

tive than antagonistic combinations as the maximum effect of a

combination can change independently of the drug interaction

(Meyer et al., 2019) (see Box 1). A trade-off between synergy
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and efficacy appears to be important to consider when selecting

effective drug combinations for treating other diseases (e.g.,

hepatitis C, HIV, and cancer), with maximum effect often being

more important than synergy (Palmer et al., 2019; Sen et al.,

2019). To determine if the maximum effect could be used to pri-

oritize combinations from the DiaMOND compendium, we clus-

tered the Einf (a measure of maximum dose response effect, see

Box 1) for all compendium drug combinations in all eight in vitro

models at the terminal time point (Figure 2C).We observed a high

maximum effect (Einf > 0.9, Figure 2C) in most combinations,

consistent with the drugs’ known anti-Mtb effects. Dormancy

and cholesterol-high models exhibited little variation in Einf,

suggesting that neither condition had the dynamic range of

maximum effect needed to discriminate among combinations

or that all drug combinations are effective in these growth condi-

tions for extended drug exposures. We compared Einf profiles for

the selected combinations we examined before, and we found

that BPaL was more potent than HRZ or MRZ (Figure 2D),

consistent with animal outcomes of these regimens (Tasneen

et al., 2016; Xu et al., 2019; De Groote et al., 2011; 2012; Nuerm-

berger et al., 2004a, 2004b, 2008; Rosenthal et al., 2007; Mourik

et al., 2017). These examples suggest that maximum achievable

effect in vitromay be a stronger predictor of outcomes in mouse

models than in vitro synergy. As with Einf, we observed correct

rank ordering in some in vitro models by other potency metrics

(AUC25 and GRinf) (Figures S4A and S4B), though we identified

no drug combinations in the DiaMOND compendium that were

maximally potent across all eight models (Figures S4C and

S4D). We also observed different relationships between in vitro

models when either metrics or separate time points were inves-

tigated (Figures S4C and S4D), suggesting that metrics of

potency across timescales provide non-redundant information

about drug combinations. The correct ordering of selected

drug combinations by mouse outcome suggests that the

DiaMOND compendium contains useful information for identi-

fying efficacious drug combinations.

DiaMOND metric signatures are predictive of treatment
outcomes in the relapsing mouse model
We hypothesized that combinations of in vitro measurements

could be compiled to model the in vivo microenvironments

experienced by Mtb during drug treatment. We asked whether

signatures of DiaMOND compendium measurements could

distinguish drug combinations that were better than the standard

of care in animal studies, HRZE or HRZ (Table 1). We annotated

27 drug combinations that we measured in the compendium

based on whether the treatment outcome in published RMM

studies was better than the standard of care (C1) or not (C0)

(Data S2). Most studies included a standard of care treatment

making these annotations straightforward. For studies where

no standard of care treatment was included, we inferred annota-

tion by comparing with a study that shared at least one other

drug combination treatment and that also included standard of

care. This annotation limits the resolution of treatment improve-

ment we can evaluate but does not necessitate normalization

between studies (e.g., infection inoculum, drug treatment time,

orMtb strain) that might be needed for more quantitative assess-

ment of treatment improvement. Principal component analysis

(PCA) demonstrated that linear combinations of in vitro features
could separate C0 and C1 drug combinations containing two

and three drugs without using the in vivo class information (Fig-

ure 3A, Wilcoxon rank-sum, p < 0.005; Data S2). A separation

was also apparent in principal component (PC) spaces of com-

binations with two, three, and four drugs (Figure S5A). Lastly,

we also observed similar class separation when PCA was

repeated using data from the constant and terminal time points

separately (Figure S5B), indicating that similar conclusions

would be drawn from any of the time point data. Because PCA

does not use class labels in its computation, the observed sep-

aration of in vivo classes suggests that in vitro measurements

from the DiaMOND compendium contain strong signal that char-

acterizes the performance of drug combinations in vivo. Inspec-

tion of feature contributions to PC1, which best separates

C0 and C1 drug combinations (Figure 3A, Wilcoxon rank-sum,

p < 0.005; Data S3), revealedmany features from the cholesterol,

standard, and valerate growth models (Figure 3B; Data S3). We

also observed that potency metrics (AUC25, Einf, and GRinf)

are almost exclusively represented in the top-20 contributing

features (Figure 3B). Together these results suggest that effec-

tive separation of C1 and C0 drug combinations requires

measurement of drug combination potency in multiple growth

environments.

To better separate C0 and C1 combinations based on the

signals observed in PCA and make predictions for new

combinations, we trained binary classifiers with eight different

machine-learning (ML) methods to distinguish C0 and C1 drug

combinations and compared their performance in 5-fold cross

validation. We observed that nonlinear ensemble methods

(Bayesian additive regression trees, random forest (RF), and

gradient boosted trees) outperformed other ML algorithms, as

measured by the area under the receiver operator characteristic

(ROC) curve (AUC) and the F1 statistic, which is the harmonic

mean of precision and recall (Table S2). We performed additional

validation of the RF model by applying it to higher-order (four-

and five-way) drug combinations commonly used in preclinical

and clinical tests that were not considered during model training

(Data S4). The RF model accurately predicted outcomes (Fig-

ure 3C, AUC = 1, F1 = 0.86) and exhibited performance similar

to what was estimated in cross validation. We noted that for

validating the RMM classifier, there were five higher-order com-

binations for which we had DiaMOND data in all eight conditions

(Figure 3C). To determine whether the five test combinations of

the eight-condition model represented a generalized measure

of performance, we retrained a classifier using seven conditions

(all but the intracellular model) from which we had more test data

available (14 combinations). We observed similarly high valida-

tion performance in the seven-condition model (Figure S5C,

AUC = 0.79, F1 = 0.87), suggesting that the performance of

the eight-condition model is not simply an artifact of the small

test set.

Because drug combination design and testing in animal

models is iterative (Figure 1A), we encounter an unavoidable

overlap of drugs between many of the combinations used for

model training (low-order) and validation (high-order, Data S2).

We asked how much this overlap contributes to the observed

classifier performance by systematically considering training/

test splits with one-, two-, and three-drug overlaps (see STAR

Methods). As expected, we found that validation performance
Cell Systems 12, 1046–1063, November 17, 2021 1053
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Figure 3. Prediction of combination treatment outcomes in the RMM with DiaMOND data

(A) Projection of theDiaMONDcompendium data from all in vitromodels onto the first two PCs and a highlight of the percent variance explained by each PC.Outer

box and whisker plots show the distributions of C1 and C0 combinations along PC1 and PC2 (Wilcoxon rank-sum test: ***p < 0.005. **p < 0.01). Points are colored

by outcome in the RMM (blue, C1, better than standard of care; red, C0, standard of care or worse).

(B) Highest weighted features in PC1 with in vitro model (abbreviations in Figure 1A) and metric type indicated. Metrics are classified and shaded according to

whether they are related to drug combination potency (purple: AUC25, Einf, and GRinf) or drug interaction (orange: FIC50 and FIC90). (C) ROC curves (top panel,

Table 1) and PR curves (bottom panel, Table 1) of a RF-based classifier trained on all eight conditions in the DiaMOND compendium. The model is tested with

high-order combinations (four- and five-drug combinations) that were excluded from training. Training (gray lines each show one of five cross validations; lines are

slightly offset to aid visualization) and test (black) performances are shown with lines. Test combinations are colored by outcome class as in (A). Performance

metrics are shown on plots for test data (area under the ROC curve [AUC] and F1, harmonic mean of precision and recall, Table 1). Dashed lines indicate

theoretical ‘‘no-skill’’ model performance.
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increased with higher drug overlap between the model training

and validation combinations (Figure S5D). A major goal of drug

regimen design is to understand how to best use new drugs,

rather than avoid overlap with previously tested combinations;

for example, by substituting a new drug for an existing drug in

a well-tested combination based on combination efficacies in

animal models (Ginsberg and Spigelman, 2007; Kerantzas and

Jacobs, 2017; Tiberi et al., 2018a, 2018b; Wallis et al., 2016;

Lienhardt et al., 2019). We therefore sought to evaluate model

performance on combinations containing a drug that had not

been encountered by the model during training (‘‘leave-one-

drug-out’’). We observed that for most (seven) drugs, the model

was able to accurately predict whether the addition of that drug

to a lower-order combination would result in improvement over

the standard of care (Figure S5E; AUC > 0.7 and F1 > 0.66).

Taken together, these results indicate that our modeling struc-

ture is well matched to the data generated during TB drug

regimen design, where combinations are constructed iteratively

so that a few combinations with new antibiotics of interest are

tested early for efficacies in animal models.

We observed that some of the in vitromodels in the DiaMOND

compendium are well represented among the top-ranked

features in the classifying PCs (Figure 3B). In contrast, other

in vitro models are not present, suggesting that a subset

of in vitromodels may be sufficient to predict treatment outcome

in the RMM. We asked whether classifiers using the DiaMOND

compendium data from one in vitromodel at a time were predic-
1054 Cell Systems 12, 1046–1063, November 17, 2021
tive of RMM outcome class. A Horn’s parallel analysis (Fig-

ure S5F) identified the first four PCs as explaining more variance

than expected by chance. We then observed that the data signal

separating C0 and C1 drug combinations appeared in at least

one of the first four PCs for all eight in vitro models (Figure 4A,

Wilcoxon rank-sum test, p < 0.05; Figure S5G). Furthermore,

the five technically simpler models to work with exhibited clear

C0 and C1 separation (Figure 4A, in vitro models cholesterol,

butyrate, standard, valerate; Figure S5G in vitro model acidic).

Though the single in vitro model classifiers were moderately

predictive, they did not perform as well as the classifier trained

using data from all eight in vitro models (Data S3). We asked

whether another high-performing classifier could be derived us-

ing a subset of in vitro models. We systematically trained RF

classifiers by considering all possible model combinations and

observed that among the 255 possible combinations of in vitro

models, 67 (26.3%) performed better than the classifier trained

on all eight models (Data S4). Furthermore, predictors including

only the simpler in vitro models performed as well or better

than those including the ‘‘complex’’ (intracellular, dormancy,

and cholesterol-high) models (Figure 4B, Student’s t test, p >

0.05). We further validated the highest performing classifiers

trained on the simple in vitro models by applying them to the

higher-order (four- and five-way) drug combinations as well as

drug combinations involving antibiotics (delamanid, sutezolid,

and SQ109, Table S1) that were not included in the compen-

dium’s ten-drug set (Data S2). SQ109 represents a drug in a
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Figure 4. Prediction of combination therapy outcomes in the RMM using fewer in vitro models

(A) Projection of the DiaMOND data from single in vitro conditions (subplots) onto the first two PCs and the percent variance explained by each PC (plots are

labeled as in Figure 3A). Outer box andwhisker plots show the distributions of C1 andC0 combinations along PC1 and PC2 (Wilcoxon rank test: ***p < 0.005, **p <

0.01, *p < 0.05; ns, p > 0.05).

(B) Density distribution plots of estimated classifier performances from systematic survey of all possible in vitro model subsets. Distributions of ROC AUC (top)

and F1 (bottom) are separated based on whether technically complex models (intracellular, cholesterol-high, dormancy) are included (yellow) or whether only

simple conditions (acidic, butyrate, cholesterol, standard, and valerate) are considered. Colored dashed lines indicate mean value for distribution. The estimated

performances when using all in vitromodels (as in Figure 3) is shown with black dashed lines. Distributions are compared with a Wilcoxon rank-sum test (ns, not

significant).

(C) Comparison of classification performances of three high-performance random forest classifiers using subsets of simple in vitro models. Training (gray lines

each show one of five cross validations; lines are slightly offset when they are on top of each other) and test (black) performance is demonstrated with ROC (top)

and PR (bottom) curves. Test combinations are colored by outcome class as in (A). Plot shapes indicate whether a test combination contained higher-order four-

and five-drug combinations (triangle) or a combination containing a new drug (diamond-shape) not included in the compendium described in Figure 1. Dashed

lines indicate theoretical ‘‘no-skill’’ model performance.
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new antibiotic class, while delamanid and sutezolid are in the

same antibiotic classes as drugs in the 10-drug set (pretomanid

and linezolid, respectively). The high performance of classifiers

on this validation set suggests that computationally combining

simple in vitro models can produce classifiers that inform

possible RMM outcomes (Figure 4C) and that there may be mul-

tiple combinations of in vitro models that are predictive of out-

comes in the RMM.

With many high-performing RMM classifiers trained using

subsets of the five simple in vitro models (Data S4; Figure 4C),

we assessed whether the predicted RMM outcome for specific

drug combinations would be consistent between these classi-

fiers. The classifiers produce a probability that a drug combina-

tion belongs to each class (e.g., drug combination X belongs to

C1 with 60% probability and C0 with 40% probability). The

threshold probability is usually at 50% to assign the classifica-

tion, but the probability can also rank combination classification

likelihood. We tabulated the predicted probabilities of outcome

for all combinations in the compendium, as well as the higher-

order and new drug combination validation set, using the top-

performing simple in vitro model classifiers shown in Figure 4C.

As we had previously observed, rank ordering the percent prob-

abilities within each classifier shows high predictive performance

when evaluating the validation set (Data S4). Among all predic-

tions made for the compendium and validation combinations,

we noted that 36% of drug combinations had discordant predic-

tions among the three classifiers. We did not observe a consis-

tent pattern in which a classifier was discordant. We next tested
whether a consensus prediction could be generated by simply

averaging the probabilities of the top three classifiers. We

observed that the discordant combinations were clustered in

the second quartile (probability of C1 around 25%–50%), sug-

gesting that classifiers are most prone to error for combinations

that are C0. This may be due to the mild class imbalance in the

training set (11 C0 and 16 C1 combinations). The consensus pre-

diction was highly accurate (84% on validation set and 93%

overall). Incorrect consensus predictions were at the border be-

tween C0 and C1 at 42%–47% C1, indicating that the misclassi-

fication was due to ambiguity near the 50% decision boundary

instead of strong classifier discordance. We conclude that a

simple averaging of the probabilities generated by top classifiers

is a practical means to construct an accurate consensus rank

ordering for predicting drug combination response outcomes

for RMM.

DiaMOND metrics describe the efficacy of drug
combination treatments in theC3HeB/FeJmousemodel
We next asked whether the DiaMOND compendium contains in-

formation useful for distinguishing outcomes in other mouse

models. Bactericidal activity in the most commonly used mouse

strains (e.g., BALB/c, C56BL/6, and Swiss) has been used exten-

sively to evaluate drug combination effectiveness. Bactericidal

activity in these models (bactericidal mouse model, BMM, Ta-

ble 1) measures the reduction in bacterial burden during and

immediately following drug treatment and can be assessed

more quickly than relapse. Using the same analysis process,
Cell Systems 12, 1046–1063, November 17, 2021 1055



A B

C

Figure 5. Signatures of DiaMOND data to describe outcomes in multiple mouse models

(A) Projections of the DiaMOND data onto PC1 and PC3 and the percent variance explained by each PC Points are colored by outcome in the BHeB (blue: C1,

better than standard of care; red: C0, standard of care or worse).

(B and C) Values of the four highest weighted features in the most discriminatory PC are compared for C1 and C0 combinations in the BHeB (B) and RMMmodels

(C) using dot and box plots. The top features in BHeB are drug interaction metrics whereas the top features are potency metrics in RMM. High (pot) versus low

potency and synergy (syn) versus antagonism (ant) is indicated with arrows on each subplot. (Wilcoxon rank test: ***p < 0.005, **p < 0.01, *p < 0.05; ns, p > 0.05).
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we investigated whether drug combinations with different BMM

outcome classes (Data S2) were separable in the top PCs. In

contrast to RMM classes, we observed no separation of BMM

C0 and C1 in the top two PCs (Wilcoxon rank-sum test, p >

0.05, Figure S6A). Consistent with the lack of separation in the

PC space, we found that ML classifiers could not predict C0 or

C1 drug combinations for the BMM outcome (Data S3; AUC =

0.67, F1 = 0.40; Figure S6B). Additional analysis of in vitromodel

subsets identified many predictors with improved performance,

but this improvement did not generalize to test data (Data S4).

Moderate model training performance and poor generalizability

to new data suggest that the drug combination information

needed for BMMoutcome predictionsmay be difficult to capture

with the in vitro models developed and used in this study.

The C3HeB/FeJ (HeB) mouse strain has become important for

TB regimen development because the disease pathology is

more similar to humans than other mouse strains (Driver et al.,

2012; Harper et al., 2012; Kramnik and Beamer, 2016). This in-

cludes the formation of caseous, necrotic granulomas that are

characterized by low oxygen content (hypoxia) (Driver et al.,

2012; Harper et al., 2012; Irwin et al., 2015) and differential

drug penetrance (Irwin et al., 2016; Dartois, 2014). These lesions

also contain large numbers of extracellular, non-replicating bac-

teria (Nuermberger, 2017; Irwin et al., 2015). HeB mice are used

to measure both use bactericidal (BHeB) and relapse outcomes

to determine treatment efficacy. Fewer drug combinations

have been tested and published using HeB mice than other

mouse strains. The DiaMOND compendium contained too few

measured combinations to train ML classifiers. When we inte-

grated the compendium combinations with higher-order drug

combinations, we obtained a total of 16 combinations (Data

S2) for the BHeB outcome, which was sufficient to train ML clas-

sifiers. However, we were not able to do the same for the relapse

outcome, where we had four total combinations, even after aug-

menting with higher-order information.

To understand if DiaMOND metrics distinguish C0 and C1

BHeB combinations using the training dataset including lower-
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and higher-order combinations, we evaluated class separation

with PCA. A Horn’s parallel analysis identified the first four PCs

as explaining more variance than expected by chance (Fig-

ure S7A). We observed significant separation of BHeB outcome

classes along the third PC (PC3) (Figure 5A, p < 0.005; Data S3;

Figure S7B). We then examined the top ten features in PC3 by

contribution (Data S3) and found that the in vitro models and

metrics were distinct from those we observed in the RMM anal-

ysis (Figure 3B). Notably, the metrics for the BHeB were entirely

drug interactions, and the presence of the dormancy model in

the top ten features was of particular interest because we ex-

pected hypoxia-induced dormancy to be a microenvironment

specific to the C3HeB/FeJ mice (Irwin et al., 2015; Harper

et al., 2012; Driver et al., 2012). Using the same approach

described for RMM, we developed accurate RF models to clas-

sify BHeB C1 and C0 combinations (all in vitro models, AUC =

0.9, F1 = 0.80, Data S4). Systematic evaluation of RF classifiers

using all possible combinations of in vitro model subsets re-

vealed that complex models did not improve performance (Fig-

ure S7C). Specifically, we found that models without dormancy

perform as well as those with it (Figure S7D). As with the RMM

classifiers, we identified in vitro model subsets that performed

better than all models together trained for the BHeB outcome

(37 [12.9%], Data S4). Lipid and acidic in vitro models featured

prominently among the most accurate classifiers (Data S4).

Together, these analyses demonstrate that the DiaMOND com-

pendium data predict outcomes in two pathologically distinct

mouse models, suggesting that enough key information can be

captured by simple in vitromodels to prioritize combination ther-

apies for animal model tests.

Potency and antagonism are correlated with improved
outcomes in mouse models
The signatures of DiaMOND data describing outcomes in

RMM and BHeB highlighted that potency metrics were key pre-

dictors for RMM, while drug interactions were key for BHeB

outcome classification. To understand whether C0 and C1
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drug combinations showed significant differences in these met-

rics, we examined the top four features from the most discrimi-

natory PCs for both mouse models. Univariate analysis revealed

significant differences between C1 and C0 combinations for

three of the top four features describing either the BHeB, or

RMM outcomes (Figures 5B and 5C, Wilcoxon rank-sum, p <

0.05). That in vitro antagonistic drug combinations may be

more favorable is consistent with the results of our comparison

of BPaL to the standard of care (HRZ, Figure 2B). For BHeB out-

comes, drug interactions were more antagonistic for C1 than for

C0 combinations (Figure 5B). C1 combinations in the RMM

outcome were more potent than C0 combinations (Figure 5C),

which is consistent with expectations of increased potency for

the most effective drug combinations. We found that different

metric types (potency or interactions) may provide information

that maps to different outcome types (bactericidal or relapse)

in animal studies. Furthermore, our analysis suggests that high

potency and antagonism in in vitro assays may be characteris-

tics of favorable drug combinations.

DISCUSSION

Our goal in this study was to develop a workflow to efficiently

prioritize drug combinations early in the TB regimen design pro-

cess. Most in vitro drug efficacy studies utilize single growth

conditions, which have not been clearly mapped to in vivo out-

comes (Nuermberger, 2017; Parish, 2020). Furthermore, con-

flicting results from multiple in vitro models have not been

readily resolvable. We hypothesized that treatment efficacy

in vivo could be modeled as a ‘‘sum of parts’’ of the complex

microenvironment. Therefore, we generated a dataset that pro-

files drug combination effects against Mtb in eight different

in vitro growth environments. With this comprehensive drug

combination data compendium, we identified signatures of po-

tencies and drug interactions in specific in vitro models that

distinguish whether drug combinations are better than the stan-

dard of care in two important preclinical mouse models. PCA

on the compendium data alone was able to separate drug com-

binations that show treatment improvement in these mouse

models. We found that ML classifiers were accurate predictors

of mouse disease relapse using data from only a few simple

in vitro models. These classifiers were validated with higher-

order (4 and 5 drugs) combinations and had predictive power

for combinations with drugs not included in the model training.

Our classifiers perform best when a drug of interest is included

in some combinations in the training set. Nonetheless, we

expect that our buildable approach to use systematic in vitro

data to prioritize drug combinations for in vivo study will have

immediate benefit. As more antibiotics with more diverse

mechanisms of action are tested in animals and added to

DiaMOND datasets, we anticipate that we will be able to

make accurate predictions of untested combinations contain-

ing these new antibiotics. We can therefore leverage these

data with more expansive DiaMOND measurement to prioritize

combinations for further testing in vivo. Together, our study

establishes a practical approach to prioritize combination ther-

apies using economical, scalable, and expandable in vitro mea-

surements while maximizing the use of in vivo efficacy data that

are generated early in TB drug development.
Synergy is often assumed to be a property of optimized com-

bination therapies because synergistic drugs are more effective

together than expected based on single-drug efficacies alone.

Our mapping of the DiaMOND compendium onto outcomes in

two different mousemodels challenges this notion. In the relaps-

ing mouse model, drug interactions were not key features for

classification; instead, the potency measures from the drug-

dose response curves were the most important predictors of

outcome (Figure 3B). Our findings are consistent with reports

of treatment in hepatitis C, cancer, and HIV (Palmer et al.,

2019; Palmer and Sorger, 2017; Sen et al., 2019) that show a

trade-off between maximizing synergy and potency of a drug

combination. Maximizing potency was often more important

than synergy in treating these diseases with multidrug therapies

(Palmer et al., 2019; Palmer and Sorger, 2017; Sen et al., 2019).

Antagonism was prevalent in our compendium (Figure 2A), and

we found that antagonismwas characteristic of more efficacious

drug combinations for the C3HeB/FeJ bactericidal model (Fig-

ure 5B, C1 more antagonistic than C0). Partnering the most

potent drugs together during regimen design may be generating

highly potent combinations but biasing these combinations to-

ward antagonistic in vitro drug interactions. Bedaquiline, preto-

manid, and linezolid were recently found to be more potent in

treating mice infected with the Mtb HN878 strain than the

H37Rv strain (Bigelow et al., 2020). When combined, the drugs

antagonized each other for treating Mtb strain HN878-infected

mice. Despite this antagonism, the BPaL combination was highly

effective at curing mice infected with either Mtb strain. These

in vivo results are consistent with our findings that BPaL is a high-

ly potent but antagonistic drug combination for in vitro treatment

of Mtb Erdman. One view of how drugs in combination exert their

effect on cell populations is that each drug targets a different

subpopulation rather than multiple drugs targeting the same

cells (Palmer et al., 2019; Palmer and Sorger, 2017). Drug inter-

actions would then explain how well a drug acts on the cellular

population that was not susceptible to the other drugs in the

multidrug treatment. This leads to the hypothesis that very

potent drugs that alone can kill most of the cells in a population

would achieve high maximum effect when combined but may

tend toward antagonism rather than synergy. Study of the multi-

drug anti-cancer therapy R-CHOP (Table 1) supports this hy-

pothesis (Palmer et al., 2019) and an expanded study using

more antibiotics could be used to test this hypothesis in tubercu-

losis. Our study suggests that for TB, potent drug combinations

should be prioritized for further study and should not necessarily

be deprioritized if they are antagonistic in in vitro assays.

Our approach enabled us to determine the relative importance

of specific in vitromodels to distinguish combinations with treat-

ment improvement in mice, thereby serving to validate which

growth conditions map to in vivo responses. The cholesterol

in vitro model was the top-performing single in vitro model clas-

sifier for the RMM outcome and performed almost as well as the

classifier with all in vitro models (Table S3; Data S3). This is

consistent with the importance of cholesterol metabolism for

Mtb survival and infectivity (Wilburn et al., 2018). We also

observed that other lipid-rich environments induced distinct

drug response patterns and that the best classifiers for both

RMM and BHeB outcomes utilized metrics from multiple lipid-

rich growth conditions. These findings suggest that measuring
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drug combination responses with a suite of simple growth

environments may be sufficient to model the complex lipid

environment encountered in TB lesions.

Mtb in the RMM mouse strains are thought to be primarily

intracellular (Nuermberger, 2017), and intracellular Mtb are

exposed to the acidification of the phagolysosome (Baker

et al., 2019; Vandal et al., 2009). Therefore, we expected the

acidic growth environment to be important for determining treat-

ment improvement for the RMM. We found that measurements

from the acidic growth environment alone were not strongly pre-

dictive of outcomes in the RMM but that these metrics were

prominent in the best mixed-condition classifiers. Furthermore,

other single growth environment models separated classes bet-

ter than the acidic model (Table S3). These results indicate that

response to acidic stress is important for Mtb intracellular sur-

vival to drug treatment in the RMM, but adaptation to other envi-

ronmental factors (such as lipid carbon sources) are important

drivers of treatment response. We also observed that the acidic

model was prominent among the best classifiers for the bacteri-

cidal outcome in the C3HeB/FeJ mouse strain (BHeB outcome,

Data S4). The C3HeB/FeJmice are noted for the formation of the

caseous necrotic granulomas (type-I lesions; Irwin et al., 2015)

that have been shown to have a neutral pH (pH > 7) (Sarathy

and Dartois, 2020; Lanoix et al., 2016b), high-lipid content (Driver

et al., 2012; Kim et al., 2010; Guerrini et al., 2018), and with pri-

marily extracellular Mtb (Irwin et al., 2015; Lenaerts et al.,

2015). However, like the BALB/c mice which only form lesions

with intracellular Mtb, these animals have abundant intracellular

bacteria in other lesion types and within macrophages that

acidify the intracellular Mtb compartments (Irwin et al., 2016),

which may explain why acidic growth environments are impor-

tant predictors of drug response in this mouse model. Further-

more, Mtb residency in lipid-laden, foamy macrophages is

important in both the BALB/c (and similar mouse strains; Shim

et al., 2020; Zhang et al., 2011; Rosenthal et al., 2012; Driver

et al., 2012) as well as C3HeB/FeJ mice (Driver et al., 2012;

Rosenthal et al., 2012), supporting the idea that in vitro lipid

growth conditions provide important information about in vivo

drug response for both the RMM and BHeB model.

Use of both acidic and lipid-rich in vitro models in developing

classifiers is an example of how we were able to combine mea-

surement in a ‘‘sum of parts’’ approach from relatively simple

growth environments to model treatment outcomes despite

the complexity of the microenvironments in TB lesions (Figures

4 and S5G). These results suggest that there is predictive

drug combination response information obtained from simple

in vitro models that only needs to be combined correctly to pre-

dict drug treatment outcomes in mice. The practical implication

is that researchers can choose a subset of the most amenable

in vitro models for performing drug combination experiments

and still retain predictive capacity. Despite the success of sum-

ming together simple ‘‘parts’’ in predicting coarse outcome clas-

sifications, the importance of combination potency and variation

of potency among growth conditions raises the question of

whether measurement in more complex growth environments

(e.g., reflecting multiple aspects of the host microenvironment)

would further refine the classifications and improve prediction

accuracy. The richness of this DiaMOND dataset will also enable

future studies to understand whether in vivo combination out-
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comes can be predicted using few in vitro data, for example by

using lower-order combination data alone.

Several changes to the experimental design may improve the

experimental and computational workflow developed in the cur-

rent study. The importance of potency metrics in signatures of

combination efficacy is perhaps surprising given that we design

combination dose responses to have equipotent combinations

of each drug. There is growing evidence that there is differential

drug penetration into the lesions where Mtb is found (Dartois,

2014), which would lead to non-equipotent levels of drug reach-

ing Mtb cells. Utilizing pharmacokinetic data to design drug

combinations may increase this approach’s utility and power

and lead to a more predictive DiaMOND compendium dataset.

The current standard of care and other new regimens (e.g.,

‘‘Study 31’’ and SimpliciTB) involve intensive and continuation

phases of treatment. Including sequential treatments in an

experimental approach could help understand how prior treat-

ment sensitizes the bacterial population to future treatment reg-

imens. One reason to use combination therapy for TB is to slow

the acquisition of drug resistance. A systematic study of the drug

combination space in different growth environments can also

be used to investigate the evolution of drug resistance. For

example, antagonistic drug interactions have been shown to

suppress the evolution of drug resistance (Palmer et al., 2019;

Yeh et al., 2006; Michel et al., 2008; Coates et al., 2020) and

the evolution of drug resistance can be tied to the growth rate

and duration of drug exposure (Bigelow et al., 2020; Yeh et al.,

2006; Liu et al., 2020; Greenfield et al., 2018). Though this study

was not designed to test the impact of combination therapy on

development of drug resistance, future studies could adapt the

DiaMOND experiments to assess drug resistance using lumines-

cence reporters (Zhang et al., 2012a). We did not directly eval-

uate drug resistance in our assays, but we did not observe

outgrowth over time at high drug concentrations in the longer

drug treatments, suggesting that any resistance development

that occurred did not overtake the populations and influence

dose responsemeasurements. The depth of the DiaMOND com-

pendium may also be well complemented with transcriptomic

data of drug response to prioritize drug combinations based

on predicted mechanisms of drug interaction (Ma et al., 2019).

We expect this pipeline to improve as the component drug set

is expanded and diversified via new drug discovery methods

(Hie et al., 2020; Johnson et al., 2019; Rock, 2019; Rock et al.,

2017; VanderVen et al., 2015; Bryk et al., 2008; Gold and Nathan,

2017; Gold et al., 2015) and as more animal studies provide

outcome data for drug combinations with new combinations

and drugs. We also note that the size of drug combination clas-

sification sets used in this study was achieved by compiling and

giving equal weight to diverse animal studies frommultiple inves-

tigators with differences in study designs (e.g., infection proto-

cols, drug treatment times, Mtb strains, etc.). Developing and

validating across-study standardizations may improve future

analysis, modeling, and predictions. Mtb drug response and

virulence can be strain dependent (De Groote et al., 2012; Bige-

low et al., 2020), and the strain of Mtb used in this study (Erdman)

differed from those used in some of the animal studies (e.g.,

H37Rv). In future work, including multiple Mtb strains (including

clinical isolates) may improve combination classification separa-

tion and model predictions.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Mycobacterium tuberculosis: Strain Erdman ATCC ATCC 35801

Chemicals, peptides, and recombinant proteins

bedaquiline NIH AIDS Reagent Program N/A

clofazimine Sigma C8895

ethambutol Sigma E4630

Isoniazid Sigma I3377

linezolid Sigma PZ0014

moxifloxacin Sigma SML1581

pretomanid TB Alliance N/A

pyrazinamide Sigma PHR1576

rifampicin Sigma R3501

rifapentine Sigma R0533

delamanid VWR 10189

sutezolid Sigma PZ0035

SQ109 Fisher 50-186-7024

gatifloxacin Sigma 32345

d-cycloserine Sigma C6880

Deposited data

Data cube and IC90 table This study https://doi.org/10.17632/m2y7jpz4wz.1

Experimental models: Cell lines

Mouse: J774A.1 ATCC ATCC TIB-67

Recombinant DNA

pMV306hsp+LuxG13 Andreu et al., 2010 http://n2t.net/addgene:26161; RRID:Addgene_26161

Software and algorithms

Code for modeling, and figure generation This study supplemental information

MATLAB N/A https://www.mathworks.com/products/matlab.html

R N/A https://www.R-project.org/

tidyverse(R package) Wickham et al., 2019 https://CRAN.R-project.org/package=tidyverse

ggplot2(R package) Wickham, 2016 https://CRAN.R-project.org/package=ggplot2

ggpubr(R package) N/A https://CRAN.R-project.org/package=ggpubr

openxlsx(R package) N/A https://CRAN.R-project.org/package=openxlsx

readxls(R package) N/A https://CRAN.R-project.org/package=readxl

stats(R package) N/A https://www.R-project.org/

paran(R package) N/A https://CRAN.R-project.org/package=paran

mlr(R package) Bischl et al., 2016 https://CRAN.R-project.org/package=mlr

bartMachine(R package) Kapelner and Bleich, 2016 https://CRAN.R-project.org/package=bartMachine

randomForestSRC(R package) Ishwaran et al., 2008 https://CRAN.R-project.org/package=randomForestSRC

xgboost(R package) Chen and Guestrin, 2016 https://CRAN.R-project.org/package=xgboost

e1071(R package) N/A https://CRAN.R-project.org/package=e1071

kknn(R package) N/A https://CRAN.R-project.org/package=kknn

rstatix (R package) N/A https://CRAN.R-project.org/package=rstatix

wPerm (R package) N/A https://CRAN.R-project.org/package=wPerm
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Bree

Aldridge (bree.aldridge@tufts.edu).

Materials availability
Autoluminescent M. tuberculosis strain generated in this study is available upon request.

Data and code availability
d All data reported in this paper are present within the published figures and publicly available in the supplemental information.

Additionally, the data cube and IC90s have been deposited at Mendeley and are publicly available at https://doi.org/10.17632/

m2y7jpz4wz.1.

d Original code used for machine learning is available in this paper’s supplemental information.

d The scripts used to generate the figures reported in this paper are available in this paper’s supplemental information.

d Any additional information required to reproduce this work is available from the Lead Contact.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial cell lines and culture
M. tuberculosis Erdman strain was transformed with pMV306hsp+LuxG13 to generate an autoluminescent strain that was used for all

experiments in this study (Addgene plasmid # 26161; http://n2t.net/addgene:26161; RRID:Addgene_26161) (Andreu et al., 2010)).

Standard 7H9 Middlebrook medium supplemented with 0.2% glycerol, 10%OADC (0.5g/L oleic acid, 50g/L albumin, 20g/L dextrose

and 0.04g/L catalase) and 0.05%Tween-80with 25 mg/mLkanamycinwasused forMtb strainmaintenance.Growth and culturingwere

performed at 37�C with aeration unless noted. Cells were passaged before reaching OD600 = 0.8. Standard 7H10 Middlebrook agar

plates supplementedwith 0.5%glycerol, 10%OADC, 0.05%Tween-80 and 25 mg/mL kanamycinwere used for enumerating colonies.

Mammalian cell lines and cell culture
Weused themouse cell line, J774, as amodel of intracellular residency because J774 cells have been used as amacrophage-like cell

line to study early infection processes andMtb drug response to complex host-like intracellular environment (Pires et al., 2015; Stan-

ley et al., 2012). J774 cells were cultured in high glucose DMEM supplemented with 2mM L-glutamine, 1mM sodium pyruvate, and

10% heat-inactivated fetal bovine serum (FBS) at 37�C in 5%CO2 as previously described (Stanley et al., 2012). Media was changed

every one-three days and cells passaged at �80% confluence.

METHOD DETAILS

Generation of autoluminescent Mtb strain
AutoluminescentM. tuberculosis strain was generated by transforming the Erdman parent strain with pMV306hsp+LuxG13, resulting

in a single copy chromosomal integration of the bacterial luciferase operon. The pMV306hsp+LuxG13 plasmid contains a reorgan-

ized and codon-optimized bacterial luciferase operon for maximum mycobacterial light production (Andreu et al., 2010). Briefly, the

construct was electroporated into Mtb, and kanamycin resistant colonies were isolated and tested for auto-luminescence. These

positive strains were expanded in standard 7H9 supplemented media and frozen down. The frozen stocks were used as the starting

strains for in vitro model acclimation and drug combination experiments.

Mtb in vitro model acclimation
All in vitro model media were buffered with 100 mM 3-(N-morpholino)propanesulfonic acid (MOPS, pH 7), unless noted, and filter-

sterilized prior to use. The acidic model was based on the standard 7H9 Middlebrook media above and buffered with 100 mM

2-(N-morpholino)ethanesulfonic acid (MES) and adjusted to pH 5.7. For acclimation to lipid carbon sources, a base medium consist-

ing of 7H9 powder (4.7g/L), fatty acid-free BSA (0.5g/L), NaCl (100mM) and tyloxapol (0.05%)with 25 mg/mL kanamycin was used and

the lipids sodium butyrate (5mM, final concentration), valeric acid (0.1% final concentration) or cholesterol (0.05mM or 0.2mM final

concentration) were added to the base medium. For the cholesterol media, a cholesterol stock solution (100mM) was first prepared

by dissolving cholesterol in a 1:1 (v/v) mixture of ethanol and tyloxapol and heated to 80�C for 30 minutes and added to pre-warmed

(37�C) base medium (Lee et al., 2013). The dormancy medium was based on the butyrate medium with the addition of sodium nitrate

(5mM) as a terminal electron acceptor (Cunningham-Bussel et al., 2013a,2013b; Gold and Nathan, 2017; Sohaskey, 2008).

Mtb were inoculated into standard 7H9 Middlebrook medium, grown to mid-log phase (optical density, OD600 �0.5-0.7) and were

subcultured for less than two weeks prior to acclimation to assay medium. For acclimation to standard and acidic media, Mtb cells

were diluted into assay media at a starting density of OD600 = 0.05, acclimated for 3-5 doubling times or until they reached mid-log

phase (OD600 �0.5-0.7), diluted to OD600 = 0.05 and grown back to mid-log phase before use in DiaMOND assays.
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Similar to standard, and acidic conditions, Mtb were acclimated to butyrate, and valerate media and acclimated cells were frozen

for use in assays. Frozen acclimated Mtb in butyrate and valerate media were inoculated into assay media, grown to mid-log phase

(OD600 �0.5-0.7), diluted into fresh lipid media at a starting concentration of OD600 = 0.05 and grown back to mid-log phase (OD600

�0.5-0.7) and used for DiaMOND assays. The dormancy model used Mtb acclimated to butyrate medium grown to mid-log phase

(OD600 �0.5-0.7) and then diluted to a starting OD600 0.05 in dormancy media. For the dormancy model (d), cells were incubated at

37�C without aeration for 28 days, which reduced autoluminescence close to media-only background levels, which we interpret as

being dormant with very low metabolic activity.

Mtb growth on cholesterol media slowed without the exchange of fresh medium. Cholesterol and cholesterol-high acclimation

were similar to standard and acidic conditions with fresh media exchanges every seven days to ensure continued growth. Mtb accli-

mated between 14 and 28 days were used for assays. Mtb growth rate on cholesterol-high was faster (four day doubling time) than

cholesterol (seven day doubling time).

For the intracellular model, J774 cells were plated at 375,000 cells/mL in 384-well plates and cultured overnight, expecting �one

doubling prior to infection. Mtb grown to mid-log phase in standard media was syringe-passed 8 times with a 25-gauge needle to

reach a single-cell suspension, and J774s were infected with Mtb at MOI 2 for 24 hours followed by drug treatment for 5 days.

Drugs, dose responses, and dispensing
The drugs used in this study are listed in Table 1. All drugs were reconstituted and diluted in DMSO except for pyrazinamide for the

intracellular model; to avoid exceeding the DMSO limit (0.5%) in the intracellular condition, pyrazinamide was diluted in 1x phos-

phate-buffered saline with 0.01% Triton-X. Drugs were dispensed with an HP D300e digital dispenser, and locations were random-

ized to reduce plate effects. For each in vitro model, the concentration to achieve 90% inhibition (IC90) was determined. IC90 were

used to design combination dose responses with equipotent mixtures of drugs (Cokol et al., 2017). A ten-dose resolution with

1.5- or 2-fold dose spacing was used for all experiments.

Benchmarking luminescence measurements
Decreases in autoluminescent Mtb have been shown to correspond to decreases in optical density and colony forming units (Andreu

et al., 2010; Zhang et al., 2012a), specifically in response to drug treatment (Zhang et al., 2012a; Sharma et al., 2014). Luminescence

must be used for the intracellular model because optical density measures both themammalian andMtb cells. We chose to use lumi-

nescence measurements for the dormancy model because the optical density measurements were highly variable. To more directly

compare luminescence dose responsiveness from the intracellular and dormancymodels to the optical density dose responsiveness

of the other in vitromodels, we sought to benchmark luminescence to growth inhibition. In the intracellular model, drug treatment was

performed as described above. Luminescence wasmeasured six days after infection (five days after addition of drugs, Constant/Ter-

minal time point). Mtbwere then lysed frommacrophages with 0.01%sodiumdodecyl sulfate (SDS) in distilled water for 15minutes at

37�C, 10-fold serially diluted with standard 7H9 media and plated on 7H10 Middlebrook agar for colony forming unit (CFU) enumer-

ation. Mtb dormancy was established as described above and treated with drugs. At the appropriate constant and terminal time

point, luminescence wasmeasured. Mtb were then 10-fold serially diluted with standard 7H9media and plated on 7H10Middlebrook

agar for CFU enumeration. Normalized luminescence inhibition was calculated as described below and correlation assessed using

‘‘polyfit’’ in MATLAB.

Dose centering
For every in vitromodel, each single drug was tested to identify the IC90 (concentration to inhibit 90% growth). Each dose response

was ten units and the IC90 for single drugs was designed to be between dose 6 and dose 9. Drug combinations were designed for

dosing to be equipotent around the IC90, and doses were spaced 1.5x or 2x apart to capture the drug’s full range of response.

Treatment and DiaMOND assays
Mtb were acclimated to in vitro model media prior to drug treatment as described above. For acidic, butyrate, cholesterol, choles-

terol-high, standard, and valerate models: 50mL of acclimated Mtb at the indicated density was added to each well in 384-well plates

containing freshly dispensed drugs and incubated at 37�C in humidified bags to prevent evaporation. Edgewells containedmedia but

were not used for assays. For the dormancy model: Mtb were acclimated as described above, gently resuspended, and 20mL of

dormant Mtb culture was transferred to each well on the assay plates. Plates were sealed with PCR seals to reduce oxygen exposure

during drug treatment and incubated for seven days. We measured regrowth after drug treatment as a readout of drug effect during

dormancy. Therefore, after drug treatment, plate seals were removed, 80mL of standard media was added to each well, and plates

were incubated at 37�C in humidified bags to prevent evaporation. For the intracellular model: drugs were printed into media-only

plates and transferred onto infected J774 cells 24 hours after Mtb infection. To accommodate quality control assessment, we

included multiple untreated and positive drug treatment controls in each plate as well as uninfected J774 cells for the intracel-

lular model.

Plate measurements
Luminescence and OD600 measurements were made at three-five time points per sample on a Synergy Neo2 Hybrid Multi-Mode

Reader. Time points were based on the approximate doubling time of each model. To simplify the analysis, we generally compare
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time points at either a relatively similar time point (constant) or time �4-5x doubling times after drug exposure (terminal time point).

Constant and terminal time points correspond to the same set of measurements for the standard and intracellular in vitro models

(constant/terminal, CT). For the dormancy model, plate readings were made during recovery in standard media, and time points

were selected based on doubling time in standard media. For the dormancy and intracellular models, OD600 measurements could

not reflect Mtb biomass alone, so only luminescencemeasurements are used. Autoluminescence has been demonstrated as a proxy

for Mtb cell growth (Andreu et al., 2010) and viability in response to drug treatment (Sharma et al., 2014; Zhang et al., 2012a). To

benchmark changes in luminescence to changes in growth in our conditions, we performed a series of drug treatment experiments

in the dormancy and intracellular models (Figure S1). Briefly, cells were treated as described above, followed by plating treated cells

on 7H10 plates to enumerate colony forming units (CFU). Portions of the luminescence dose response curve that correlated with CFU

changes were considered indicative of growth inhibition, andmetrics derived from these portions of the curve were used for analysis.

Data processing and metric calculation
Data processing and dose response metric calculation were performed using customMATLAB scripts. In brief, raw data were back-

ground-subtracted using the median of media-only wells and normalized to the mean of untreated wells within each plate. For the

intracellular model, uninfected macrophages provided the background (rather than media only) for subtraction from raw data, and

subsequently, data was normalized to (infected) untreated within each plate. A three-parameter Hill function was fit to each dose

response (single drug or combination). Inhibitory concentrations (ICs) were calculated based on the Hill curve parameters. The

area under the curve at 25% inhibition (AUC25) was calculated using the integral of the fit curves from 0 to the 25% inhibitory con-

centration (IC25) and normalized to the IC25, allowing comparisons between drug combinations. Drug interaction scores were quan-

tified by the fractional inhibitory concentration (FIC) using Loewe additivity and Bliss independence (See Box). FICs calculated by

Loewe additivity and Bliss independence were well correlated, and neither model was observed to suffer from significant bias relative

to the order of the drug combination (Russ and Kishony, 2018); therefore, we proceeded to analyze drug interactions based on Loewe

additivity. The growth rate inhibition (GR) metrics were calculated as previously described (Hafner et al., 2016).

Fitting Hill function to dose response data
We used a three-parameter Hill function where for any concentration x of a drug or drug combination, Hill(x) describes the effect at

that concentration as defined

HillðxÞ = Einf

1+

�
EC50
x

�h

where Einf describes the maximum effect achievable by a given drug or drug combination, EC50 describes the concentration to

achieve 50% of the maximum effect, and h is the Hill slope. Data was normalized to untreated, and therefore the bottom asymptote

of the Hill function was bound at 0. We found that dose response data had non-constant error variance in the media-based growth

conditions, and therefore we implemented weights when we fit the Hill function to our data such that

Weights for HillðxiÞ = 1

stdevðgrowth measurement for biological replicates of dose iÞ
Data points with lower variance are assignedmoreweight than samples with high variance when fitting. Two fitting algorithmswere

used: the Levenberg-Marquardt algorithm and the trust-region-reflective algorithm, each with different constraints as permitted by

each algorithm. The Levenberg-Marquardt algorithm does not allow bound constraints while trust-region-reflective does; therefore,

we restrict the Einf to not go above 1with the trust-region-reflective solution but cannot apply that bound to the Levenberg-Marquardt

solutions. This occasionally results in a fit from Levenberg-Marquardt where the Einf is much greater than 1 (i.e., 100% inhibition). As

this has no biological meaning, such fits are not appropriate for our purposes, andwe discarded those fits. To assess fit quality, an R2

was calculated; the fit from the two algorithms with the higher R2 was chosen.

Occasionally, the Einf of the fit Hill functions was far above or below the maximum measured effect (Emax). We categorized these

dose responses into those that had a maximum effect asymptote in the normalized data or those that had no clear asymptote. Ac-

curate representation of maximum achievable effect was important for our analysis. Therefore, we attempted to improve agreement

between the Einf of the fitted Hill function with the Emax using a custom refitting strategy. For original fits that had an Einf below the

Emax, the refitting of the Hill function had the lower bound of Einf parameter space constrained to within 1.25% of the Emax. For fits

that had an Einf above the Emax, the refitting of the Hill function had the upper bound of Einf parameter space constrained to within

1.25% of the Emax. Refitting with and without weights were assessed using R2 values. Refits with the highest R2 were chosen as

the final fit for a given dose response curve. Additionally, the Hill coefficient during fitting had an upper bound at 10.

For all fits, the inhibitory concentration (IC) to achieve 10, 25, 50, 75, and 90% growth inhibition or kill was calculated according to

the formula:

ICNðdrug xÞ = EC50drug xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Einf ;drug x

inhibition level
� 1

hdrugx

q
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The area under the curve at 25% inhibition (a measure of low potency) was calculated:

AUC25 =

R IC25

0
HillðxÞdx
IC25

Drug interaction quantification
DiaMOND is a tool that employs geometric optimization of the combination dose space to quantify drug interactions with fewer

measurements (Cokol et al., 2017). Drug interactions are quantified by the fractional inhibitory concentration (FIC) score, which is

the ratio of the observed combination dose to achieve a certain effect over the expected combination dose to achieve that

same effect. An FIC < 1 is considered synergistic, FIC > 1 is antagonistic, and FIC = 1 indicates additivity. For this study, we calculated

FIC scores at various growth inhibition levels. The expected dose is based on the behavior of the single drugs in the combination.

We employed two null models to calculate the expected combination dose: Loewe (dose) additivity and Bliss independence

(Foucquier and Guedj, 2015). Loewe additivity assumes dose additivity; that is, the effect of drugs in combination is determined

by the sum of their normalized doses. By the Loewe model, the expected combination dose to achieve any inhibition level falls on

the hyperplane defined by the single doses of each drug to achieve that inhibition level. The intersection of the combination

dose line and the hyperplane is the expected combination dose. Bliss independence assumes response additivity; that is, drugs

in combination act independently such that one cannot interfere with another. By the Bliss model, the effect of drugs in combination

can be predicted bymultiplying the effects of the singles, and thus the expected combination dose to achieve any inhibition level can

be calculated.

FICs using Loewe additivity as a null model (above) represent the total drug interaction (Cokol et al., 2017). Total drug interaction

(total FIC) is the product of the lower-order drug interactions (lower-order FIC, the recursive geometric mean of the composite lower-

order drug interactions) and emergent drug interactions (emergent FIC, drug interaction properties not attributed to lower-order be-

haviors) (Cokol et al., 2017). The factorization of total FIC scores into lower and emergent interactions enables us to evaluate the

contribution of lower-order interactions (vs. emergent behaviors) to the overall drug interaction of high-order combinations.

Growth rate (GR) metrics
In addition to growth inhibition at static time points, growth rate inhibition was calculated as described previously (Hafner et al., 2016).

Normalized growth rate inhibition is calculated according to the formula:

GRðcÞ = 2

log2

�
xðcÞ
x0

�

log2

�
xunt
x0

�

where x(c) is the OD600 or luminescence readout for a given drug at concentration c at a specific time point, x0 is the OD600 or lumi-

nescence readout at time point 0 (T0), and xunt is the OD600 or luminescence readout of the untreated population at the same specific

time point. This was computed for all the concentrations in each dose response curve and then a three-parameter Hill function was fit

to the data using the trust-region-reflective algorithm:

GRðcÞ = GRinf +
1�GRinf

1+

�
c

EC50GR

�hGR

where GRinf is the maximum growth rate inhibition achievable by a given drug or combination, EC50GR is the dose to achieve 50% of

the maximum growth rate inhibition, and hGR is the Hill slope of the curve.

Data quality
Experiments were performed in a minimum of biological triplicate. Comparisons of data between plates and between experimental

days required data quality control assessment. Each dose response was assigned a quality score that takes into account the overall

quality of the data from a plate, the quality of fit of theHill function, the single drug dose responsiveness froman experiment, and in the

case of drug combinations, the equipotency in the drug combination dose responses. In brief, plate data quality was assessed with a

Z’-score usingmultiple untreated (negative) and complete inhibition treatment (positive) wells in each plate. The fitting of the Hill func-

tion was assessed by the coefficient of determination (R2) of the fit as well as the closeness of the Einf for each fit to the maximum

observed effect for each dose response curve. Drug combination equipotency was assessed by comparing the proportional

combinations normalized to their respective MICs and the idealized combination of drugs if they were perfectly equipotent. Dose

responses with poor quality scores were excluded from further analysis.

Z’ calculation
To determine which conditions showed reproducible drug responses, we calculated a Z’ score. A Z’ score was calculated by the

formula
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Z0 = 1� 3
�
spos + sneg

�
��mpos � mneg

��
where s is the standard deviation and m is the mean of the positive (pos) and negative (neg) controls, respectively, of those popula-

tions. We used the Z’ to assess in vitro model reproducibility and for in-plate quality control.

Data quality and processing
Several measures were taken to ensure high quality measurements for this dataset. Every plate contained untreated bacteria and in-

plate standards (specified drug at the IC90 as determined from dose centering) as follows: for butyrate, cholesterol, acidic, standard,

and valerate conditions: isoniazid and linezolid; for cholesterol-high: isoniazid; for intracellular and dormancy: moxifloxacin. Each

dose response curve was assigned a quality control score that took into account the quality of growth and drug treatment within

a plate (Z’ score), the success of capturing the dose response range (dose space score), the quality of the fit of the Hill function

to the data (Einf score and R2 score), and the equipotency of drug combinations (angle score).

A Z’ score was calculated for every plate to measure separation of strong positives from untreated in each experiment (See Z’

calculation section). If the Z’ score of a plate was less than 0.3, the plate was assigned a score of 2. If the Z’ score was between

0.3 and 0.5 the plate score was 1. Plates with Z’ score greater than 0.5, indicating that there was moderate discriminatory power

between untreated and maximum treated wells, were assigned a plate score of 0.

To assess the quality of dose response range for a drug or combination, the number of data points collected for that drug/com-

bination that fell between 10% and 90% inhibition was quantified. If this number was greater than or equal to 3, the ‘‘dose space

score’’ assigned was 0. If the number was 0, the dose space score assigned was 2. If the number fell between 0 and 3, the dose

space score assigned was 1.

To assess the quality of fit of the Hill function, two measures were quantified: an ‘‘Einf score’’ and the ‘‘R2 score.’’ The Einf score

assessed how the Einf compared to the effect at the highest tested dose of a drug or combination (Emax). If the absolute value differ-

ence between the Einf and Emax is greater than 0.1, the assigned Einf score is 2. If the absolute value difference is between 0.05 and

0.1, the assigned Einf score is 1. Below 0.05was assigned 0. For each fit, an associated R2was also calculated. If the R2was < 0.7, the

R2 score assigned was 2. If the R2 fell between 0.7 and 0.9, the R2 score was 1. Greater than 0.9 was assigned 0.

To assess the equipotency of drugs in combination dose responses (an important consideration for DiaMOND calculations), an

‘‘angle score’’ was calculated for combinations. This score measured the difference between the true diagonal measured (the com-

bination of N drugs in an N-way combination) and the ideal diagonal if every drug in that combination were precisely centered around

the IC90. If the difference between the angles (in degrees) was greater than 22.5, the angle score was 2. Between 10 and 22.5 received

a score of 1, and less than 10 received a score of 0. All these scores were combined to compute a ‘‘composite score’’ for every single

drug and combination. For single drugs, the composite score was calculated by:

Composite score ðsingleÞ = 1

3
ðPlate ScoreÞ+ 1

3
ðDose Space ScoreÞ+ 1

6

�
Einf Score + R2 Score

�

For drug combinations, the composite score took into account the data quality of the underlying singles and the combination itself,

where the underlying single score for each single drug in an N-way combination was calculated by:

Underlying single score =
1

2
ðPlate ScoreÞ+ 1

4

�
Einf Score + R2 Score

�

and the resulting combination score was calculated by:

Composite score ðcombinationÞ = 2

3

�
1

3
Plate Score +

1

3
Einf Score +

1

6

�
R2 Score + Angle Score

��

+
1

3 � N
X

Underlying single scores

The composite score ranges between 0 and 2, where 0 is optimal and 2 is poor. Drugs or combinations with a composite score

greater than or equal to 1 were rejected for further analysis. In addition, all fit Hill functions, and raw data for all single drugs in every

experiment were checkedmanually; drugs that behaved unexpectedly or where the IC90 was belowdose 5, at or above dose 10 of the

dose response were removed along with all combinations that contained that drug.

Computational analyses
Biological replicate dose response and drug interaction data passing quality control were averaged. Means of replicate data were

used for all downstream analyses unless noted. Hierarchical clustering was performed using cosine distance, and heatmaps with

complete linkage dendrograms were generated using MATLAB. Other data preparation and visualizations were performed in R using

the tidyverse environment packages (v1.3.0) and ggplot2 (v3.3.0) and ggpubr (v0.3.0) packages for visualization. Data table import

and export were performed in R using the openxlsx (v4.1.4) and readxls (v1.3.1)packages

PCA was performed in R using the prcomp function from the stats package with each feature scaled to have unit variance before

PCA. Some features were missing data; e.g., FIC90 metrics were missing because single drugs did not achieve IC90. Features with
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more than 35% missing data points were excluded from PCA. The remaining missing values were imputed using the mean of the

corresponding input features (mean imputation) (Dray and Josse, 2015). Horn’s parallel analysis (Horn, 1965) was used to determine

the number of PCs that capture more variance than expected by chance; the analysis was carried out by using the paran package

(v1.5.2) in R

Machine learning was performed in R. The machine learning in R (mlr v2.17.0) package was used for all machine learning tasks

involving projections of the original features onto the principal component (PC) space as the input features and drug combination

outcome (C0 or C1) as labels.

Feature selection, feature number optimization, and model validation
The Kruskal-Wallis test was used to rank order the PC input features for ML based on the ability to discriminate outcome classes C0

and C1. As there were a limited number of drug combinations, we aimed to reduce the number of features used in the model. A

Monte-Carlo resampling strategy was used to split the training data into 70/30% training/test partitions, to which we applied grid

search to find the number of features that produced the largest test AUC. This feature number optimization was repeated five times

for each training set, and the smallest feature set from the five iterations was chosen as the final training feature set. Models were

trained on the full set of training data, and performance on new data was estimated using standard 5-fold cross validation. Validation

was performed by projecting new data onto the PC space used for the model training and testing model classification performance.

Machine learner packages
Upon feature selection, machine learning algorithms were compared using standard 5-fold cross validation. The performance was

evaluated using the AUC and the F-score (F1). The mlr package made possible on-demand loading of learners from other R pack-

ages, including Bayesian additive regression tree (bartMachine, v1.2.5.1), random forest (randomForestSRC, v2.9.3), extreme

gradient boosting (xgboost, v1.1.1.1), logistic regression (stats), naive bayes (e1071, v1.7-3), support vector machine (e1071,

v1.7-3), and weighted k-nearest neighbors (kknn, v1.3.1).

Drug overlap between training and test sets
For each drug combination with in vivo classification, a training set was composed from combinations that share a specific number of

drugs (one, two, or three) in common with the test combination. Each training set was used to train a model to distinguish C1 and C0

outcome labels, which was subsequently applied to compute the probability that the corresponding test combination belongs to the

C1 class. For a given drug overlap (one, two, or three), the C1 probability of all test combinations were then rank ordered and true

positive rate (recall), false positives rate, and positive predictive value (precision) were calculated. Aggregate ROC and PR curves

were constructed from the C1 probabilities of all test combinations, followed by computing of AUC and F1 metrics.

‘‘Leave-one-drug-out’’ analysis
For each of the ten drugs in the DiaMOND compendium, drug combinations containing that drug and in vivo outcome annotations

were set aside for validation, and the remaining drug combinations were used for model training. Performance on new data was esti-

mated using standard 3-fold cross validation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differences between outcome class groups for DiaMOND features or PCs were assessed by means (IC90 averages), medians (class

comparisons), and standard deviation of drug combinations from each outcome group in each in vitromodel. Because data normality

could not easily be assessed with small numbers of drug combinations in each group, the Wilcoxon rank-sum test was used to

compare outcome group means for statistical significance. Student’s t-tests were used for testing hypotheses of differences be-

tween model performance distributions. The hypothesis that Loewe and Bliss interaction (FIC) scores were correlated was tested

using Pearson correlation, with the corresponding p-value computed empirically by randomly permuting values 20,000 times.

Comparison of in vitromodel log2(FIC) means was performed using one-sided t-tests with additivity (0) as the comparator. Statistical

analyses were performed using the stats, ggpubr (v0.3.0), rstatrix (v0.5.0) and wPerm (v1.0.1) packages in R. The level of statistical

significance is chosen to be 0.05, unless otherwise indicated in the manuscript.
e7 Cell Systems 12, 1046–1063.e1–e7, November 17, 2021
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Supplemental Information: 

Figure S1. 

 

Figure S1. Benchmarking cell viability with luminescence measurements. Normalized 

luminescence inhibition is compared with the resulting CFU/mL for (A) dormancy or (B) 

intracellular in vitro conditions. Cells were untreated or treated with drugs as in main 

experiments. At indicated times ((A) constant or terminal, or (B) constant/terminal), 

luminescence was measured, cells were removed from multiwell plates, diluted and CFU 

enumerated. Luminescence was normalized to untreated as described in STAR Methods. Dashed 

line indicates the limit of detection for CFU/mL. Solid line indicates linear regression line ((A) r 

= -0.89, p-value = 8.9x10-9, (B) r = -0.86, p-value = 0.06, using Pearson correlation). 

 

  



Figure S2. 

 

Figure S2. Comparing null reference models for drug interaction scoring. The log2(FIC50) and 

log2(FIC90) scores calculated using either the Bliss independence or the Loewe additivity null 

models for each DiaMOND compendium 2- and 3-drug combination at the constant and terminal 

time points are compared using Pearson correlation, r=0.81, empirical p = 0.0001, permutation 

test with 20,000 permutations).  

 

  



Figure S3. 
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Figure S3. Intermediate potencies and component  drug interaction profiles. Drug interaction 

profiles of each DiaMOND compendium 2- and 3-drug combination among the 10-drugs in the 

compendium across the in vitro models (log2(FIC50)) at the (A) terminal time point (left), and the 

constant time point (right). Clusters are based on cosine distance with complete linkage as 

described in Figure 2. in vitro model order is as shown in Figure 2A and 2B. in vitro model 

abbreviations are as in Table 1 (a = acidic, b = butyrate, c = cholesterol(0.2mM), d = dormancy, 

h = cholesterol-high(0.2mM), i = intracellular, s = standard, v = valerate). (B) Box and whisker 

plots of drug interaction scores for each in vitro model are shown for log2(FIC90) at the terminal 

time point (left), log2(FIC50) at the terminal time point (middle), and log2(FIC50) at the constant 

time point (right). Mean log2(FIC) difference from 0 (additivity, dashed red line) is indicated to 

the left of each box (one-sample t-test, mu=0: **** p<0.001, *** p<0.005. ** p<0.01. * p<0.05. 

ns p>0.05, corrected for multiple hypothesis testing).  (C) Total (left), emergent (center) and 

lower-order (right) log2(FIC90) at the terminal time point for select three drug combinations (top) 

and all three drug combinations (bottom) in the DiaMOND compendium. Drug combinations 

were hierarchically clustered using total drug interaction based on cosine distance and average 

linkage. in vitro model order and select drug combination order is as shown in Figure 2A and 2B. 

Drug combination abbreviations are as in Table 1 (RZ = rifampicin+pyrazinamide, HRZ = 

isoniazid+rifampicin+pyrazinamide, MRZ = moxifloxacin+rifampicin+pyrazinamide, BPaL = 

bedaquiline+pretomanid+linezolid). 

  



Figure S4. 

 



Figure S4. Alternative potency metric profiles for DiaMOND compendium. Profiles of drug 

combinations for AUC25 (A and C) and GRinf (C and D) at the terminal (left) and constant 

(right) time points. (A and B) Selected drug combinations are ordered by relapse outcome 

efficacy as in Figure 2 (RZ is least and BPaL is most effective in group). (C and D) Profiles of 

all 2- and 3-drug combination in the DiaMOND. Clusters are based on cosine distance with 

complete linkage as described in Figure 2. Drug combination abbreviations as in Table 1 (RZ = 

rifampicin+pyrazinamide, HRZ = isoniazid+rifampicin+pyrazinamide, MRZ = 

moxifloxacin+rifampicin+pyrazinamide, BPaL = bedaquiline+pretomanid+linezolid). in vitro 

model abbreviations as in Table 1 (a = acidic, b = butyrate, c = cholesterol(0.2mM), d = 

dormancy, h = cholesterol-high(0.2mM), i = intracellular, s = standard, v = valerate). 

 

  



 Figure S5. 

 

Figure S5. Separation of RMM annotated drug combinations by PCA and ML. (A) Projections 

of the DiaMOND compendium data from all in vitro models using two-, three-, four-, and five-



drug combinations with RMM outcome classifications (labeled as in Figure 3A) onto the first 

two PCs and a highlight of the percent variance explained by each PC. Outer box and whisker 

plots show the distributions of C1 and C0 combinations along PC1 and PC2 (Wilcoxon rank test: 

*** p<0.005. ** p<0.01. * p<0.05. ns p>0.05). Points are colored by class (red = C0, blue = C1) 

with the marker shape designating the number of drugs in a combination (circle = two-, three-

drug combinations. Triangle = four-, five-drug combinations). (B) Projections of DiaMOND 

compendium data from all in vitro models at either the terminal (left) or constant(right) time 

points only using two- and three-drug combinations onto the first two principal components. 

Outer box and whisker plots show the distributions of C1 and C0 combinations along PC1 and 

PC2 (Wilcoxon rank test: *** p<0.005. ** p<0.01. * p<0.05. ns p>0.05).Points are colored by 

RMM outcome classifications, with percent variance explained by each PC shown as in panels 

(A). (C) ROC (top) and PR (bottom) curves for RF classifiers trained with seven of the eight in 

vitro models (omitting intracellular) with AUC and F1 validation performance metrics indicated 

in the bottom-right corner of each panel. Labeled as in Figure 3C. (D)  Aggregate ROC (top) and 

PR (bottom) curves from model evaluation indicating RF classifier performance for drug 

combinations with specified overlap (one-drug, left; two-drug, middle; three-drug, right) 

between drug combinations in the validation set and those used for model training. Curves were 

constructed using the predicted probability for each validation combination, with the 

corresponding and AUC and F1 metrics indicated in the bottom-right corner of each panel. 

Combination are colored as in (A). (E) ROC (top) and PR (bottom) curves for RF classifiers with 

combinations containing one drug withheld for model evaluation, with AUC and F1 validation 

performance metrics indicated in the bottom-right corner of each panel. Labeled as in Figure 3C. 

(F) Horn’s parallel analysis showing the eigenvalues associated with each principal component, 



computed using all in vitro models, all time points, and two- and three-drug combinations with 

known RMM outcome. Shown are unadjusted (red) and adjusted (black) eigenvalues, as well as 

eigenvalues associated with random permutation of the data (blue). Retained PCs (solid circles) 

and unretained (open circles) PCs are indicated based on whether the adjusted eigenvalues were 

above or below random (one), respectively. (G) PCA of DiaMOND compendium data from 

single in vitro models using two- and three-drug combinations with RMM outcome 

classifications. First two PCs and percent variance explained by each PC shown as in panels (A) 

and (B).  

 

  



Figure S6. 

 

Figure S6. Separation of BMM classified combinations using PCA and ML. (A) Projection of 

DiaMOND compendium data from all in vitro models using two-, and three-drug combinations 

with BMM outcome classifications (labeled as in Figure 3A) onto the first two PCs, with the 

percent variance explained shown for each PC. Outer box and whisker plots show the 

distributions of C1 and C0 combinations along PC1 and PC2 (Wilcoxon rank test: ns p>0.05). 

Combinations classes are colored (red = C0, blue = C1). (B) ROC (top) and PR (bottom) curves 

of a random forest-based classifier trained on all eight in vitro models in the DiaMOND 

compendium. The model is tested with high-order combinations (4- and 5-drug combinations) 

that were excluded from training.  Plots are labeled as in Figure 3C. Training (black) and test 

(grey) performances are shown with lines. Test combinations are colored by outcome class as in 

(A). Performance metrics are shown on plots for training and test data (Area Under the ROC 



curve (AUC) and F1, harmonic mean of precision and recall). Dashed lines indicate theoretical 

“no-skill” model performance. 

 

  



Figure S7. 

 

Figure S7. Separation of BHeB annotated drug combinations using PCA and ML. (A) Horn’s 

parallel analysis showing the eigenvalues associated with each principal component, computed 

using all in vitro models with known BHeB outcome. Shown are unadjusted (red) and adjusted 

(black) eigenvalues, as well as eigenvalues associated with random permutation of the data 

features (blue). Retained PCs (solid circles) and unretained (open circles) PCs are indicated 

based on whether the adjusted eigenvalues were above or below random (one), respectively.  (B) 

Projections of DiaMOND compendium data from all in vitro models with BHeB outcome 

classifications (labeled as in Figure 3A) onto the first two PCs and a highlight of the percent 

variance explained by each PC shown. Outer box and whisker plots show the distributions of C1 

and C0 combinations along PC1 and PC2 (Wilcoxon rank test: ns p>0.05). Points are colored by 

class (red = C0, blue = C1). (C and D) BHeB in vitro model subset model performance 

distributions. Density distribution plots of estimated classifier performances from systematic 

survey of all possible in vitro model subsets. Distributions of ROC AUC (top) and F1 (bottom) 

are separated based on whether (C) technically complex models (yellow - intracellular, 



cholesterol-high, dormancy) (yellow) or simple models (blue -  standard, acidic, butyrate, 

cholesterol, valerate) or (D) whether dormancy is included (yellow) or not (blue).  Colored 

dashed lines indicate the mean value for the distribution. The estimated performances when 

using all in vitro models is shown with black dashed lines. (Wilcoxon rank test: ns p>0.05).  

  



Table S1. 
 

Model 

Estimated 
doubling 

time 
(days) 

Measurement time 
(days) 

Estimated relative 
doublings at each 

measurement 
standard 0.7 2.1, 2.7, 3.4, 4.2(CT)  3, 4, 5, 6(CT) 

intracellular 1.5 2, 3, 4, 5(CT) 1.3, 2, 2.8, 3.3(CT) 
acidic 2 6(C), 8, 10, 12(T) 3(C), 4, 5, 6(T) 

butyrate 2 6(C), 8, 10(T) 3(C), 4, 5(T) 
valerate 3 9(C), 12, 15(T) 3(C), 4, 5(T) 

cholesterol-high 4 12(C), 16, 20, 24(T) 3(C), 4, 5, 6(T) 
cholesterol 7 7(C), 14, 21, 28(T) 1(C), 2, 3, 4(T) 
dormancy ND 2(C), 3, 4(T) 2.9(C), 4.3, 5.7(T) 

 
Table S1. Experiment time points and estimated growth amounts for in vitro models. In vitro 

models, estimated doubling times, experiment measurement times, and estimated relative 

doubling times for each model. Constant (C), terminal (T), and constant/terminal (CT) time 

points were used in this study (as explained in the main text). The dormancy model had no 

applicable growth rate (NA). Time points for dormancy were chosen based on the standard 

media growth rate added for the recovery period. Day 5 was chosen for the terminal time point 

for the intracellular model because the uninfected J774 cells began to lift from the plates. 

  



Table S2. 

 
Learning algorithm  AUC F1 

Bayesian additive regression 
trees 0.89 0.86 

random forest 0.89 0.84 
extreme gradient boosting 0.73 0.75 

logistic regression 0.68 0.78 
naïve bayes 0.67 0.67 

support vector machine  0.65 0.48 
k-nearest neighbors 0.65 0.65 

 
Table S2. Machine learning algorithm benchmarking performance metrics. PCA transformed 

RMM annotated 2- and 3-way data were used to compare C1 and C0 classified combinations. 

Area Under the ROC curve (AUC) and F1 (harmonic mean of precision and recall). 

  



 

Table S3. 
 

  
Training 

performance 
Test 

performance 
in vitro model subset AUC F1 AUC F1 

all models 0.92 0.84 0.75 0.86 
c 0.91 0.90 0.75 0.61 
s 0.91 0.82 0.69 0.70 
i 0.90 0.79 1.00 0.40 
h 0.83 0.67 0.85 0.94 
b 0.79 0.73 0.72 0.74 
v 0.79 0.68 0.80 0.77 
a 0.68 0.81 0.58 0.91 
d 0.67 0.76 0.50 0.80 

 

Table S3. RMM single in vitro model classifier performance. Training performance for single in 

vitro model classifiers compared with the all-in vitro model classifier. PCA transformed RMM 

annotated 2- and 3-way data were used to compare C1 and C0 classified combinations. Area 

Under the ROC curve (AUC) and F1(harmonic mean of precision and recall). 

  


	CELS840_proof_v12i11.pdf
	Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis
	Introduction
	Results
	Drug combination compendium construction
	Drug combination dose response measurements
	Drug synergy is uncommon and does not distinguish effective combinations
	DiaMOND metric signatures are predictive of treatment outcomes in the relapsing mouse model
	DiaMOND metrics describe the efficacy of drug combination treatments in the C3HeB/FeJ mouse model
	Potency and antagonism are correlated with improved outcomes in mouse models

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Bacterial cell lines and culture
	Mammalian cell lines and cell culture

	Method details
	Generation of autoluminescent Mtb strain
	Mtb in vitro model acclimation
	Drugs, dose responses, and dispensing
	Benchmarking luminescence measurements
	Dose centering
	Treatment and DiaMOND assays
	Plate measurements
	Data processing and metric calculation
	Fitting Hill function to dose response data
	Drug interaction quantification
	Growth rate (GR) metrics
	Data quality
	Z’ calculation
	Data quality and processing
	Computational analyses
	Feature selection, feature number optimization, and model validation
	Machine learner packages
	Drug overlap between training and test sets
	“Leave-one-drug-out” analysis

	Quantification and statistical analysis




