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COVID-19, whichis caused by SARS-CoV-2, canresultin acute respiratory distress
syndrome and multiple organ failure!™*, but little is known about its pathophysiology.
Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart
autopsy tissue samples and spatial atlases of 14 lung samples from donors who died
of COVID-19. Integrated computational analysis uncovered substantial remodelling in
the lung epithelial,immune and stromal compartments, with evidence of multiple
paths of failed tissue regeneration, including defective alveolar type 2 differentiation
and expansion of fibroblasts and putative TP63" intrapulmonary basal-like progenitor
cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells,

whichinduced specific host programs. Spatial analysis in lung distinguished
inflammatory host responses in lung regions with and without viral RNA. Analysis of
the other tissue atlases showed transcriptional alterations in multiple cell typesin
heart tissue from donors with COVID-19, and mapped cell types and genes implicated
with disease severity based on COVID-19 genome-wide association studies. Our
foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection
across the body, akey step towards new treatments.

The host response to severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) infection ranges from asymptomatic infection to
severe coronavirus disease 2019 (COVID-19) and death. The leading
cause of mortality is acute lung injury and acute respiratory distress
syndrome, or direct complications with multiple organ failure’™*. Clini-
cal deterioration in acute illness leads to ineffective viral clearance
and collateral tissue damage' . Severe COVID-19 is also accompanied
by an inappropriate pro-inflammatory host immune response and a
diminished antiviral interferon response®®.

Many molecular and cellular questions related to COVID-19 patho-
physiology remain unanswered, including how cell composition and
gene programs shift, which cells are infected, and how associated
geneticlocidrive disease. Autopsies are crucial to understanding severe
COVID-19 pathophysiology® ™, but comprehensive genomic studies
are challenged by long post-mortem intervals (PMlIs).

Here, we developed a large cross-body COVID-19 autopsy biobank of
420 autopsy specimens, spanning 11 organs, and used it to generate a
single-cell atlas of lung, kidney, liver and heart associated with COVID-19
andalungspatial atlas, inasubset of 14-18 donors per organ. Our atlases
provide crucial insights into the pathogenesis of severe COVID-19.

A COVID-19 autopsy cohort and biobank

We assembled an autopsy cohort of 20 male and 12 female donors, of
various ages (>30->89 years), racial/ethnic backgrounds, intermit-
tent mandatory ventilation (IMV) periods (0-30 days) and days from
symptom start to death (Fig.1a, Supplementary Table 1). Abiobank was
created with asubset of 17 donors. From most donors, we collected at
least lung, heart and liver tissue (Fig. 1a, Extended Data Fig. 1a, Sup-
plementary Methods), preserving specimens for single-cell and spatial
analysis. We optimized single-cell and single-nucleus RNA sequencing
(sc/snRNA-Seq) protocols for Biosafety Level 3 and NanoString GeoMx

workflows to spatially profile RNA from different tissue compartments
by cell composition or viral RNA (Supplementary Methods).

COVID-19 cell atlases

We generated sc/snRNA-Seq atlases of lung (n=16 donors, k=106,792
cells/nuclei, m = 24 specimens; donors D1-8,10-17), heart (n =18,
k=40,880, m=19; D1-8,10-11, 14-17, 27-28, 31-32), liver (n =15,
k=47,001, m=16; D1-7,10-17) and kidney (n=16, k=33,872, m=16;
D4-8,10-12,14-15,17,25-26, 28-30). Although initial tests showed
somedifferencesin proportions of cell types between snRNA-Seq and
scRNA-Seq, snRNA-Seq performed better overall” (Extended Data
Fig.1b-d and data not shown) and was used for the remaining samples.
We developed a computational pipeline (Fig. 1b) to tackle unique
technical challenges. We used CellBender remove-background™ to
remove ambient RNA, which enhanced cell distinction and marker
specificity (Extended Data Fig. 1e-h; Supplementary Methods), we
rapidly quality-controlled, pre-processed and batch-corrected the
data with cloud-based Cumulus® (Extended Data Fig. 2a-g, Supple-
mentary Methods) and we automatically annotated cells and nuclei
by transferring labels from previous atlases (Fig. 2a, Extended Data
Fig. 2h, Supplementary Methods). We refined these labels with man-
ual annotation of subclusters in each main lineage (Fig. 2b, Extended
Data Fig. 2i-n, Supplementary Methods). The automated annotation
approachallowed usto compare against other dataresources (without
clustering or batch correction), while the manual approach enabled us
torefine cell identity assignments with detailed domain knowledge.

A cell census of the COVID-19 lung

Automatic annotation defined 28 subsets of parenchymal, endothelial
and immune cells (Fig. 2a, Supplementary Table 2, Supplementary
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Methods), with further manual annotation within subgroupings
(Fig.2b, Extended DataFigs. 2,4, Supplementary Methods). Deconvolu-
tion of bulk RNA-Seq from the same samples largely agreed (Extended
DataFig.3a,b, Supplementary Methods), and our two annotation strat-
egies had 94% agreement (Extended Data Fig. 3c-e).

Among immune cells we distinguished six cell myeloid subsets:
CD14"€"CD16"#" inflammatory monocytes with antimicrobial proper-
tiesand five macrophage subsets (Extended Data Figs. 2j, 4b) that were
enriched for scavenger receptors, toll-like receptor ligands, inflam-
matory transcriptional regulators or metabolism genes; four B cell
and plasma cell subsets: BLIMPI"€" plasma cells'®", BLIMP]rtermediate
plasma cells, B cells and JCHAIN-expressing plasmablasts (Extended
DataFigs. 2k, 4b); five T and natural killer (NK) cell subsets: two CD4"
subsets: regulatory T cells (T, cells) and ametabolically active subset;
one CD8"subset; and two T or NK cell subsets (Extended Data Figs. 21,
4b), including one with cytotoxic effector genes. The dearth of neu-
trophils (Fig. 2a, 419 cells) is likely due to freezing or limitations of
droplet-based sc/snRNA-Seq®.

Weidentified seven endothelial cell (EC) subsets™®* (Extended Data
Figs.2m, 4b): arterial, venous and lymphatic, capillary aerocytes, capil-
lary EC-1and capillary EC-2 and amixed subset (Supplementary Meth-
ods), and three stromal subsets: fibroblasts, proliferative fibroblasts
and myofibroblasts' (Extended Data Fig. 2n, Supplementary Table 3).

There were eight epithelial subsets, including club/secretory cells,
ATl cells, AT2 cells, and proliferative AT2 cells (Fig. 2b). One subset
corresponded to a previously described AT2 to AT1 transitional cell
state (KRT8" pre-alveolar type 1 transitional cell state (PATS); PATS/
ADI/DATP)?* 2 (Fig. 2b).

Changes in lung cell composition

In comparison with normal lung from a matching region (Fig. 2c,
Supplementary Methods), numbers of AT2 cells were significantly
decreased (false discovery rate (FDR) = 2.8 x 107, Dirichlet multino-
mial regression; Supplementary Methods), possibly reflecting virally
induced cell death?*%. Numbers of dendritic cells (FDR = 0.004),
macrophages (FDR =3.6 x107°), NK cells (FDR = 0.018), fibroblasts
(FDR=0.013), lymphatic endothelial cells (FDR =0.00058) and vascular
endothelial cells (FDR=0.00011) all increased.

Cell proportions varied between donors (Extended Data Fig. 5a, b).
Whereas variation was not significantly correlated with PMI, age or sex,
IMV was positively correlated with epithelial cell fraction (FDR=0.007;
Spearman p=0.765) and negatively correlated with T and NK cell frac-
tion (FDR=0.041;p=-0.62). Fewer days on aventilator mayindicatea
rapidly deteriorating condition. Thisis corroborated by the nominally
significant positive correlation between epithelial cell fraction and days
from symptom start to death (p=0.671, P=0.004, but FDR=0.053).

Induced programs in epithelial cells

There were widespread, cell-type-specific transcriptional changes
in lung cell types associated with COVID-19 (Extended Data Fig. 5c,
Supplementary Methods), most notably in CD16" monocytes (1,580
upregulated genes), lymphatic endothelial (578), vascular endothelial
(317), AT2 (309) and AT1(307) cells. Within AT2 cells, there was higher
expression (P < 0.0004) of genes associated with host viral response
(Fig. 2d), including those for programmed cell death (STAT1), inflam-
mation and adaptiveimmune response (Supplementary Table 4). Lung
surfactant genes were downregulated, consistent with reports from
invitro studies®.

Failed paths for AT1 cell regeneration

The PATS program signature was increased in COVID-19 pneumocytes
(P<2.2x107", one-sided Mann-Whitney U'test) (Fig. 2e, Extended Data
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Fig.1|Experimental and computational pipeline for a COVID-19 autopsy
atlas.a, Sample processing pipeline. Up to 11 tissue types were collected from
32donors. b, sc/snRNA-Seq analysis pipeline. QC, quality control.

Fig. 5d). This progenitor programisinduced during lung injury* 2 (for
example, idiopathic pulmonary fibrosis), consistent with fibrosis in
severe COVID-19%%., These studies also highlight fibroblast expansion,
which we also observed (Fig. 2c).

Asubset of PATS program cells, distinct from KRT5 TP63" airway basal
cells, expressed canonical (KRT8/CLDN4/CDKNI1A) and non-canonical
(KRTS5/TP63/KRT17) PATS markers (Fig. 2f, Extended Data Fig. 5d, Sup-
plementary Table 3). These may be TP63" intrapulmonary basal-like
progenitor (IPBLP) cells, which wereidentified in HIN1 influenza mouse
models®® and act as an emergency cellular reserve for severely damaged
alveoli®’. The putative IPBLP cells express interferon virus defence
and progenitor cell differentiation genes (Supplementary Table 3).
Thus, multiple emergency pathways for alveolar cell regeneration are
activated in lung (Fig. 2g, Discussion).

Changed cell composition with viral load

To determine viral load and associated host responses, we analysed
donor-and cell-type-specific distribution of SARS-CoV-2 reads (Fig. 3a,
b, Extended Data Fig. 6a-d, Supplementary Methods). Reads spanned
the entire SARS-CoV-2 genome, with bias towards positive-sense align-
ments. A few cells had reads aligning to all viral segments, including the
negative strand (Extended Data Fig. 6e), potentially indicating produc-
tiveinfection. Virus detection was not technically driven (Extended Data
Fig. 6f-i), and inter-donor variation was consistent with SARS-CoV-2
qRT-PCRonbulk RNA (Extended DataFig. 6j-1, Supplementary Meth-
ods). Viralload was negatively correlated with days from symptom start
to death (Fig. 3c), as previously reported®**. Bulk RNA-Seq yielded
nine unique complete viral genomes from nine donors with high viral
loads (Extended Data Fig. 6m, Supplementary Methods); allgenomes
carried the D614 G allele. We identified no other common respiratory
viral co-infections (Extended Data Fig. 6n). Total viral burden per
sample (including ambient RNA; Supplementary Methods) positively
correlated with proportions of mast cells, specific macrophage sub-
sets, venular endothelial cells and capillary aerocyte endothelial cells
(Extended Data Fig. 60-u).

Genes upregulated in biopsy samples with high versus low or
no viral load (Supplementary Methods) included viral response
and innate immune processes (log,(fold change) > 1.4, Wald test,
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Fig.2|Asingle-cell and single-nucleus atlas of COVID-19 lung. a, Automatic
predictionidentifies 28 cell subsets across compartments. UMAP embedding
0f106,792 harmonized sc/snRNA-Seq profiles (dots) from 24 tissue samples of
16 lung donors with COVID-19, coloured by automatic annotations (legend).

b, Epithelial cell subsets. UMAP embedding of 21,661 epithelial cell or nucleus
profiles, coloured by manual annotations, with highly expressed marker genes
(boxes). ¢, d, Cell composition and expression differences between COVID-19
and healthy lung. ¢, Cell proportions (xaxis: mean, bar; 95% confidence
intervals, line) in each automatically annotated subset (y axis) in COVID-19
snRNA-Seq (red, n=16), healthy snRNA-Seq (grey, n=3) and healthy scRNA-Seq
(n=8,blue). Celltypes shown have a COVID-19 versus healthy snRNA-Seq

false discoveryrate (FDR) of <0.05 (Dirichlet multinomial regression).

d, Significance (-log,y(P), y axis) versus magnitude (log,(fold change), x axis) of
differential expression of each gene (dots; horizontal dashed line, FDR < 0.05)

FDR-corrected P < 0.05; Extended Data Fig. 6v, Supplementary
Table 4) and significantly overlapped with those in bulk RNA-Seq of
post-mortem COVID-19 lungs in another study** (FDR=3.12 x10°°,
Kolmogorov-Smirnov test). Downregulated genes (log,(fold change)
<1.4, Wald test, FDR-corrected P < 0.05) were involved in surfactant
metabolism dysfunction and lamellar bodies (secretory vesiclesin AT2
cells®).

Lungcells enriched for SARS-CoV-2 RNA

Myeloid cells were the cell category most enriched for SARS-CoV-2
RNA (158 cells after correction for ambient RNA, FDR < 0.013; Fig. 3a,
Extended Data Fig. 6w-y, Supplementary Methods), with particular
enrichmentin CD14"¢"CD16"¢" inflammatory monocytes (FDR < 0.005)
and LDB2"€"OSMR"¢"YAP1"¢" macrophages (FDR < 0.02; Extended Data
Figs. 6x, 7a, b), although enrichment scores in individual donors var-
ied. There was elevated, but non-significantly enriched, viral RNA in
endothelial cells, with the capillary EC-2 (cluster 3, FDR < 0.017) and
lymphatic endothelial cells (cluster 7, FDR < 0.006) enriched com-
pared with other endothelial subsets (Fig. 3a, Extended Data Figs. 6w,
y,7c,d). There were also SARS-CoV-2 RNA" cellsamong mast cells, and
B and plasma cells, and viral RNA reads in multiple other cell types
(Fig.3a, Extended Data Fig. 6w). Notably, SARS-CoV-2 RNA" cells did not

UMAP 1 AT2 AT1

between COVID-19 and healthy lung froma total of 2,000 AT2 cells and

14 studies (two-sided test; Supplementary Methods). e, f, Anincreased
pre-alveolar type1transitional cell state (PATS)*°?? program in pneumocytesin
COVID-19 versus healthy lung. e, Distribution of PATS signature scores (y axis)
for17,655 cells from COVID-19 and 24,000 cells from healthy lung pneumocytes
(xaxis). P<2.2x107' (one-sided Mann-Whitney Utest). f, UMAP embedding of
21,661epithelial cell profiles (dots) coloured by signature level (colour legend,
lower right) for the PATS (top) or intrapulmonary basal-like progenitor (IPBLP)
cell (bottom) programs. g, Model of epithelial cell regeneration in healthy and
COVID-19 lung. In healthy alveoli (top), AT2 cells self-renew (1) and differentiate
into AT1cells (2).In COVID-19 alveoli (bottom), AT2 cell self-renewal (1) and AT1
differentiation (2) areinhibited, resulting in PATS accumulation (3) and
recruitment of airway-derived IPBLP cells to alveoli (4).

co-expresstheentry factors ACE2and TMPRSS2, or other hypothesized
entry cofactors (Fig. 3b, Extended Data Fig. 7e-h).

Immune programsin SARS-CoV-2RNA" cells
SARS-CoV-2RNA" cells had distinct transcriptional programs compared
with SARS-CoV-2 RNA™ counterparts, with differentially expressed
genes (FDR<0.05; Supplementary Methods) inepithelial and myeloid
cells, including PPARG"¢*CD151"¢" macrophages and CD14"¢*CD16"¢"
inflammatory monocytes (Supplementary Table 5). Genes upregulated
in epithelial SARS-CoV-2 RNA" cells were enriched for TNF, AP1 and
chemokine and cytokine signalling, SARS-CoV-2-driven cell responses
in vitro®?, and keratinization pathways, which may reflect an injury
response (Extended Data Fig. 7i). Genes upregulated in myeloid
SARS-CoV-2 RNA' cells were those associated with chemokine and
cytokine signalling, and responses to interferon, TNF, intracellular
pathogens and viruses (Fig. 3d, Extended Data Fig. 7j-m, Supplemen-
tary Table 5), as previously described®**. Cytokines and viral host
response genes were upregulated in both CD14"¢*CD16"#" inflamma-
tory monocytes and PPARG""CD15L"¢" macrophages (Extended Data
Fig.7m, Supplementary Table5), including CXCL10 and CXCL11, which
were upregulated in nasopharyngeal swabs® and bronchoalveolar
lavages®*.
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Asspatial atlas of COVID-19 lung

To provide tissue context, we used Nanostring GeoMx Digital Spa-
tial Profiling (DSP) for transcriptomic profiling from regions of
interest (Supplementary Methods) in 14 donors, including three
deceased healthy donors (‘healthy’) (Extended Data Fig. 1a). Regions
of interest spanned a range of anatomical structures and viral abun-
dance on the basis of SARS-CoV-2 RNA hybridization signals; when
possible, we segmented them to PanCK" and PanCK", and inflamed
and normal-appearing alveoli areas of illumination (AOls) to capture
RNA (Fig.4a, Extended DataFigs. 8a, 9a, Supplementary Methods). We
acquired high-quality profiles (Extended Data Fig. 8b) from matched
AOIs on the basis of distance to morphological landmarks (Supple-
mentary Methods). SARS-CoV-2 RNA expression varied by donor, with
elevated levelsinfour donors (Extended DataFig. 8c, d, Supplementary
Methods), consistent with viral qRT-PCR and sc/snRNA-Seq. Given
the good agreement between a targeted 1,811-gene panel and a whole
transcriptome (WTA) panel (18,335 genes) (Extended Data Fig. 8e-g,
Supplementary Table 6), we focused our analyses on WTA data. For
D8-12,18-24, we contrasted donors with COVID-19 and healthy donors
and COVID-19 epithelial and non-epithelial AOlIs; for D13-17, we focused
ondistinct anatomical regions and inflamed versus normal-appearing
regions within donors.
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Single cells

lines, major cell types. ¢, Reductionin SARS-CoV-2 RNA with prolonged
symptomonsetto deathinterval (Spearmanp=-0.68,P<0.005, two-sided
test). Symptom onset to death (xaxis, days) and lung SARS-CoV-2 copies per
nanograminput RNA (yaxis) for each donor (n=16).d, Expression changes in
SARS-CoV-2RNA" myeloid cells. Significantly differentially expressed (DE) host
genes (log-normalized and scaled digital gene expression, rows; cutoff:
FDR<0.05and log,(fold change) > 0.5) across SARS-CoV-2RNA' (n=158) and
SARS-CoV-2RNA myeloid cells (n=790) (columns).

Inflammatory activationin alveoli

Deconvolution of major cell type composition (Fig. 4b, Extended Data
Fig. 8h, Supplementary Table 7, 8, Supplementary Methods) showed
inferred AT1and AT2 cells dominating the PanCK" compartments and
greater cellular diversity in the PanCK™ compartment. COVID-19 PanCK™
AOIs hadincreased fibroblast and myofibroblast scores compared with
controls, in line with parallel spatial studies®*¥.

Comparing COVID-19 alveolar AOls with control lungs from deceased
healthy donors, there was upregulation of IFNa and IFNy response
genes and oxidative phosphorylation pathways (Fig.4c, Extended Data
Fig. 8i-k, Supplementary Table 6), similar to bulk RNA-Seq of highly
infected tissue (IFIT1,IFIT3,IDO1, GZMB, LAG3, NKG7 and PRFI) and to
SARS-CoV-2" myeloid cells (TNFAIP6, CXCL11,CCLS, ISGI and GBP5) and
consistent with PANoptosis in a COVID-19 model®. Conversely, TNF,
IL2-STATS and TGF( signalling as well as apical junction and hypoxia
were downregulated. Decreased TNF signalling expression in PanCK*
alveoli contrasts with its increase in SARS-CoV-2* epithelial cells in
snRNA-Seq and withreported® synergy between TNF and IFNyin mouse
models of COVID-19.

Comparison ofinflamed and normal-appearing AOIs within the same
alveolar biopsy samples of COVID-19 lungs (Extended DataFig. 9, Sup-
plementary Table 9, D13-D17), showed that upregulated genes were
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Fig.4|Compositionand expressiondifferencesbetween COVID-19 and
healthy lungs and betweeninfected and uninfected regions within
COVID-19lungs. a, Example of analysed regions. Top: RNAscope (left) and
immunofluorescentstaining (right) of donor D20 with collection regions of
interest (ROIs) and matched areas in white rectangles. Bottom: one ROl (yellow
rectangle) fromeachscan (left and middle) and the segmented collection areas
of illumination (AOIs) (right). b, Cell composition differences between PanCK*
and PanCK  alveolar AOls and between AOIs from COVID-19 (n=9,190 AOls) and
healthy (D22-24,38 AOIs) lungs. Expression scores (colour bar) of cell type
signatures (rows) in PanCK’ (left) and PanCK" (right) alveolar AOls (columns) in
whole transcriptome (WTA) data from different donors (top colour bar).

c, Differential gene expressionin COVID-19 versus healthy lung. Left:
significance (-log,o(P), y axis) and magnitude (log,(fold change), x axis) of

enriched forinnate immune and inflammatory pathways**’, including

neutrophildegranulation (FDR=5.2x10") and IFNy (FDR=3.4 x107%)
and interleukin (FDR =1.4 x107) signalling. TNF pathway expression
waselevated ininflamed tissue, albeit not significantly (FDR=0.097).
Claudins and tight junction pathways were downregulated, corrobo-
ratinga disrupted alveolar barrier, asininfluenza*** Ciliumassembly
genes were enriched when comparing bronchial epithelial AOls and
matched normal-appearing alveoli (Extended Data Fig. 9d, Supple-
mentary Table 9).

differential expression of each gene (dots) in WTA databetween PanCK" alveoli
AOIs from COVID-19 (n=78) and healthy (n=18) lung. Right: significance
(-log,(q)) of enrichment (permutation test) of different pathways (rows).

d, e, Changesin gene expressionin SARS-CoV-2 high versus low AOIs within
COVID-19 lungsin WTA data. d, SARS-CoV-2 high and low alveolar AOls. PanCK*
alveolar AOIs (dots) rank ordered by their SARS-CoV-2 signature score (y axis)
in WTA data, and partitioned to high (red), medium (grey) and low (blue)
SARS-CoV-2AOls. e, Significance (-log;,(P), y axis) and magnitude (log,(fold
change), x axis) of differential expression of each gene (dots) in WTA data
between SARS-CoV-2 high and low AOIs for PanCK" alveoli (AOls: 17 high,

3 medium, 58 low). Horizontal dashed line, FDR = 0.05; vertical dashed lines,
|log,(fold change)|=2.FC, fold change. The top 10 differentially expressed
genes by fold change are marked.

Comparison of SARS-CoV-2 high and low AOIs (Fig. 4d, e, Extended
DataFig. 8l, m, Supplementary Methods) revealed induction of the viral
ORFlaband Sgenes and upregulation of chemokine genes (CXCL2and
CXCL3) andimmediate early genes in the PanCK* compartment, consist-
ent with snRNA-Seq (Supplementary Table 9, Extended Data Fig. 7i).
NT5C, whichencodes anucleotidase with a preference for 5-dNTPs, is
consistently upregulated in SARS-CoV-2-high AOIs (Fig. 4e, Extended
Data Fig.8m, Supplementary Table 9). This gene is not known to have
aroleinlunginjury and should be further studied.
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COVID-19 effect on heart, kidney and liver

We next profiled liver, heart and kidney by snRNA-Seq with automated
and manual annotation of parenchymal, endothelial and immune cells
(Supplementary Methods, Extended Data Figs. 10, 11). Although other
studies have reported viral reads in COVID-19 non-lung tissues*, we
detected very few viral RNA reads in all three tissues, most of which
could not be assigned to nuclei (Extended Data Fig. 111); this absence
was confirmed by NanoString DSP and RNAscope (data not shown).
Focusingonheart, both cellcompositionand gene programs changed
between COVID-19 and healthy heart. There was a significant reduction
inthe proportion of cardiomyocytes and pericytes, and anincreasein
vascular endothelial cells (Extended DataFig. 11e). Genes upregulated
(FDR<0.01) in cardiomyocytes, pericytes or fibroblasts (Extended Data
Fig.11g-i, Supplementary Table 10) included PLCG2, the cardiac role of
which is unknown but which wasinduced in all major heart cell subtypes
(Extended DataFig.11j), and AFDN, whichis upregulated in endothelial
cells (Extended Data Fig.11k), and which encodes ajunction adherens
complex component* thatis necessary for endothelial barrier function.
Upregulated pathways include oxidative-stress-induced apoptosisin
pericytes, celladhesion and immune pathways in cardiomyocytes, and
cell differentiation processesin fibroblasts (Supplementary Table 10).

COVID-19 cell types related through GWAS

Finally, we aimedtoidentify genes and cell types associated with COVID-
19 risk by integrating our atlas data with genome-wide association
studies (GWAS)* for common*® variants associated with COVID-19
(Supplementary Methods). Among 26 genes proximal to six COVID-19
GWAS regions (Supplementary Table 11, Supplementary Methods),
14 genes had higher average expression in the lung (P < 0.05, t-test;
Extended Data Fig.12a-d), 21 had significant (FDR < 0.05) expression
specificity inatleast one lung cell type, including FOXP4 (chromosome
(chr.) 6, AT1and AT2 cells),and CCRI and CCRL2 (chr.3, macrophages)
(Extended Data Fig. 12e, Supplementary Table 11), and 18 were differ-
entially expressed (FDR < 0.05) in COVID-19 compared with healthy
lung (for example, SLC6A20 in goblet cells, CCR5in CD8* T cells and
T, cells, and CCRI in macrophage and CD16" monocytes (Extended
DataFig. 12f, Supplementary Table 11).

Werelated heritability from GWAS of COVID-19 severity traits to either
celltype programs (genesenrichedinacelltypeineachtissue) or disease
progression programs (genes differentially expressed between COVID-19
and controlsinacell type) in each tissue using sc-linker* (Supplementary
Methods). AT2 (4.8 heritability enrichment, P=0.04), CD8" T cells (4.4,
P=0.009) and ciliated cell programs in the lung, proximal convoluted
tubule and connecting tubule programs in kidney, and cholangiocyte
programs in liver attained nominal (but not Bonferroni-corrected) sig-
nificance (Extended DataFig.12g, h, Supplementary Table 11). Of all dis-
ease progression programs, only the club cell program (single-cell level
model) had nominally significant heritability enrichment (10.5x, P=0.04
for severe COVID-19) (Extended Fig. 12g, Supplementary Table 11).

The highest number of driving genes was observed for lung AT2 cells
and spanned several loci, hinting at a polygenic architecture linking
AT2 cellswith severe COVID-19 (Supplementary Methods, Supplemen-
tary Table11). Implicated GWAS proximity genes include OAS3inlung
AT2 and club cells, and SLC4A7 in lung CD8" T cells (Supplementary
Table11), as well as genes at unresolved significantly associated GWAS
loci (Extended Data Fig.12i), suchas FYCOI (AT2, ciliated, club; chr.3p),
NFKBIZ (AT2; chr.3q) and DPP9 (AT2; chr.19) (Supplementary Table 11).

Discussion

We built a biobank of severe COVID-19 autopsy tissue and atlases of
COVID-19 lung, heart, liver and kidney (Extended Data Fig. 12j), com-
plementing asister lung atlas*s.
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Amongthe changesinlung cell compositionin COVID-19,isareduc-
tionin AT2 cells and the presence of PATS and IPBLP-like cells, indicating
that multiple regenerative strategies are invoked to re-establish alveolar
epithelial cells lost toinfection. A serial failure of epithelial progenitors
toregenerate at a sufficient rate, first by secretory progenitor cells in
the nasal passages and large and small airways, followed by alveolar
AT2 cells, PATS and IPBLP cells, may eventually lead to lung failure.

ViralRNAinthe lung varied, was negatively correlated with time from
symptom start to death, and was primarily detected in myeloid and
endothelial cells (asin nonhuman primates*); spatial analysis supports
high virus levels at the earlier stages of infection®***°, Epithelial cells
were notenrichedin highviral RNA samples or in SARS-CoV-2* cells, con-
sistent with their excessive death. Cell-associated SARS-CoV-2 unique
molecular identifiers may represent a mixture of replicating virus,
immune cell engulfmentand virions or virally infected cells attached to
the cell surface. We did not detect viral RNA inthe heart, liver or kidney,
but observed other changes, including broad upregulation of PLCG2,
atarget of Bruton’s tyrosine kinase (BTK), in the heart®".

Combining our profiles with GWAS of COVID-19, we related specific
cell types to heritable risk, especially AT2, ciliated and CD8" T cells
and macrophages, as well as genes in multi-gene regions underlying
the association. This analysis canimprove as GWAS grows and atlases
expand.

Our study was limited by a modest number of donors without
pre-selection of features, the terminal time point, limited distinction
between viral RNA and true infection, and technical confounders such
as PMIs. Nevertheless, our methods would enable studies in diverse
diseased or damaged tissues. Future meta-analyses will further enhance
its power and provide crucial resources for the community studying
host-SARS-CoV-2 biology.
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Extended DataFig.1|See next page for caption.



Extended DataFig.1|A COVID-19 autopsy cohort, data quality and ambient
RNA removal for asingle-cell/nucleus lung atlas. a, COVID-19 cohort
overview.IMV, intermittent mandatory ventilation days; PMI, post-mortem
interval; S/s, time from symptom start to deathin days. b-d, Comparison of cell
composition by scRNA-Seq and snRNA-Seq in matched samples. Proportion of
cells (xaxis) of each type (colour code) in sc/snRNA-Seq samples from the same
three donors (D3, D8, D12). e-h, Cellbender remove-background onasingle
sample (D1). e, CellBenderimproves cell clustering and expression specificity
by removing ambient RNA and empty (non-cell) droplets. UMAP plot of snRNA-
Seq profiles (dots) either before (left) or after (right) CellBender processing,
coloured by clusters, with CellBender-determined empty droplets in black
(k=2,508droplets removed, k=10,687 cellsremaining).f, g, CellBender

improves specificity of individual genes and cell type signatures. UMAP
embedding of single nucleus profiles before CellBender (left) and after
CellBender (right) processing, coloured by expression of the surfactant
protein gene SFTPAI (f) or signature score (SCANPY*?score_genes function,
colour bar) for gene sets specific tolung AT2 (g) cells. Colour bar saturation
chosentoemphasize low expression. h, Improved specificity of surfactant
gene expression with CellBender (same sample). Expression level (log (average
unique molecularidentifier (UMI) count per cell), colour) and percentage of
cellswithnon-zero expression (dot size) of surfactant genes (columns) across
cellclusters (rows) before (left) and after (right) CellBender processing. Also
shown, for comparison, are the results of an alternative method, DecontX
(middle).
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Extended DataFig.2|See next page for caption.



Extended DataFig. 2| Quality control and annotationin the COVID-19 lung
cellatlas. a-d, Quality-control metrics for 24 lung samples (n=16 donors).
Number of cells or nuclei (a, y axis) and distributions (median and first and third
quartiles) of number of UMIs per cell or nucleus (b, y axis), number of genes per
cell/nucleus (c,y axis) and fraction of mitochondrial genes per cell/nucleus
(d, yaxis) across the samples (xaxis) in the lung atlas. SCRNA-Seq samples are
labelled by agrey circle. e-g, Cross-sample integration corrects batch effects.
e, UMAP (asinFig. 2a) 0f 106,792 sc/snRNA-Seq profiles after Harmony*
correction (Supplementary Methods) coloured by sample ID.f, g, Donors and
processing protocols across clusters. Number of cells (y axis) from different
donors (f) or processing protocols (g) ineach Leiden cluster (xaxis). h, Cross

validation of automatic annotation. Percentage of cells (colour bar) annotated
inaclass by Schiller etal.>* that we predict for each class (columns).

i, Identification of main lineage annotations by manual annotation. UMAP of
106,792 sc/snRNA-Seq profiles after Harmony*® correction (asin Fig. 2a)
coloured by manual annotation doneinsubclustering of each lineage. Dashed
lines: chosen compartments for subclustering. j—n, Refined annotation of cell
subsetswithinlineages. UMAP embeddings of each selected cell lineage with
cells coloured by manually annotated subclusters. Colour legends highlight
highly expressed marker genes for select subsets. j, myeloid cells (k=24,417
cells/nuclei); k, Band plasma cells (k=1,693);1, Tand NK cells (k=9,950);

m, endothelial cells (k=20,366); and n, fibroblast (k=20,925).
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Extended DataFig. 3 |See next page for caption.




Extended DataFig. 3 |Bulk RNA-Seq deconvolution and comparison of
automatic and manual annotations in the COVID-19 lung cell atlas.

a, b, Deconvolution of bulk RNA-Seq libraries from adjacent lungtissue.
a,Mean proportion (y axis, error bars =s.d. estimates from bulk RNA-Seq
deconvolution (hatched bars; from MuSiC*) and from sc/snRNA-Seq (filled
bars) for each of 11 cell subsets (x axis) in each of 16 bulk RNA-Seq lung samples
(panels) from 10 random samples 0f 10,000 cells each. b, Robustness of cell
proportion estimates to the number of single cellssampled for thereference
data. Mean proportion (yaxis, from MuSiC) estimates for each of 11 cell subsets

(colour dots) in each of 16 bulk RNA-Seq lung samples (panels) when using three
independent samples 0of1,000-10,000 cells from the single-cell reference
(xaxis).c-e, Agreement between automated and manual annotations. c. High
consistency between automatic and manual annotations. The proportion
(colourintensity) and number (dot size) of cells withagiven predicted
annotation (rows) ineach manual annotation category (columns).d, e, UMAP
embedding of myeloid (k=24,417 cells or nuclei) (d) and Tand NK (k=9,950
cells); (e) cell profiles coloured by manually annotated subclusters (left) or
automated predictions (right).
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Extended DataFig.4|Manual annotationin the COVID-19 lung cell atlas.

a, b, Identification of mainimmune lineage annotations. a, UMAP 0f 106,792 sc/
snRNA-Seq profiles after Harmony correction (as in Fig. 2a) coloured by
expression of genes (colour bar, genes listed below) used to separateimmune
cellsub-lineages (Supplementary Methods). b, Differentially expressed (DE)
genesbetweensubclusters withineach lineage. Expression (colour bar) of
genes (rows) that are differentially expressed (Supplementary Methods) across
the subclusters (columns) within each compartment. DE genes shown are a

union of the following: (i) top 10 DE genes between clusters, (ii) DE genes above
an AUC of 0.8 and 0.75 for B/Plasma cells, (iii) pseudo-bulk DE genes above a
log(fold change) threshold (thresholds: endothelial =4.2, T/NK =3, myeloid =4,
B/plasma=2) (label on top). c, Batch correction withinlineage. Fraction of
cells/nuclei (y axis) from different processing protocols (left) or different
donors (right,n=17) ineach subcluster (xaxis) after batch correction with
Harmony**withineach lineage.



i Frequencies of myeloid subsets across donors ¢
& 35/ Macrophage LDB2" OSMR" YAP1M 1580 genes, increased expression | 1600
\‘; Macrophage metabolically active —
2 . Macrophage PPARGM CD5L" 2.001
8 » Inflammatory monocytes CD14"CD16M | *
= 251 ™ Macrophage CD163" MERTKM o
= W Macrophage VCANM FCN1hi o) 1 %
= 204 B MAST 2 F1200 3
c ] uRBC 8 &
N G 1.507 @
S 10 II e} L @
el 2 . 5
8 5] ~ . @
5 2 tgoo =
i@ 00— T T - 5
BAC3e8 8825220225 2 Q
[= =} 0" o - o000 A 3 2
b . > =
gl Cellular compartmental compositions o laoo =
S 100 | Epithelial O -
;’ u Stromal T
= g0 B Endothelial L ~
8 u Myeloid
= W Lymphoid
S 601 0
kS
© 40
o
2 o
S 20 N @
o [OgF N
o L
9] *@
o ol v
Cer5888753 2882
[a=Y=) o [a)=) [a )=}
Donor ID
d KRT8/PATS
*|PBLPs « Other TP63 KRT5 KRT17
10 10 4. 4.
5 5 d E E
[ ) o .
o <3 a ol - | | log
< ; <° B, (TP10K+1)
g % 3 4 : 4 < 2 5
54 -5+ E E $ s
> 3 - 3 g
2 =~ W2 B 2
-104 =10 11 1 1 ¢ 1
0 0 0 0
— T T T — T T T — T T T — T T S
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
X UMAP 1
Airway cells
* Basal cells © Other KRT5 KRT8
109 N 1
Sl 4{%\‘ '
3 | o
S oqinigk Sy, 1 &4 - (TP10K+1)
A - -
=] o K | S 5 3
-7 2 2 | U 2
5 1 1 4 1
-10 -10 0 0 o
T T T T T T T T T T T T
-5 0 5 10 -5 0 5 10 5 0 5 10 -5 0 5 10
UMAP 1 UMAP 1 UMAP 1 UMAP 1

Extended DataFig. 5| Cell-intrinsic programs and epithelial regenerative
cellstatesinthe COVID-19 lungcell atlas. a, b, Differences in cell composition
across donors. Percentage of cells (yaxis) from each myeloid subset (legend) in
eachdonor (xaxis). b, Percentage of cells (y axis) from each mainlineage
(legend) ineach donor (xaxis), rank ordered by proportion of epithelial cells
(blue). ¢, Myeloid, endothelial and pneumocyte cells show substantial changes
incellintrinsic expression profiles in COVID-19 lung. log,(fold change) (y axis)
between COVID-19 and healthy lung for each elevated gene (dot) in each cell

subset (xaxis, by automatic annotation). Black bars, number of genes with
significantly increased expression (adjusted P<7.5x10¢). Computed usinga
single cell-based differential expression model applied to a meta-differential
expression analysis between COVID-19 and healthy samples across 14 studies
(see Supplementary Methods). d, PATS and IBPLP cellsin COVID-19 lung. UMAP
embeddings of 1,550 KRT8' PATS-expressing cells (top) or of 1,394 airway
epithelial cells (bottom) coloured by IPBLP cells or basal cells (orange, leftmost
panels) or characteristic markers (purple, remaining panels).
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Extended DataFig. 6 |See next page for caption.



Extended DataFig.6|SARS-CoV-2-RNA’ cells distinguished by sc/snRNA-
Seq.a, Detection of SARS-CoV-2 UMIs from sc/snRNA-Seq data. SARS-CoV-2
UMIs from all cellbarcodes (top) and after ambient correction (second from
top). Number (second from bottom) and percentage (bottom) of SARS-CoV-2
RNA' cells afterambient correction (m =24 specimens). b, ¢, Effect of ambient
RNA on SARS-CoV-2RNA" detection. Number of SARS-CoV-2 aligning UMI per
cellbarcode (CB) (yaxis) in healthy lung (b, black), in vitro SARS-CoV-2 infected
humanbronchial epithelial cells (HBEC)*® (b, blue) or lung samples from
COVID-19 donors at autopsy either with CB with high-quality capture of human
mRNA (b, red) or after removal of cells whose viral alignments were attributed
toambient contamination (c, Supplementary Methods). d, Variationin SARS-
CoV-RNA" cellsacross donors. Percentage of cells (y axis) assigned as SARS-
CoV-2RNA™ (white), SARS-CoV-2RNA* (red) or SARS-CoV-2 ambient (grey,
Supplementary Methods) across the donors (xaxis), sorted by proportion of
SARS-CoV-RNA’ cells. e-i, Viral RNA detection does not correlate with cell
quality metrics. e-h, Number of SARS-CoV-2 UMIs (before ambient viral
correction) for each cell (y axis) versus either number of SARS-CoV-2 genes for
that cell (e, xaxis), number of human (GRCh38) genes per cell (f, x axis), number
of human (GRCh38) UMl per cell (g, x axis) or percentage of human (GRCh38)
mitochondrial UMIs per cell (h, x axis). i, Number of retained high-quality cells
(xaxis)and number of SARS-CoV-2 RNA' cells (y axis) in each sample (dots) after
correction forambient viralreads. Pearson’sr=0.07,two-sided P=0.73.
j-1,Agreementinviral RNA detectionbetween qPCR and sn/scRNA-Seq.
Number of SARS-CoV-2 copies measured by CDCN1qPCR on bulk RNA
extracted from matched tissue samples (xaxis) and the number of SARS-CoV-2

aligning UMI (y axis) for each sample (dot) fromallreads (j, P<0.0001, two-
sided), allreads from high-quality cell barcodes (k, P<0.0001), and after viral
ambient RNA correction (I, P=0.0042). Spearman’s preported, two-sided test.
m, Genetic diversity of SARS-CoV-2. Maximum likelihood phylogenetic tree of
772SARS-CoV-2genomes from cases in Massachusetts between January and
May 2020. Orange points, donorsin this cohort.n, Specificity of SARS-CoV-2
infection.log;,(1+reads) in each donor (columns) assigned to different viruses
(rows) by metagenomic classification using Kraken2 from bulk RNA-Seq.
Asterisks denote targeted capture. o-u, Relationbetween SARS-CoV-2 RNA
and differentcell types. Number of SARS-CoV-2 aligning UMIsin each
(including all CB) and the proportion of epithelial (0), mast (p), macrophage
VCAN"€"FCN1"¢" (q), macrophages CD163"¢" MERTK"" (r), macrophages
LDB2"¢"OSMR"¢"YAP1"¢" (s), venular endothelial (t) or capillary aerocytes (u)
cellsinthese samples (x axes). Pearson’srdenoted in the upper left corner with
significance after Bonferroni correction (P). v, Effect of viral load on bulk RNA
profiles. Significance (-log,o(P), y axis) and magnitude (log,(fold change),
xaxis) of differential expression of each gene (dots) between three donors with
highest viralload and six donors with lowest or undetectable viral load profiled
by bulk RNA-Seq. Red points, FDR < 0.05. w-y, Distribution of SARS-CoV-2 RNA*
cellsacross cell types and subsets. Number of SARS-CoV-2 RNA* cells (y axis)
fromeach donor (colour) across major categories (w, x axis), myeloid subsets
(x,inflammatory monocytes: 40 cells, five donors; LDB2"€"OSMR"€"yA p1"ish
macrophages: 27 cells, five donors; x axis), or endothelial subsets (y, capillary
endothelial cells: 16 cells, four donors; lymphatic endothelial cells: nine cells,
three donors; xaxis).
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Extended DataFig.7 |Donor-specificenrichment of SARS-CoV-2 RNA" cells
andhostresponses toviralRNA.a-d, SARS-CoV-2RNA" cellsareenriched
inspecificlineages and subtypes. a, c, UMAP embeddings of either myeloid
cells (a), or endothelial cells (c) from seven donors containing any SARS-CoV-2
RNA’ cell, and coloured by viral enrichment score (colour bar; red, stronger
enrichment) and by SARS-CoV-2 RNA" cells (black points). b, d, Number of
SARS-CoV-2RNA" cells (y axis) per cell type/subset (x axis) in myeloid (b) or
endothelial (d) subsets. Bar colour, FDR (dark blue, higher significance,
Supplementary Methods; *FDR <0.05). e-h, Variation across donors.

e-g, UMAP embeddings of sc/snRNA-Seq profiles from each of seven donors
containing any SARS-CoV-2 RNA’ cell (columns), coloured by major cell
categories (e), expression of SARS-CoV-2 entry factors (f) or SARS-CoV-2RNA
enrichment per cluster (g, red/blue colour bar; red, high enrichment; black

points, SARS-CoV-2RNA" cells). h, Number of SARS-CoV-2 RNA" cells (y axis)
across major cell types (xaxis) fromeach of seven donors containing any SARS-
CoV-2RNA" cell (columns). Bar colour, FDR (dark blue, higher significance).
*FDR <0.05.1,j, Normalized enrichment score (bars, right y axis) and
significance (points, FDR, left y axis) (by GSEA**°, Supplementary Methods) of
different functional gene sets (x axis) ingenes upregulated in SARS-CoV-2RNA*
epithelial (i) or myeloid (j) cells. k, Expression of SARS-CoV-2 genomic features
(log-normalized UMI counts; rows) across SARS-CoV-2 RNA" (k=158 cells) and
SARS-CoV-2RNA™ (k=790) myeloid cells (columns). 1, m, Distribution of
normalized expression levels (y axis) for select significantly differentially
expressed genes between SARS-CoV-2RNA™and SARS-CoV-2RNA’ cells from all
myeloid cells or CD14"¢"CD16"#" inflammatory monocytes. DGE, differential
geneexpression.
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Extended DataFig. 8 |See next page for caption.



Extended DataFig. 8| NanoString GeoMx experiment design and analysis.
a, Overview of spatial profiling experiments. b, Distribution of sequencing
saturation (y axis, %) for WTA and CTA AOIs (x axis). ¢, d, SARS-CoV-2 signature
score (yaxis) foreach WTA (c) and CTA (d) AOI (dots) from each donor (x axis).
e, Overlap of WTAand CTA genes.f, g, Agreement between WTA and CTA.

f, Distribution (box, interquartile range; white point, median; violinrange,
min-max) of Pearson correlation coefficients (y axis) between WTAand CTA
profiles (for common genes across 296 AOIs). g, Pearson correlation
coefficient (y axis) of WTA and CTA common genes for each AOI pair (dot) from
each donor (xaxis), sorted by distance between WTA and CTA sections (blue,
10 mm; orange, 20 mm; green, 40 mm). h, Cell composition differences
between PanCK' and PanCK" alveolar AOIs and between AOIs from COVID-19
(n=9,161A0Is) and healthy (D22-24, 40 AOlIs) lungs. Expression scores (colour
bar) of cell type signatures (rows) in PanCK' (left) and PanCK" (right) alveolar
AOIs (columns) in CTA data from different donors (top colour bar).

i-k, Differential gene expressionin COVID-19 versus healthy lung. Left:
significance (-log,,(P), y axis) and magnitude (log,(fold change), x axis) of
differential expression ofeach gene (dots) in WTA for PanCK" (i, 112 COVID-19
versus 20 healthy), and in CTA for PanCK" (j, 69 COVID-19 versus 18 healthy) and
PanCK" (k, 92 COVID-19 versus 22 healthy) alveoli. Horizontal dashed line,
FDR=0.05; vertical dashed lines, [log,(fold change)| = 2. Right: significance
(-log;,(q)) of enrichment (permutation test) of different pathways (rows).

1, m, Changesingene expressionin SARS-CoV-2 high versus low AOlIs within
COVID-19 lungsin WTA data.l, PanCK" alveolar AOls (dots) rank ordered by
their SARS-CoV-2 signature score (yaxis) in WTA data, and partitioned to high
(red), medium (grey) and low (blue) SARS-CoV-2 AOls. m. Significance
(-log,,(P), yaxis) and magnitude (log,(fold change), x axis) of differential
expression of each gene (dots) in WTA databetween SARS-CoV-2 high and low
AOIs for PanCK" alveoli (ROIls: 11 high, six medium, 95 low). Horizontal dashed
line, FDR=0.05.
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Extended DataFig. 9|See next page for caption.



Extended DataFig.9|GeoMx WTA DSP analysis of lung biopsy samples
revealsregion- and inflammation-specific expression programs. a, Region
selection. Serial sections of lung biopsy samples (five donors, D13-17;image
depictsserial sections of D14) processed with GeoMx WTA DSP with four-
colourstaining (DNA, CD45,CD68, PanCK), RNAscope with probes against
(SARS-CoV-2Sgene (used to derive semiquantitative viral load scores), ACE2,
TMPRSS2), H&E staining and immunohistochemistry (IHC) with anti-SARS-
CoV-2S-protein. Scale bar,100 pm. b-d, Region- and inflammation-specific
expression programs. b, The first two principal components (PCs,xand y axes)
fromlung ROl gene expression profiles from donors D13-17, spanning normal-
appearingalveoli (green; D14 =6 AOIs, D15=2 AOls, D16 =5A0Is, D17 =4 AQOls);

inflamed alveoli (magenta; D13=14 AOls, D14 =18 AOls, D15=7 AOls, D16 =3
AOlIs, D17 =8 AOlIs); bronchial epithelium (blue; D14 =2 AOIs, D15=1A0I, D16 =2
AOlIs, D17=3 AOls) and arterial blood vessels (black; D13 =2 AOls, D15=3 AOls).
¢, GSEA score (circlesize, legend) of the enrichment of the IFNy pathway in each
normal-appearing (green; 6 AOIs) and inflamed (magenta; 18 AOIs) alveolar
AOIs (dot) from the section of donor D14 (in a), placed in their respective
physical coordinates on the tissue section (asina).d, Expression (colour bar,
log,(counts per million)) of IFNy pathway genes (rows) from normal-appearing
(green, n=6) and inflamed (magenta, n=18) alveoli AOls (columns) from D14
lung biopsy.
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Extended DataFig.11|See next page for caption.
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Extended DataFig.11|Entry factorsinheart, kidney and liver COVID-19
tissues and differential gene expressioninheartcell atlas.a-c, SARS-CoV-2
entry factorsare expressed inkidney, liver and heart cells. Average expression
(dot colour) and fraction of expressing cells (colour, size) of SARS-CoV-2 entry

factors (rows) across cell subsets (columns) in the kidney (a), liver (b) and heart (c).

d-k, Genes and pathways differentially expressed between COVID-19 and
healthy heartcells.d, log mean expression per cell (dot colour) and fraction of
expressing cells (dot size) across cell types from healthy or COVID-19 heart
(rows) for select genes (columns) that are differentially expressed between
COVID-19 and healthy cells. e, Proportions of each cell type for COVID-19
(n=15) and healthy (n =28, two studies) samples (boxplots: middle line, mean;
boxbounds, firstand third quartiles; whiskers,1.5x the interquartile range;
minima, smallest observed proportion; maxima, highest observed
proportion).f, UMAP embedding of integrated COVID-19 and healthy snRNA-
Seq profiles (dots) coloured by major cell types. Plot limited to asubset of

151,373 high-quality cells for visualization purposes. g-i, Cell-type-specific
differentially expressed genesin COVID-19 versus healthy nuclei. Differential
expression (log,(fold change), x axis), and associated significance (-log,,(P),
yaxis; Supplementary Methods) for each gene (dot) between COVID-19 and
healthy nuclei of cardiomyocytes (g), pericytes (h) and fibroblasts (i). Dashed
line, FDR=0.01.j, k, UMAP embedding of the meta-analysis atlas (asin f) but
showing only COVID-19 (top) or healthy (bottom) nuclei profiles (dots)
coloured by expression of PLCG2 (j) or AFDN (k). 1, Low levels of viral UMIs in
heart, liver and kidney, compared with lung. Cumulative viralread countsasa
function of droplet UMI count. Inlung (red) most virus-positive dropletsare
empty droplets (total UMI count approximately 100) with some virus-positive
droplets that contain nuclei (UMI count >approximately 1,000), butin heart
(green), liver (blue) and kidney (orange), most of the ‘virus-positive’ droplets
have fewer than ten total UMI counts, indicating that these reads are not
trustworthy.
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Extended DataFig.12 | Expression of GWAS curated genes acrosslung,
heart, liver and kidney atlases. a-d, Mean expression (dot colour, log(TP10K
+1)) and proportion of expressing cells (dot size) for each 0of 26 curated GWAS
implicated genes (columns) in each cell subset (rows) for lung (a), heart (b),
liver (c) and kidney (d) COVID-19 autopsy atlases. Results only reported for
geneswithexpressioninatleastonecell subsetinthe underlyingtissue.

Some GWAS genes have higher expressionin the lung compared with the other
threetissues. e, f, Mean expression (e, z-scorerelative to all other cell types,
colour bar) or differential expression (f, z-score of DE analysis of expressionin
COVID-19 versus healthy cells of the same type) of 25 out of 26 GWAS implicated
genes (rows) from six genomic loci associated with COVID-19 (based on
summary statistics datafrom COVID-19 HGI metaanalysis* across lung cell
types (columns). ABOwas not considered asit was not reliably recoveredin

scRNA-Seqdata. g, h, Celltype and disease progression gene programsinthe
lung (g), liver and kidney (h) that contribute to heritability of COVID-19
severity. Magnitude (circlessize, E score) and significance (colour, —-log,,(P)) of
the enrichment of cell type programs and cell-type-specific disease programs
(columns) that were significantly enriched for COVID-19 or severe COVID-19
phenotypes (rows). All results are conditional on 86 baseline-LDv2.1model
annotations.i, Nomination of single best candidate genes at unresolved GWAS
significant lociby aggregating gene level information across program classes
and cell types. Significance (-log,,(P), y axis) of GWAS association signal at
locus (xaxis). Blue boxes, significantly associated loci* atagenome-wide
significance level (purple horizontal bar). j, Schematic summarizing the key
findings and contributions of this study.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
o]

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

X X

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

O O OO0 0O Ol

X
XX X X XX

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  no software was used for data collection

Data analysis 1. Terra, a Cloud platform for storing and sharing data and analysis, tools; https://app.terra.bio/
2. Cumulus/cellranger_workflow on Cumulus, a (cloud-based) framework for running cellranger mkfastqg and cellranger counts; used to run
cellranger counts, version run was Snapshot 10 on Terra ;Read the Docs: https://cumulus.readthedocs.io/en/latest/cellranger.html; Terra
WDL: https://portal.firecloud.org/?return=terratmethods/cumulus/cellranger_workflow/10
3. SARS-CoV-2 genome , used to align viral reads. Transcriptome reference name: BetaCov/South Korea/KCDC03/2020 based on NC_045512.2
https://github.com/hyeshik/sars-cov-2-transcriptome
4. Cumulus/cumulus workflow on Cumulus, a (cloud-based) framework for high-throughput single cell and single nucleus analysis using
Pegasus; used for quality control and clustering analysis on individual samples, version run was Snapshot 29 on Terra; Read the Docs: https://
cumulus.readthedocs.io/en/latest/cumulus.html# ; Terra WDL: https://portal.firecloud.org/?return=terratmethods/cumulus/cumulus/29
5. CellBender remove-background, removes ambient RNA and other technical artifacts from count matrices, version 0.2.0. Read the Docs:
https://cellbender.readthedocs.io; Terra WDL: cellbender/remove-background (snapshot 11) Terra WDL: https://portal.firecloud.org/
#methods/cellbender/remove-background/11
6. Scanpy, Python package for scRNA-seq data handling/processing, version 1.5.1+1.5.2.dev5+ge5d246aa; https://scanpy.readthedocs.io
7. Harmony-Pytorch, Python implementation of Harmony batch correction method, version 0.1.3; https://github.com/lilab-bcb/harmony-
pytorch
8. Pegasus, Python package for scRNA-seq data handling/processing and generating heatmaps for NanoString GeoMx data, version 0.17.2;
1.0.0; https://pegasus.readthedocs.io
9. DESeq2, R package for analysis differential gene expression,version 1.28.0 for bulk RNA seq analysis, version 1.30.0 for viral and spatial DE
analysis http://bioconductor.org/packages/release/bioc/html/DESeq2.html
10. MuSIC, R package for estimation of cell type proportions in bulk RNA-seq data, version 0.1.1; https://github.com/xuranw/MuSiC
11. GSEA, software for analyzing gene set enrichments, version 4.1.0 (run with database available as of 11/1/2020); https://www.gsea-




msigdb.org/gsea/index.jsp
12. GeoMx NGS Pipeline (DND) Processing Nanostring GeoMx NGS data for WTA and CTA assays, version 1.0.0; https://blog.nanostring.com/
geomx-online-user-manual/Content/NGS_DND/Running_DND.htm#Running3
13. Limma,R package for differential gene expression analysis for NanoString GeoMx and heart snRNA-seq data, version 3.44.3;http://
bioconductor.org/packages/release/bioc/html/limma.html
14. edgeR, R package for differential gene expression analysis for NanoString GeoMx data, version 3.28.1 or higher;https://bioconductor.org/
packages/release/bioc/html/edgeR.html
15. EnhancedVolcano, R package for generating volcano plots for differential genes for analysis on NanoString GeoMx data, version1.6.0;
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
16. fgsea, R package for gene set enrichment analysis on NanoString GeoMx and heart snRNA-seq data, version 1.14.0; http://
bioconductor.org/packages/release/bioc/html/fgsea.html
18. Viral-ngs, a collection of pipelines for viral genomic analyses including genome assembly and metagenomic classification, version 2.0.21;
https://viral-ngs.readthedocs.io/en/latest/; https://dockstore.org/organizations/Broadinstitute/collections/pgs
19. Scikit-learn, Python module for machine learning, version 0.23; https://scikit-learn.org/stable/
20. Statsmodels, Python module for statistical modeling version 0.12.1 https://www.statsmodels.org/stable/index.html
21. Idsc, Python module for GWAS heritability analysis. https://github.com/bulik/Idsc
22. MAGMA, C++ command line interface for gene-level GWAS analysis version 1.08b

https://ctg.cncr.nl/software/magma
23. scCODA, statistical testing for compositional analysis for scRNA-seq data, v0.1.1.post1,
https://github.com/theislab/scCODA/releases/tag/0.1.1.post1
24. adjusted_rand_score from sklearn.metrics.cluster was used to compute rand index for sub-clustering. https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.adjusted_rand_score.html
25. DecontX, ambient RNA removal from scRNA-seq count matrix data (part of the “celda” package) https://github.com/campbio/celda
version 1.5.11
26. GSVA,R package for gene set enrichment analysis was used to estimate the ssGSEA score for the alveoli NanoString GeoMX data. https://
www.bioconductor.org/packages/release/bioc/html/GSVA.html
27. Seurat R package for snRNA-seq data analysis v3.2.1
28. R packages ggplot2 v3.3.2, dplyr 0.8.0.1, reshape?2 v1.4.3 and cowplot v1.1.0 for visualization
29. liger R package v0.5.0 https://github.com/welch-lab/liger (Linked Inference of Genomic Experimental Relationships)
30. RSEM for bulk RNA-seq analysis , v1.2.8., https://deweylab.github.io/RSEM/
31. STAR for bulk RNA-seq alignment, v2.6.0c , https://github.com/alexdobin/STAR

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Data availability

Processed sequencing data (sc/snRNA-Seq and bulk) are available in the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) under accession no.
GSE171668 and raw human sequencing data is available in the controlled access repository DUOS (https://duos.broadinstitute.org/), under Dataset IDs
DUOS-000126, DUOS-000127, DUOS-000128 and DUOS-000129. Viral genome assemblies and short-read sequencing data are publicly available on NCBI's Genbank
and SRA databases, respectively, under BioProject PRINA720544. GenBank accessions for SARS-CoV-2 genomes are MW885875-MW®&85883. Data for other tissues
in the biobank will be released as they are acquired.

The processed data is available on the Single Cell Portal:

Lung - https://singlecell.broadinstitute.org/single_cell/study/SCP1052/
Heart - https://singlecell.broadinstitute.org/single_cell/study/SCP1216/
Kidney - https://singlecell.broadinstitute.org/single_cell/study/SCP1214/
Liver - https://singlecell.broadinstitute.org/single_cell/study/SCP1213/

Nanostring GeoMx raw and normalized count matrices are available on GEO under accession no. GSE163530. Raw images will be available upon request.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We generated sc/snRNA-Seq atlases of:
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Sample size lung (n=16 donors, k=106,792 cells/nuclei, x=23 specimens; Donors=D1-8, 10-17)
heart (n=18, k=40,880, x=19 specimens, D1-8, 10-11,14-17, 27-28, 31-32)
liver (n=15, k=47,001, x=16 specimens; D1-7,10-17)
kidney (n=16, k= 33,872, x=16 specimens;D4-8,10-12,14-15,17,25-26,28-30)

We generated spatial data on the following:

lung(n= 17 donors, x= 17 samples, Donors=D8-17,22-24)

heart(n=1 donor, x= 1 sample, Donor =D20

heart(n=1 donor, x= 1 sample, Donor =D20)

Because these are samples from human COVID-19 autopsy donors, we collected samples from as many donors that would consent over the

collection period. We did not perform any power analyses prior to this.

Data exclusions  CellBender was used to remove ambient RNA and other technical artifacts from the count matrices. Following CellBender, individual samples
were processed using Cumulus, including filtering out cells/nuclei with fewer than 400 UMI, 200 genes, or greater than 20% of UMIs mapped
to mitochondrial genes.

Replication These are samples from human COVID-19 autopsy donors, so we could not replicate samples

Randomization  These are samples from human COVID-19 autopsy donors, so we could not randomize

Blinding These are samples from human COVID-19 autopsy donors, so this was not applicable to our study

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

NXOXNXX[] s
OOXOOOX

Dual use research of concern

Antibodies

Antibodies used Immune Cell Profiling Panel (Core); Nanostring Inc; GMX-PROCONCT-HICP-12, Item 121300101, Lot# 0474026
10 Drug Target Panel; GMX-PROMODNCT-HIODT-12, Item 121300102, Lot# 0474029
Immune Activation Status Panel; Nanostring Inc; GMX-PROMODNCT-HIAS-12, Item 121300103, Lot# 0474032
Immune Cell Typing Panel; Nanostring Inc; GMX-PROMODNCT-HICT-12, Item 121300104, Lot# 0474035
Cell Death Panel; Nanostring Inc; GMX-PROMOD-NCTHCD-12, Lot# 0474050
MAPK Signaling Panel; Nanostring Inc; GMX-PROMOD-NCTHMAPK-12, Lot# 0474047
PI3K/AKT Signaling Panel; Nanostring Inc; GMX-PROMOD-NCTHPI3K-12, Lot# 0474053
Covid-19 GeoMx-formatted Antibody Panel including (TMPRSS2, clone EPR3861; ACE2, clone EPR4436; Cathepsin L/V/K/H, clone
EPR8011; DDXS5, clone EPR7239; and SARS-CoV-2 spike glycoprotein, polyclonal) ; Abcam; ab273594, Lot# GR3347471-1
GeoMx Solid Tumor TME Morphology Kit; Nanostring Inc; GMX-PRO-MORPH-HST-12; Item 121300310
Alexa Fluor® 647 alpha-Smooth Muscle Actin Antibody, clone 1A4 ; Novus Bio; IC1420R
CD68 antibody,KP1 clone from Santa Cruz (sc-20060 AF594)

Validation Nanostring morphological and staining panels are pre-validated by the manufacturer: https://www.nanostring.com/wp-content/
uploads/2020/12/GeoMx_Antibody_Validation_White_Paper-3.pdf
Morphological markers were previously demonstrated in human tissue in https://doi.org/10.1101/2020.08.25.267336

Human research participants

Policy information about studies involving human research participants

Population characteristics Extended Data Table 1 - Patient metadata table

Recruitment For BWH: Subjects were recruited who had died with positive SARS-CoV-2 NP swab test prior to death, and were consented
for autopsy to be performed at BWH less than 24 hours from the time of death. No decisions were influenced by subject age,
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race/ethnicity, sex/gender, pre-mortem treatments, or co-morbidities.

For MGH: All patients at the Massachusetts General Hospital (MGH) who succumbed from SARS-CoV-2 infection, as
confirmed by the qRT-PCR assays performed on nasopharyngeal swab specimens, were eligible for clinical autopsy upon
consent by their healthcare proxy or next of kin. A subset of these patients were also enrolled in the MGH Rapid Autopsy
Protocol if they had a history of known or suspected malignancy. Their clinical data and research specimens were collected in
accordance with Dana Farber/Harvard Cancer Center Institutional Review Board-approved protocol 13-416.

For BIDMC: The COVID rapid autopsy program was active at BIDMC from April 23, 2020 through May 6, 2020. An email was
sent to all physicians caring for COVID patients notifying them about the existence of the program and that participation in
the research autopsy program could be offered to families of deceased patients. The decision to offer participation in the
autopsy research program to the next of kin of decedents was at the discretion of their treating physicians. In total, five
autopsies were performed, representing a small fraction of the patients treated at BIDMC during the initial COVID surge of
Spring 2020. No efforts were made to specifically include or exclude subjects based on any demographic data or pre-existing
medical condition.

For NYP: Inclusion criteria for autopsies from COVID-19 donors cared for at New York Presbyterian Hospital/Columbia
University Medical Center included real-time reverse transcription polymerase chain reaction (RT-PCR) confirmed infection,
consent to perform rapid autopsy and post mortem intervals <10 hours. Appropriate consent was obtained from donors or
the donors' next of kin. All procedures performed on donor samples were in accordance with the ethical standards of the IRB
and the Helsinki Declaration and its later amendments. Frozen control tissues were assessed by a pulmonary pathologist and
represent “uninvolved” regions of biobanked tumor resections. Donor characteristics reflect the age, gender, and race
representation of patients admitted to New York Presbyterian Hospital/Columbia University Medical Center with COVID-19.
Control samples were selected to reflect median age distribution of COVID-19 cases included in the study and match the
gender distribution.
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Ethics oversight Secondary analysis of samples at the Broad Institute was covered under Massachusetts Institute of Technology (MIT) IRB
protocols 1603505962 and 1612793224, or the NHSR (not-involving-human-subjects research) protocol ORSP-3635. No
subject recruitment or ascertainment was performed as part of the Broad protocol. Samples added to this protocol also
underwent IRB review and approval at the institutions where the samples were originally collected. Specifically, Dana-Farber
Cancer Institute approved the protocol 13-416, Partners/Massachusetts General Hospital and Brigham and Women's
Hospital approved the following protocols: 2020P000804, 2020P000849, 2015P002215; Beth Israel Deaconess approved
protocol 2020P000406.224. No subject recruitment or ascertainment was performed as part of the Broad protocol. All tissue
specimens of lethal COVID-19 and controls collected at New York Presbyterian Hospital/Columbia University Medical Center
were under IRB approved protocols (IRB-AAATO785 and IRB-AAAB2667). Appropriate consent was obtained from patients or
the patients' next of kin. All procedures performed on patient samples at New York Presbyterian Hospital/Columbia
University Medical Center were in accordance with the ethical standards of the IRB and the Helsinki Declaration and its later
amendments.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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