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Abstract

A major challenge in clinical In-Vitro Fertilization (IVF) is selecting the highest quality embryo to 

transfer to the patient in the hopes of achieving a pregnancy. Time-lapse microscopy provides 

clinicians with a wealth of information for selecting embryos. However, the resulting movies of 

embryos are currently analyzed manually, which is time consuming and subjective. Here, we 

automate feature extraction of time-lapse microscopy of human embryos with a machine-learning 

pipeline of five convolutional neural networks (CNNs). Our pipeline consists of (1) semantic 

segmentation of the regions of the embryo, (2) regression predictions of fragment severity, (3) 

classification of the developmental stage, and object instance segmentation of (4) cells and (5) 

pronuclei. Our approach greatly speeds up the measurement of quantitative, biologically relevant 

features that may aid in embryo selection.
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1 Introduction

One in six couples worldwide suffer from infertility [7]. Many of those couples seek to 

conceive via In-Vitro Fertilization (IVF). In IVF, a patient is stimulated to produce multiple 

oocytes. The oocytes are retrieved, fertilized, and the resulting embryos are cultured in vitro. 

Some of these are then transferred to the mother’s uterus in the hopes of achieving a 

pregnancy; the remaining viable embryos are cryopreserved for future treatments. While 

transferring multiple embryos to the mother increases the potential for success, it also 

increases the potential for multiple pregnancies, which are strongly associated with 

increased maternal morbidity and offspring morbidity and mortality [25]. Thus, it is highly 
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desirable to transfer only one embryo, to produce only one healthy child [29]. This requires 

clinicians to select the best embryos for transfer, which remains challenging [27].

The current standard of care is to select embryos primarily based on their morphology, by 

examining them under a microscope. In a typical embryo, after fertilization the two 

pronuclei, which contain the father’s and mother’s DNA, move together and migrate to the 

center of the embryo. The embryo undergoes a series of cell divisions, during the “cleavage 

stage.” Four days after fertilization, the embryo compacts and the cells firmly adhere to each 

other, at which time it is referred to as a compact “morula.” On the fifth day, the embryo 

forms a “blastocyst,” consisting of an outer layer of cells (the trophectoderm) enclosing a 

smaller mass (the inner-cell mass). On the sixth day, the blastocyst expands and hatches out 

of the zona pellucida (the thin eggshell that surrounds the embryo) [10]. Clinicians score 

embryos by manually measuring features such as cell number, cell shape, cell symmetry, the 

presence of cell fragments, and blastocyst appearance [10], usually at discrete time points. 

Recently, many clinics have started to use time-lapse microscopy systems that continuously 

record movies of embryos without disturbing their culture conditions [30,9,3]. However, 

these videos are typically analyzed manually, which is time-consuming and subjective.

Previous researchers have trained convolutional neural networks (CNNs) to directly predict 

embryo quality, using either single images or time-lapse videos [26,32]. However, 

interpretability is vital for clinicians to make informed decisions on embryo selection, and 

an algorithm that directly predicts embryo quality from images is not interpretable. Worse, 

since external factors such as patient age [12] and body-mass index [5] also affect the 

success of an embryo transfer, an algorithm trained to predict embryo quality may instead 

learn a representation of confounding variables, which may change as IVF practices or 

demographics change. Some researchers have instead trained CNNs to extract a few 

identifiable features, such as blastocyst size [18], blastocyst grade [20,11,19], cell 

boundaries [28], or the number of cells when there are 4 or fewer [17,21]. While extracting 

identifiable features obviates any problems with interpretability, these works leave out many 

key features that are believed to be important for embryo quality. Moreover, these methods 

are not fully automated, requiring the input images to be manually annotated as in the 

cleavage or blastocyst stage.

Here, we automate measurements of five key morphokinetic features of embryos in IVF by 

creating a unified pipeline of five CNNs. We work closely with clinicians to choose features 

relevant for clinical IVF: segmentation of the zona pellucida (Fig. 1a), grading the degree of 

fragmentation (Fig. 1b), classification of the developmental stage from 1-cell to blastocyst 

(Fig. 1c), object instance segmentation of cells in the cleavage stage (Fig. 1d), and object 

instance segmentation of pronuclei before the first cell division (Fig. 1e). With the exception 

of zona pellucida segmentation, all these features are used for embryo selection [1,27,2,24]; 

we segment the zona pellucida both to improve the other networks and because zona 

properties occasionally inform other IVF procedures [6]. The five CNNs work together in a 

unified pipeline, combining results to improve performance over individual CNNs trained 

per task by several percent.
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2 Dataset

We train the CNNs using data from the Embryoscope®, the most widely-used system for 

IVF with standardized, time-lapse microscopy [9]. Embryoscope® images are grayscale, 

and taken using Hoffman Modulation Contrast microscopy [16], in which the intensity 

roughly corresponds to refractive index gradients. In our dataset, the Embryoscope® takes 

an image every 20 minutes at 7 focal planes, usually at 15 μm increments. The recorded 

images provide views of the embryo with different amounts of defocus; they do not provide 

3D information. The embryos are recorded for 3 – 5 days, corresponding to 200 – 350 

images at each focal plane (i.e., 1400 – 2450 images per embryo), although embryos are 

occasionally removed from the incubation system for clinical procedures. To train the 

CNNs, we curate a dataset with detailed, frame-by-frame labels for each task.

3 Our Pipeline

For each time-lapse video, we measure 5 morphokinetic features using 5 networks:

Zona Pellucida Segmentation:

We first perform semantic segmentation to identify regions of the embryo, segmenting the 

image into four regions: pixels outside the well, inside the well, the zona pellucida, and the 

space inside the zona pellucida (the perivitelline space and embryo; Figure 2, left). We 

segment the images by using a fully-convolutional network (FCN [23]; based on Resnet101 

[15]) to predict a per-pixel class probability for each pixel in the image. We train the FCN 

with images chosen from 203 embryos at 3,618 time points; we use neither a separate 

validation set nor early stopping for the zona segmentation.

The zona pellucida segmentation network in our pipeline takes the full 500×500 pixel image 

as input. We use the segmentation result to crop the images to 328×328, centered around the 

embryo, as input for the other networks.

Fragmentation Scoring:

With the cropped image from the zona pellucida segmentation, we score the embryo’s 

degree of fragmentation using a regression CNN (InceptionV3 [31]). The network takes a 

single-focus image as input and predicts a fragmentation score of 0 (0% fragments), 1 

(<10%), 2 (10–20%), or 3 (≥20%), following clinical practice. We train the network to 

minimize the L1 loss on cleavage-stage images of 989 embryos at 16,315 times, each labeled 

with an integer score from 0–3; we use a validation set of 205 embryos labeled at 3,416 

times for early stopping [13]. For each time point in the movie we analyze, we run the CNN 

on the three middle focal planes and take the average as the final score (Figure 3, left).

Counting and identifying cells in fragmented embryos is difficult, inhibiting the labeling of 

train or test data for these embryos. Moreover, since high fragmentation is strongly 

correlated with low embryo viability [1], in standard clinical practice highly fragmented 

embryos are frequently discarded. Thus, we only train the rest of the networks on embryos 

with fragmentation less than 2.
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Stage Classification:

For low fragmentation embryos, we classify the embryo’s developmental stage over time 

using a classification CNN (ResNeXt101 [33]). The classifier takes the three middle focal 

planes as input and predicts a 13-element vector of class probabilities, with 9 classes for 

cleavage-stage embryos (one each for 1–8 cells and one for ≥ 9 cells) and one class each for 

morula (M), blastocyst (B), empty wells (E), and degenerate embryos (D; Figure 4, left). To 

account for inaccuracies in the training data labels, we trained the classifier with a soft loss 

function modified from the standard cross-entropy loss

log(p(l ∣ m)) = log ∑
t

p(l ∣ t)p(t ∣ m) , (1)

where t is the true stage of an image, ℓ the (possibly incorrect) label, and m the model’s 

prediction. We measured p(ℓ|t) by labeling 23,950 images in triplicate and using a majority 

vote to estimate the true label t of each image. This soft-loss differs from the regularized loss 

in [31] by differentially weighting classes; for instance, p(ℓ = 1-cell|t = 1-cell) = 0.996 

whereas p(ℓ = 6-cell|t = 6-cell) = 0.907. Using the measured p(ℓ|t), we then trained the 

network with 341 embryos labeled at 111,107 times, along with a validation set of 73 

embryos labeled at 23,381 times for early stopping [13]. Finally, we apply dynamic 

programming [4] to the predicted probabilities to find the most-likely non-decreasing 

trajectory, ignoring images labeled as empty or degenerate (Figure 4, center).

Cell Object Instance Segmentation:

For the images identified by the stage classifier as having 1–8 cells, we next perform object 

instance segmentation on each cell in the image. We train a network with the Mask R-CNN 

architecture [14] and a ResNet50 backbone [15], using 102 embryos labeled at 16,284 times 

with 8 or fewer cells; we also use a validation set of 31 embryos labeled at 4,487 times for 

early stopping [13]. Our instance segmentation model takes as input a single-focus image 

cropped from the zona segmentation and resized to 500×500. The segmentation model then 

predicts a bounding box, mask, and confidence score for each detected cell candidate 

(Figure 5, left). Both the ground-truth labels and the predicted masks overlap significantly 

when the embryo has 2–8 cells (Figure 5, center). We produce a final prediction by running 

our segmentation model on the three central focal planes; we merge candidates found across 

focal planes by using the one with the highest confidence score.

Pronucleus Object Instance Segmentation:

Finally, in the images identified as 1-cell by the stage classifier, we detect the presence of 

pronuclei. To do so, we train another object instance segmentation network with the Mask 

R-CNN architecture [14] and a ResNet50 backbone [15]. We use a training set of 151 

embryos labeled at 9,250 times during the 1-cell stage, with a validation set of 33 embryos 

labeled at 1,982 times for early stopping [13]. Pronuclei are only visible during a portion of 

the 1-cell stage; correspondingly, about 38% of the training images contain 0, 6% contain 1, 

and 54% contain 2 pronuclei. The pronuclei detector takes as input a single image, cropped 

from the zona pellucida segmentation and resized to 500×500, and it predicts a bounding 

box, mask, and confidence score for each detected candidate (Figure 6, left). We run the 
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pronuclei detector on the three middle focal planes and merge candidates by using the one 

with the highest confidence score.

4 Results

We now evaluate our pipeline’s performance, demonstrating the effect of each design choice 

in the models with ablation studies.

Zona Pellucida Segmentation:

Our zona pellucida network nearly optimally segments the test set images, taken from 36 

embryos at 576 times. The FCN correctly labels image pixels 96.7% of the time, with per-

class accuracies between 93–99% (Figure 2, right). The misclassified pixels arise mostly at 

region boundaries, roughly corresponding to the few-pixel human labeling inprecision at 

region boundaries.

Fragmentation Scoring:

The network predicts a score with a mean-absolute deviation of 0.45 from the test labels on 

the fragmentation test set of 216 embryos labeled at 3,652 times (Figure 3, right). When 

distinguishing between low(< 1.5) and high- (≥ 1.5) fragmentation, the network and the test 

labels agree 88.9% of the time. Our network outperforms a baseline InceptionV3 by 1.9%; 

focus averaging and cropping to a region-of-interest each provide a 1–1.5% boost to the 

accuracy (Table 1).

We suspect that much of the fragmentation network’s error comes from imprecise human 

labeling of the train and test sets, due to difficulties in distinguishing fragments from small 

cells and due to grouping the continuous fragmentation score into discrete bins. To evaluate 

the human labeling accuracy, two annotators label the fragmentation test set in duplicate and 

compare their results. The two annotators have a mean-absolute deviation of 0.37 and are 

88.9% consistent in distinguishing low- from high- fragmentation embryos. Thus, the 

fragmentation CNN performs nearly optimally in light of the labeling inaccuracies.

Stage Classification:

The stage classifier predicts the developmental stage with a 87.9% accuracy on the test set, 

consisting of 73 embryos labeled at 23,850 times (Figure 4, right). The network’s accuracy 

is high but lower than the human labeling accuracy on the test set (94.6%). The network 

outperforms a baseline ResNeXt101 by 6.7%; both the soft-loss and the dynamic 

programming each improve the predictions by 2% (Table 1). The stage classifier struggles 

when there are between 5 and 8 cells (66.9% accuracy for these classes). In contrast, the 

stage classifier does exceedingly well on images with 1-cell (99.9%), 2-cells (98.7%), empty 

wells (99.4%), or blastocysts (98.0%; Figure 4, right). Despite measuring significantly more 

developmental stages, our stage classifier outperforms previous cell counting networks 

developed for human embryos [17,21].

Leahy et al. Page 5

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2020 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cell Object Instance Segmentation:

We measure the accuracy of the cell instance segmentation network using mean-average 

precision (mAP) [22], a standard metric for object instance segmentation tasks. Our network 

predicts cell masks with a mAP of 0.737 on the test set, consisting of 31 embryos labeled at 

4,953 times. The model identifies cells with a precision of 82.8% and a recall of 88.4%, 

similar to results from other work on fewer images [28]. For correctly-identified candidates, 

the predicted cell area is within 17% of the true cell area 90% of the time (Figure 5, right); 

much of this error arises when cells strongly overlap late in the cleavage stage. Cropping to a 

region-of-interest provides a marginal improvement to the network’s accuracy (Table 1).

Pronucleus Object Instance Segmentation:

The pronuclei segmentation network predicts masks with a mAP of 0.680 on the test set of 

33 embryos labeled at 2,090 times. The network identifies pronuclei with a precision of 

81.4% and a recall of 88.2%. Much of the false positive detections are from vacuoles inside 

the 1-cell embryo, which look similar to pronuclei. For correctly-identified candidates, the 

predicted pronuclei area is within 16% of the true pronuclei area 90% of the time (Figure 6, 

right). The pronuclei network’s mAP outperforms that of a baseline Mask-RCNN by 0.03; 

averaging across focal planes and cropping to a region-of-interest each improves the mAP 

by 0.01 (Table 1).

5 Conclusions

Our unified pipeline greatly speeds up the measurement of embryos: running all five 

networks on a 300-image, five-day movie takes 6 minutes on a GTX Titan X. In the future, 

we plan to make this pipeline even faster by combining all five networks with multi-task 

learning [8]. Since we measure many of the key morphological features used in clinical IVF, 

our unified pipeline has the potential to reduce the time to grade embryos without sacrificing 

interpretability. Equally as important, the automatic, high-quality data produced by our 

pipeline will enable better retrospective chart studies for IVF, improving IVF by informing 

better clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Instead of performing one task, our unified pipeline extracts multiple features from embryos. 

We first segment the image to locate the embryo (panel a), colored according to 

segmentation. The segmentation provides a region-of-interest (ROI, white box) for the other 

4 networks, starting with embryo fragmentation (b); the image shown has a predicted 

fragmentation score of 0.26. If the embryo’s fragmentation score is less than 1.5, we classify 

the developmental stage (c); this image is classified as a 2-cell embryo. We then detect cells 

in cleavage stage embryos (orange contours in d) and pronuclei in 1-cell embryos (magenta 

contours in e).
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Fig. 2. 
The zona pellucida network (ResNet101 FCN) performs semantic segmentation on the input 

image, predicting four class probabilities for each pixel (colored as purple: outside well, 

pink: inside well, green: zona pellucida, cyan: inside zona). Middle: 12 representative 

segmentations of 3 embryos from the test set. Right: the per-pixel accuracies of the 

segmentation on each class in the test set.
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Fig. 3. 
Left: The fragmentation network (InceptionV3 architecture) scores embryos with a real 

number from 0 – 3; the image at left is scored as a fragmentation of 2.46. Center: 8 

representative fragmentation scores on the test set, shown as image: score pairs. Right: The 

distribution of the network’s prediction given the ground-truth label on the test set. The 

green distribution corresponds to images with a ground-truth label of 0; orange those labeled 

as 1; blue, 2; pink, 3.
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Fig. 4. 
Left: The stage classification CNN (ResNeXt101) predicts a per-class probability for each 

image; the two bar plots show the predicted probabilities for the two images. Center: We use 

dynamic programming to find the most-likely non-decreasing trajectory (orange); the circled 

times t1 and t2 correspond to the predictions at left. Right: The distribution of predictions 

given the true labels, measured on the test set.
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Fig. 5. 
The cell detection network (Mask-RCNN, ResNet50 backbone) takes an image (left) and 

proposes candidates as a combined object mask and confidence score from 0–1 (second 

from left). Center: The boundaries of the object mask represented as the cell’s contours 

(orange, center). Second from right: 12 cell instance segmentations for 4 embryos from the 

test set (shown as orange contours overlaid on the original image). Right: Histogram of the 

ratio of predicted to true areas for correctly identified cells in the test set.
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Fig. 6. 
The pronuclei detection network (Mask-RCNN, ResNet50 backbone) takes an image (left) 

and proposes candidates as a combined object mask and confidence score from 0–1 (second 

from left). Center: The boundaries of the object mask represented as the pronuclei contours 

(magenta, center). Second from right: 12 pronuclei instance segmentations for 4 embryos 

from the test set (shown as magenta contours overlaid on the original image); the rightmost 

images illustrate true negatives after the pronuclei have faded. Right: Histogram of the ratio 

of predicted to true areas for correctly identified pronuclei in the test set.
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Table 1.

Effect of design choices for the 4 more difficult tasks, illustrated by removing one modification to the network 

at a time. Test-set scores are in percent correctly classified (stage, fragmentation) and mean-average precision 

(blastomere, pronuclei). The best scores are boldfaced. The last row shows the test set scores using all the 

training data but no input from other networks and no modifications to the network.

Setting Fragmentation (%) Stage (%) Blastomere (mAP) Pronuclei (mAP)

Full Setting 88.9 87.8 0.737 0.680

Single Focus 87.8 84.8 0.739 0.668

No ROI from Zona 87.4 84.9 0.733 0.666

Using 50% Training Data 87.7 85.3 0.718 0.656

No Soft Loss – 85.3 – –

No Dynamic Programming – 86.0 – –

Single-Task Baselines 87.0 [31] 81.1 [33] 0.737 [14] 0.647 [14]
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