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Abstract

Rational protein engineering requires a holistic understanding of protein function. Here, we apply 

deep learning to unlabeled amino-acid sequences to distill the fundamental features of a protein 

into a statistical representation that is semantically rich and structurally, evolutionarily and 

biophysically grounded. We show that the simplest models built on top of this unified 

representation (UniRep) are broadly applicable and generalize to unseen regions of sequence 

space. Our data-driven approach predicts the stability of natural and de novo designed proteins, 

and the quantitative function of molecularly diverse mutants, competitively with the state-of-the-

art methods. UniRep further enables two orders of magnitude efficiency improvement in a protein 

engineering task. UniRep is a versatile summary of fundamental protein features that can be 

applied across protein engineering informatics.

Protein engineering has the potential to transform synthetic biology, medicine and 

nanotechnology. Traditional approaches to protein engineering rely on random variation and 

screening/selection without modeling the relationship between sequence and function1,2. In 

contrast, rational engineering approaches seek to build quantitative models of protein 

properties, and use these models to more efficiently traverse the fitness landscape to 
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overcome the challenges of directed evolution3–9. Such rational design requires a holistic 

and predictive understanding of structural stability and quantitative molecular function that 

has not been consolidated in a generalizable framework until now.

Although the set of engineering-relevant properties might be large, proteins share a smaller 

set of fundamental features that underpin their function. Current quantitative protein 

modeling approaches aim to approximate one or a small subset of them. For example, 

structural approaches, which include biophysical modeling10, statistical analysis of crystal 

structures10 and molecular dynamics simulations11, largely operate on the basis of free 

energy and thermostability to predict protein function. More data-driven co-evolutionary 

approaches rely on fundamental evolutionary properties to estimate the statistical likelihood 

of protein stability or function. While successful in their respective domains, these methods’ 

tailored nature, by way of the features they approximate, limits their universal application. 

Structural approaches are limited by the relative scarcity of structural data (Supplementary 

Fig. 1), computational tractability or difficulty with function-relevant spatio-temporal 

dynamics, which are particularly important for engineering12–14. Co-evolutionary methods 

operate poorly in underexplored regions of protein space (such as low-diversity viral 

proteins15) and are not suitable for de novo designs. Unlike these approaches, a method that 

scalably approximates a wider set of fundamental protein features could be deployed in a 

domain-independent manner, bringing a more holistic understanding to bear on rational 

design.

Deep learning is a flexible machine learning paradigm that can learn rich data 

representations from raw inputs. Recently, this flexibility was demonstrated in protein 

structure prediction, replacing complex informatics pipelines with models that can predict 

structure directly from sequence16. Additionally, deep learning has shown success in sub-

problems of protein informatics; for example, variant-effect prediction15, function 

annotation17,18, semantic search18 and model-guided protein engineering3,4. While exciting 

advances, these methods are domain-specific or constrained by data scarcity due to the high 

cost of protein characterization.

On the other hand, there is a plethora of publicly available raw protein sequence data. The 

number of such sequences is growing exponentially19, leaving most of them uncharacterized 

(Supplementary Fig. 1) and thus difficult to use in the modeling paradigms described above. 

Nevertheless, these are sequences from extant proteins that are putatively functional, and 

therefore may contain valuable information about stability, function and other engineering-

relevant properties. Indeed, previous work has attempted to learn raw sequence-based 

representations for subsequences20, and full-length ‘Doc2Vec’ protein representations 

specifically for protein characteristic prediction21. However, these methods have neither 

been used to learn general representations at scale, nor been evaluated on a comprehensive 

collection of protein informatics problems.

Here, we use a recurrent neural network (RNN) to learn statistical representations of 

proteins from ~24 million UniRef50 (ref. 22) sequences (Fig. 1a). Without structural or 

evolutionary data, this unified representation (UniRep) summarizes arbitrary protein 

sequences into fixed-length vectors approximating fundamental protein features (Fig. 1b). 
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This method scalably leverages underused raw sequences to alleviate the data scarcity 

constraining protein informatics so far, and achieves generalizable, superior performance in 

critical engineering tasks from stability, to function, to design.

Results

An mLSTM learns semantically rich representations from a massive sequence dataset.

Multiplicative long-/short-term-memory (mLSTM) RNNs learn rich representations for 

natural language, enabling state-of-the-art performance on critical tasks23. This architecture 

learns by going through a sequence of characters in order, trying to predict the next one 

based on the model’s dynamic internal ‘summary’ of the sequence it has seen so far (its 

‘hidden state’). During training, the model gradually revises the way it constructs its hidden 

state to maximize the accuracy of its predictions, resulting in a progressively better statistical 

summary, or representation, of the sequence.

We trained a 1,900-hidden unit mLSTM with amino-acid character embeddings (architecture 

in Supplementary Fig. 2) on ~24 million UniRef50 amino-acid sequences for ~3 weeks on 

four Nvidia K80 graphics processing units (GPUs) (Methods). To examine what it learned, 

we interrogated the model from the amino acid to the proteome level and examined its 

internal states.

We found that the amino-acid embeddings (Methods) learned by UniRep contained 

physicochemically meaningful clusters (Fig. 2a). A two-dimensional t-distributed stochastic 

neighbor embedding24 (t-SNE) projection of average UniRep representations for 53 model 

organism proteomes (Supplementary Table 1) showed meaningful organism clusters at 

different phylogenetic levels (Fig. 2b), and these organism relationships were maintained at 

the individual protein level (Supplementary Fig. 3).

To assess how semantically related proteins are represented by UniRep, we examined its 

ability to partition structurally similar sequences that share little sequence identity and 

enable unsupervised clustering of homologous sequences.

UniRep separated proteins from various structural classification of proteins (SCOP) classes 

derived from crystallographic data (Fig. 2c and Methods). More quantitatively, a simple 

Random Forest model trained on UniRep could accurately group unseen proteins into SCOP 

superfamily and fold classes (Supplementary Table 2 and Methods).

We next analyzed two expertly labeled datasets of protein families compiled on the basis of 

functional, evolutionary and structural similarity: HOMSTRAD25 (3,450 proteins in 1,031 

families) and OXBench26 (811 proteins in 180 families). Using Euclidean distances between 

UniRep vectors, we performed unsupervised hierarchical clustering of proteins in these 

families and found good agreement with expert assignments according to three standard 

clustering metrics. We compared to baselines that included global sequence alignment 

distance computed with the Levenshtein algorithm, which is equivalent to the standard 

Needleman–Wunsch with equal penalties27,28 (Fig. 2d and Supplementary Figs 4–6, see 

Methods).
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We finally examined correlations of the internal hidden states with protein secondary 

structure on a number of datasets (Methods). We found a single neuron (single coordinate of 

the 1,900-dimensional mLSTM hidden state) positively correlating with alpha-helix 

annotations (Pearson’s r = 0.33, P < 1 × 10−5), and negatively correlating with beta-sheet 

annotations (Pearson’s r = −0.35, P < 2 × 10−6). This suggests the network derived 

secondary structure ‘from scratch’, through purely unsupervised means, as a compressive 

principle for next amino-acid prediction. Examination of this neuron’s activation pattern on 

the Lac repressor structure visually confirmed these statistics (Fig. 2e). Helix-sheet neuron 

activation across many helices and sheets from different proteins revealed encoding of both 

secondary structure units going beyond individual amino acids (Fig. 2f). We found other 

neuron correlations with biophysical parameters including solvent accessibility 

(Supplementary Fig. 7). Taken together, we conclude the UniRep vector space is 

semantically rich, and encodes structural, evolutionary and functional information.

Predicting stability of naturally occurring and de novo designed proteins.

Protein stability is a fundamental determinant of protein function and a critical engineering 

endpoint that affects the production yields29, reaction rates30 and shelf-life31 of protein 

catalysts, sensors and therapeutics. Therefore, we next evaluated UniRep as a basis for 

predicting stability for a large collection of de novo designed mini proteins5.

For proper model comparison we withheld a random test set never seen during training, even 

for model selection (Methods). We compared simple sparse linear models, trained with 

experimental data, on top of UniRep (Fig. 1b) to those that were likewise trained with 

experimental data on top of a suite of baseline representations selected to encompass simple 

controls, standard models known to generalize well and published a state-of-the-art Doc2Vec 

representation from Yang et al.21 and a deep structural representation from the Recurrent 

Geometric Network (RGN)16 (Supplementary Fig. 8 and Methods). For this analysis, we 

also generated ‘UniRep Fusion’ by concatenating the UniRep representation with other 

internal states of the mLSTM to obtain an expanded version of the representation (Methods 

and Supplementary Table 3).

We also benchmarked against Rosetta, an established structural stability prediction method, 

using published Rosetta total energy scores for a subset of proteins in this dataset5. Despite 

lacking the explicit physical knowledge and structural data that Rosetta relies on, UniRep 

Fusion with a top model trained on experimental stability data significantly outperformed 

Rosetta on rank order correlation with measured stability on the overall held-out test set 

(Spearman’s ρ = 0.59 versus 0.42, see Fig. 3a and Methods) and on each fold topology 

subset (Supplementary Table 4). Unlike UniRep, Rosetta does not provide a mechanism to 

incorporate our experimental stability data, which is a limitation of this comparison. UniRep 

Fusion additionally outperformed all baselines in our suite on the test dataset 

(Supplementary Tables 5 and 6 and Methods). Due to Rosetta’s large computational 

requirements32 we did not extend this baseline to further analyses.

This result was surprising because de novo designed proteins constitute a miniscule 

proportion (1 × 10−7) of the UniRep training data33. Thus, we further evaluated UniRep’s 

performance on de novo designs compared directly to natural proteins by using 17 distinct 
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deep mutational scanning (DMS) datasets, which provide uniform measurements of stability 

of three natural and 14 de novo designed proteins and their associated single mutants5. 

These single-residue mutants present an additional challenge for UniRep trained exclusively 

on sequences with <50% similarity. As before, a random test set was withheld for each 

protein and a separate top model was trained on each protein’s training set.

We found UniRep Fusion-based models outperformed all baseline models on both natural 

and de novo designed individual protein test sets and in pooled analysis (Supplementary 

Tables 5 and 6). The three proteins with the best test performance (EEHEE_rd3_0037, 

HHH_rd2_0134 and HHH_0142 measured by Pearson’s r) were de novo designed (Fig. 3b, 

validation in Supplementary Fig. 9). To further contextualize this result, we compared 

UniRep-based models to STRUM34, a standard approach for calculating the ΔΔG of a point 

mutation relative to a wild-type sequence. For point mutations of the three natural proteins in 

this dataset, UniRep predictions consistently achieved significantly higher Spearman ρ 
compared to STRUM (hYAP65: 0.78 versus 0.54; villin: 0.86 versus 0.33; Pin1 0.89 versus 

0.55, P < 1 × 10−16). We also compared UniRep-based models to DMS-specific 

nonparametric baselines that were not based on representations. UniRep outperformed these 

nonparametrics on 16/17 DMS datasets. Substituting linear regression for a simple 

nonparametric top model brings UniRep performance above the baselines on the single 

dataset it performed worse on (Supplementary Fig. 15). Finally, we found that the same 

features of the representation were consistently identified by the UniRep-based linear model 

(Fig. 3c), suggesting a learned basis that is shared between de novo designed and naturally 

occurring proteins. The helix-sheet neuron, evaluated earlier on natural proteins (Fig. 2f), 

detected alpha helices on the de novo designed protein HHH_0142 (PDB 5UOI) (Fig. 3d). 

Together, these results suggest that UniRep approximates a set of fundamental biophysical 

features shared between all proteins.

Prediction of functional effects of single mutations in diverse proteins.

Because UniRep enables stability prediction, we hypothesized it could be a basis for the 

prediction of protein function directly from sequence. To test this hypothesis, we sourced 

nine diverse quantitative function prediction DMS datasets, incorporating data from eight 

different proteins35. Each of these datasets only included single point mutants of the wild-

type protein (>99% similarity), which were characterized with molecular assays specific to 

each protein function35. For each protein dataset, we asked whether a simple sparse linear 

model trained on UniRep representations could predict the normalized (to wild-type) 

quantitative function of held-out mutants.

On all nine DMS datasets, UniRep Fusion-based models achieved superior test set 

performance, outperforming a comprehensive suite of baselines including a state-of-the-art 

Doc2Vec representation (Fig. 3e and Supplementary Tables 5 and 6). This is surprising given 

that these proteins share little sequence similarity (408 mutations apart on average), are 

derived from six different organisms, range in size (264–724 aa), vary from near-universal 

(hsp90) to organism-specific (Gb1) and take part in diverse biological processes (for 

example, catalysis, DNA binding, molecular sensing and protein chaperoning)35. UniRep’s 

consistently superior performance, despite each protein’s unique biology and measurement 
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assay, suggests UniRep is not only robust, but also must encompass features that underpin 

the function of all of these proteins.

Generalization through accurate approximation of the fitness landscape.

A core challenge of rational protein engineering is building models that generalize from 

local data to distant regions of sequence space where more functional variants exist. Deep-

learning models often have difficulty generalizing outside their training domain36. Because 

UniRep was trained in an unsupervised manner on a wide sampling of proteins and is 

relatively compact (Supplementary Fig. 10), we hypothesized UniRep might capture general 

features of protein fitness landscapes that extend beyond task-specific training data.

To test this, we focused on fluorescent proteins, which have previously measured fitness 

landscapes37, and are useful for in vivo and in situ imaging, calcium and transmembrane 

voltage sensing and optogenetic actuation38. We tested UniRep’s ability to accurately predict 

the phenotype of distant functional variants of Aequorea victoria green fluorescent protein 

(avGFP) given only local phenotype data from a narrow sampling of the avGFP fitness 

landscape37.

We considered what sized region of sequence space would make the best training data for 

UniRep. Training on a broad sequence corpus, such as UniRef50, captures global 

determinants of protein function, but sacrifices fine-grained local context. On the other hand, 

training on a local region of extant sequences near the engineering target provides more 

nuanced data about the target, but neglects global features. Therefore, we hypothesized that 

an effective strategy may be to start with the globally trained UniRep and then fine-tune it to 

the evolutionary context of the task (Fig. 4a). To perform evolutionary fine-tuning (which we 

call ‘evotuning’), we ran ~13,000 unsupervised weight updates of the UniRep mLSTM 

(Evotuned UniRep) performing the same next-character prediction task on a set of ~25,000 

likely evolutionarily related sequences obtained via JackHMMER search (Methods). We 

compared this to the untuned, global UniRep as well as a randomly initialized UniRep 

architecture trained only on local evolutionary data (Evotuned Random, see Fig. 4a and 

Methods).

Using these trained unsupervised models we generated representations for the green 

fluorescent protein from avGFP variant sequences from Sarkisyan et al.37 and trained simple 

sparse linear regression top models on each to predict avGFP brightness. We then predicted 

the brightness of 27 functional homologs and engineered variants of avGFP sourced from 

the fluorescent protein base (FPbase) database39 using each of the models. The sequences in 

this generalization set were 2–19 mutations removed from avGFP, and were not present in 

the set of sequences used for evotuning.

All three representation-based models correctly predicted most of the sequences in the 

generalization set to be bright (Fig. 4b), with the Evotuned UniRep-based model having the 

best classification accuracy (26/27 correctly classified). As a control, we predicted the 

brightness of 64,800 variants, each of which harbored 1–12 mutations relative to a 

generalization set member. We assumed variants with 6–12 mutations were nonfunctional 

based on empirical observation of the avGFP fitness landscape37. Indeed, variants with 6–12 
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mutations were predicted to be nonfunctional on average, confirming that these 

representation + avGFP top models were both sensitive and specific even on a distant test set 

(Fig. 4b). On average, the representation + avGFP top models predicted decreasing 

brightness under increasing mutational burden (Fig. 4c), identifying generalization set 

members as predicted local optima in the fitness landscape. The Evotuned UniRep-based 

models uniquely predicted a nonlinear decline in brightness for generalization set members, 

closely matching the empirical observations for avGFP37 (Pearson’s r = 0.98). This is 

indicative of predicted epistasis, consistent with previous work on epistasis in protein fitness 

landscapes37,40,41. These data suggest that UniRep-based models generalize by building 

good approximations of the distant fitness landscape using local measurements alone.

We confirmed these findings with additional analysis of generalization for distinct prediction 

tasks (Supplementary Fig. 11). We show that UniRep does not require evotuning to enable 

generalizable prediction of stability (Supplementary Fig 11c), even if forced to extrapolate 

from nearby proteins to more distant ones (Supplementary Fig 11d). Despite not overlapping 

in sequence space, training and test points were co-localized in UniRep space suggesting 

that UniRep discovered commonalities between training and test proteins that effectively 

transformed the problem of extrapolation into one of interpolation, providing a plausible 

mechanism for our performance.

UniRep increases efficiency in a fluorescent protein engineering problem.

We hypothesized that UniRep’s generalizable function prediction could enable the discovery 

of functional diversity and function optimization—the ultimate goals of any protein 

engineering effort. We constructed a sequence prioritization problem in which the 

representation + avGFP top models were tasked with prioritizing the 27 truly bright 

homologs from the generalization set over the 32,400 likely nonfunctional sequences 

containing 6–12 mutations relative to a member of the generalization set. We tested each 

model’s ability (1) to prioritize the brightest GFP in the dataset (‘Brightest sequence 

recovery’) and (2) to recover bright homologs (‘Bright diversity recovery’) measured by 

statistical recall at different testing budgets. As a lower-bound model, we defined a null 

model that orders sequences randomly, and as a upper-bound model, we defined an ideal 

model that prioritizes sequences perfectly according to ground truth. As a baseline, we 

trained avGFP top models on Doc2Vec representations21 (Methods).

Evotuned UniRep demonstrated superior performance in both tasks, having near ideal recall 

for small (<30 sequences) testing budgets and quickly recovering the brightest sequence in 

the generalization set of >33,000 sequences with fewer than 100 sequences tested (Fig. 4d, 

red). The global information captured by UniRep was critical for this gain as evotuning from 

a random initialization of the same architecture yielded inferior performance (Fig. 4d, 

yellow). While the best performing Doc2Vec baseline outperformed untuned UniRep in both 

tasks, the various Doc2Vec baselines were unreliable in performance (Supplementary Fig. 

12) in a manner that was not explainable by their expressivity, architecture or training 

paradigm. Absolute and relative performance of our model and the necessary experimental 

budget in each specific deployment scenario depends on the frequency of fit variants and the 

effectiveness of the search algorithm used to generate candidate sequences, Here, we 
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consider relative improvements compared to state-of-the-art representations. In our scenario, 

for small plate-scale testing budgets of 10–96 sequences, Evotuned UniRep achieved a ~3–

5× improvement in recall and a ~1.2–2.2× improvement in maximum brightness captured 

over the best Doc2Vec baseline at the same budget. Conditioning on a desired performance 

level in this task, Evotuned UniRep achieved 80% recall within the first ~60 sequences 

tested, which would cost approximately $3,000 to synthesize. By contrast, the next best 

approach examined here would be 100× more expensive (Supplementary Fig. 12).

Discussion

UniRep features embody a subset of known characteristics of proteins (Fig. 2). However, 

since UniRep is learned from raw data, it is unconstrained by existing mental models for 

understanding proteins, and may therefore also approximate yet unknown features, enabling 

protein engineering prediction tasks beyond those examined here. UniRep does not require 

experimentally determining or computationally folding a structural intermediate—a 

necessary input for alternative methods6,42. By enabling rapid generalization to distant, 

unseen regions of the fitness landscape, UniRep may improve protein engineering 

workflows or, in the best case, enable the discovery of sequence variants inaccessible to 

purely experimental or structural approaches.

While the high dimensionality and discrete nature of sequence space make sequence search 

a challenging and unsolved problem, we are optimistic about how UniRep-powered models 

may combine with ongoing work in simulated annealing3, adaptive sampling43 and Bayesian 

optimization44–50. Additionally, although the use of the representation is limited by biases in 

the sequence data51,52 and length of training, the size53 and coverage51 of sequence 

databases as well as deep-learning specific computational hardware54 are improving 

exponentially. Coupled with the continued proliferation of cheap DNA synthesis/assembly 

technologies55, and methods for digitized and multiplexed phenotyping, UniRep-guided 

protein design promises to accelerate the pace with which we can build biosensors13, 

protein56 and DNA binders57 and genome editing enzymes58.

Finally, there are many exciting, natural extensions of UniRep. It can already be used 

generatively (Supplementary Fig. 14), evoking deep protein design, similar to previous work 

with small molecules48 and proteins43. Beyond engineering, our results (Fig. 2b–e and 

Supplementary Fig. 3) suggest UniRep distance might facilitate vector-parallelized semantic 

protein comparisons, with no training data whatsoever, at any evolutionary depth. We 

additionally envision future work on data-free UniRep variant-effect prediction using 

sequence likelihood-based scoring15. Among many straightforward data augmentations 

(Supplementary Table. 8), UniRep might advance ab initio structure prediction by 

incorporating untapped sequence information with the RGN via joint training59. Most 

importantly, UniRep provides a new perspective on these and other established problems. By 

learning a new basis directly from ground-truth sequences, UniRep challenges protein 

informatics to go directly from sequence to design.

Alley et al. Page 8

Nat Methods. Author manuscript; available in PMC 2020 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Online content

Any methods additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41592-019-0598-1.

Methods

Training the UniRep representations.

Unsupervised training dataset.—We expected that public protein databases, unlike 

many Natural Language datasets, would contain (1) random deleterious mutations yet to be 

eliminated by selection and (2) hard-to-catch sequencing/assembly mistakes, both leading to 

increased noise. Therefore, we chose UniRef50 (ref. 22) as a training dataset. It is 

‘dehomologized’ such that any two sequences have at most 50% identity with each other. By 

selecting the single highest quality sequence for each cluster of homologs22, we 

hypothesized UniRef50 would be less noisy. It contains ~27 million protein sequences. We 

removed proteins longer than 2,000 amino acids and records containing noncanonical 

amino-acid symbols (X, B, Z, J), randomly selected test and validation subsets for 

monitoring training (1% of the overall dataset each) and used the rest of the data (~24 

million sequences) in training. For more information on data collection and data analysis, 

please refer to the accompanying Life Sciences Reporting Summary.

Models and training details.—We approached representation learning for proteins via 

RNNs. Unlike other approaches to representing proteins, namely as one-hot-encoded 

matrices as in Biswas et al.3, RNNs produce fixed-length representations for arbitrary-length 

proteins by extracting the hidden state passed forward along a sequence. While padding to 

the maximum sequence length can in principle mitigate the problem of variable length 

sequences in a one-hot encoding, it is ad hoc, can add artifacts to training, wastes 

computation processing padding characters and provides no additional information to a top 

model besides the naive sequence. Furthermore, even very large representations, such as the 

1,900-dimensional UniRep, are more compact than average protein length one-hot 

encodings (Supplementary Fig. 10), reducing the potential for overfitting. While Doc2Vec 

methods produce fixed-length vectors, they have been empirically outperformed by more 

expressive architectures such as RNNs in recent work on representation learning in natural 

language23. We recognize that other architectural classes, especially transformers, have been 

recently successful. We choose RNNs due to the hidden state forming a natural information 

bottleneck, forcing compression that might yield a superior representation even with lower 

performance. Further systematic exploration of other architectural classes will be the basis 

of future work.

We considered the mLSTM61, LSTM62 and gated recurrent unit63 for candidate RNN 

representation learners. After manual explorations comparing these classes, and considering 

previous work demonstrating the success of the mLSTM for a similar task in natural 

language23, we decided to use the mLSTM. Specifically, the architectures selected for large-

scale training runs were a 1,900-dimensional single-layer multiplicative LSTM61 (~18.2 
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million parameters) as described elsewhere23, a four-layer stacked mLSTM of 256 

dimensions per layer (~1.8 million parameters), and a four-layer stacked mLSTM with 64 

dimensions per layer (~0.15 million parameters), all regularized with weight 

normalization64. As a matter of definition, we note that because all of these networks are 

recurrent, even the single hidden layer mLSTM-1,900 is considered ‘deep’ because the 

network is unrolled in the timestep dimension as a composition of hidden layers through 

time.

We followed a heuristic that assumes, for large data sets such as ours, more expressive 

models will learn richer representations. Thus, we selected 1,900 dimensions in the large 

single-layer mLSTM because it was approximately the largest dimensionality that could fit 

in GPU memory after some experimentation. We tried smaller widths (the 256 and 64 

dimensions) in case the large number of latent dimensions in the 1,900-unit mLSTM led to 

overfitting on prediction tasks. Our comparison with the mLSTM-1,900 suggested this was 

almost never the case (Supplementary Data 3).

Sequences of amino acids were one-hot encoded and passed through a ten-dimensional 

amino-acid character embedding before being input to the mLSTM layer. For the smaller 

stacked networks, both standard recurrent and residual recurrent connections, in which the 

hidden states of each layer are summed, were evaluated. For these stacked networks, dropout 

probability was selected from {0, 0.5}. Hyperparameters were tuned manually on a small 

number of weight updates and final parameters were selected based on the rate and stability 

of generalization loss decrease. We found that dropout and residual connections both 

increased validation set error. We hypothesized that residual connections, which should 

improve gradient flow to earlier layers, were not advantageous here given the small number 

of layers tested. We further hypothesized that these networks did not require dropout or 

other regularization outside weight normalization because of the high ratio of observations 

to model parameters. However, a systematic comparison of hyperparameters and 

architectures was not the object of this work. These tentative conclusions, as well as the final 

model architecture and hyperparameters, should be revised as ongoing work with systematic 

architecture selection and hyperparameter tuning establishes more robust comparisons.

All models were trained with the Adam optimizer using truncated-back propagation through 

time with initial states initialized to zero at the beginning of sequences and persistent across 

updates to simulate full back propagation as described previously23. Batch sizes and 

truncation windows were selected to fit into GPU memory and were, respectively, 256 and 

128 (mLSTM-1,900), 512 and 384 (4× mLSTM-256), 1,028 and 384 (4× mLSTM-64). 

Training was performed using data parallelism on four Nvidia K80 GPUs (mLSTM-1,900) 

or two Nvidia K-40s (4× mLSTM-256, 4× mLSTM-64). The mLSTM-1,900 model was 

trained for ~770,000 weight updates, or ~3.5 weeks wall clock time, corresponding to ~1 

epoch. The 4× mLSTM-256 and 4× mLSTM-64 were trained for ~90,000 weight updates, 

~2 d wall clock time, ~3 epochs and 220,000 weight updates, ~2 d wall clock time and 14 

epochs, respectively.
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Computing vector representations.

The mLSTM architecture has two internal states that encode information about the sequence 

it is processing, the hidden state and the cell state61. One hidden state and one cell state are 

produced for every amino acid in a forward pass over a sequence. Previous work in Natural 

Language has used the final hidden state (corresponding to the residue at the C terminus in 

our case) as the sequence representation23.

Compared to natural language, we hypothesized that the complexity of protein folding 

would generate more long-range and higher-order dependencies between amino acids. 

Therefore, we elected to construct the UniRep representation as the average of the 1,900-

unit model’s hidden states, integrating information across distant amino acids. We hoped this 

would better represent long-term dependencies critical to protein function prediction.

For convenience we named this vector representation—the Average Hidden state of 

mLSTM-1,900—simply ‘UniRep’ everywhere in the main text.

We compared the performance of UniRep as defined above with other possibilities for the 

representation state. We extracted the final hidden state produced by the model when 

predicting the last amino acid in a protein sequence (Final Hidden) and the last internal cell 

state (Final Cell).

Curious as to whether these vectors contained complementary information, we also 

constructed a concatenation of all three representation possibilities (Average Hidden, Final 

Hidden and Final Cell) from the 1,900-unit mLSTM. For convenience, we named this 

1,900× three-dimensional representation ‘UniRep Fusion’ everywhere in the main text. We 

built various other concatenations of these representations (Supplementary Table 3), denoted 

as ‘Fusions’, to be evaluated in supervised stability and quantitative function prediction.

We consider UniRep to be the most information-dense representation evaluated here, while 

UniRep Fusion is the most complete. UniRep, by virtue of its smaller dimensionality, should 

be deployed where computational resources are constrained. We present UniRep Fusion only 

for supervised prediction tasks (of protein stability, biophysical characteristics and function).

For completeness we evaluated the influence of network size in representation performance. 

There is evidence that larger neural networks learn better representations23. When we 

compared UniRep, UniRep Fusion and the other 1,900-unit representations defined above to 

identical representations extracted from 64 and 256-unit models with an identical 

architecture (training described above, Supplementary Table 3) our results agree with this 

pattern except with very small datasets, which are more variable as expected (Supplementary 

Data 1 and 3).

Supervised model benchmarking.

Sourcing and processing analysis datasets.—All the datasets (Supplementary Table 

7) were obtained from the supplemental information of corresponding publications. 

Sequence, function pairs were deduplicated, validated to exclude records containing 

nonstandard amino-acid symbols and split randomly into 80–10–10 train–validation–test 
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sets as described below. Size is reported after cleaning. When protein sequences could not be 

found in the published data, they were retrieved from UniProt by whatever sequence 

identifiers were available, using UniProt ID mapping utility (https://www.uniprot.org/help/

uploadlists). After this, the same split and top-model training analysis was done with all 

datasets, as described below.

Inference of RGN representations on a small number (on the order of tens) of sequences 

could not be completed due to challenges constructing position-specific scoring matrices 

(PSSMs) using the JackHMMER program (the multiple sequence alignments were so large 

they would not fit in available memory). To obtain comparable scores between the 

performance of RGN and other representations, we dropped these sequences from the 

datasets used for training and evaluation.

Train–validation–test split.—For most supervised tasks no test set was provided, so we 

made a 80–10–10% train–validation–test split in Python using the numpy package and a 

fixed random seed. The validation set was never used for training so that it could be used to 

estimate generalization performance while we were conducting experiments and building 

models. To obtain a final, truly held-out, measure of generalization performance we did not 

look at the test set until all models were finalized and a submission ready version of this 

manuscript was prepared.

Baselines representations—RGN.—We used the RGN model trained on the 

ProteinNet12 dataset65 and assessed on CASP12 structures in AlQuraishi16. The model was 

used as is without additional training or fine-tuning. Instead of using the predicted structures 

of the RGN, we extracted the internal state learned by the model for each sequence + PSSM 

combination (3,200 dimensions corresponding to the last outputs of two bidirectional 

LSTMs, each comprised 800 units per direction). PSSMs were generated in a manner 

identical to that used for generating ProteinNet12 PSSMs65.

Baseline representations—Doc-2-Vec.—We used the four best performing models as 

chosen for presentation by the authors of Yang et al.21. These are (using the original names): 

original with k = 3 w = 7, scrambled with k = 3 w = 5, random with k = 3 w = 7 and uniform 

k = 4 w = 1. We downloaded the trained models from http://cheme.caltech.edu/~kkyang/

models/ and performed inference on all of the sequences in our datasets, adapting as much 

as possible the code used by the authors found at https://github.com/fhalab/

embeddings_reproduction.

Baseline representations—n-gram, length and basic biophysical.—We used six 

baseline representations—they constitute three distinct approaches to constructing general 

scalable protein vector representations without using deep-learning techniques:

• Amino-acid frequencies in the protein and protein length normalized to average 

protein length in the unsupervised training data

• Amino-acid frequencies in the protein concatenated with predicted biophysical 

parameters of the protein: molecular weight, instability index, isoelectric point, 
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secondary structure fraction. The annotation/prediction for biophysical 

parameters was done with biopython package v.1.72 (https://biopython.org/)

• Two n-gram representations with n = 2 and n = 3 (with scikit-learn 0.19.2 http://

scikit-learn.org/stable/index.html).

• Two n-gram representations with n = 2 and n = 3 with Term Frequency—Inverse 

Document Frequency (TF-IDF) weighting intended to emphasize the n-grams 

unique to particular proteins66

See Supplementary Table 9 for an exhaustive list of all the baseline variants used.

Nonparametric baselines and K nearest neighbors.—We used additional two 

baselines for 17 stability DMS datasets: average positional effect (for each sequence in the 

test set, we found the mutated position compared to the wild type and predicted that 

sequence to have the average stability of the variants with mutations in that position from the 

training set) and nearest neighbor (we predicted that each sequence from the test set has the 

same stability as the one with mutation most similar to test sequence from the training set—

according to position and the average stability effect of each amino-acid substitution in the 

training set). For de novo designed variants of the protein EEHEE_rd3_1702 we also used a 

K nearest neighbors regressor with K = 10, Euclidean metric and weighting neighbors by 

distance.

Stability ranking task.—To further benchmark our performance compared to typical 

protein engineering tools, we obtained the published Rosetta total energy estimates with the 

‘beta_nov15’ version of the energy function67,68 and buried nonpolar surface area of the 

designed structure for the stability prediction for de novo designed mini proteins dataset5. 

The Rosetta calculations were not performed in ref. 5 for the control proteins in this dataset, 

so the scores were available for 1,432 out of 5,570 test set proteins and 1,416 out of 5,571 

validation set proteins in our splits. Because these Rosetta Total Energy estimates do not 

directly correspond to measured stability values (for example, lower energy is higher 

stability as defined), we used Spearman rank order correlation coefficient, comparing our 

model predictions and the alternative scores’ ability to reconstitute correct stability ranking 

of the sequences in the dataset.

STRUM comparison.—We used the STRUM web server (https://

zhanglab.ccmb.med.umich.edu/STRUM/) to generate predicted fold stability change (ΔΔG) 

relative to the wild-type sequence for variants of the three natural proteins (hYAP65, villin 

and Pin1) among the DMS datasets5. We used Spearman rank order correlation with 

measured stability values as the performance metric and Welch’s two-tailed t-test for 

significance with standard deviations obtained through 30 × 50% test set resampling.

Regression analysis with LASSO least angle regression (LARS).—We used a 

simple sparsifying linear model with L1 before using the LARS algorithm (implementation 

from the scikit-learn package 0.19.2 http://scikit-learn.org/stable/index.html). In the text, this 

is called a ‘sparse linear model’, which refers to the L1 sparsifying prior rather than the 

number of nonzero coefficients that necessarily appear in the trained model. The value of 
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regularization parameter alpha for the model for each representation on each task was 

selected through ten-fold random cross validation on the training data.

We obtained an estimate of the standard deviation of the resulting validation/test metrics by 

resampling 50% of the validation/test set 30 times and computing an empirical standard 

deviation of the obtained metrics, and used Welch’s t-test for comparisons.

We were unable to compare to the published state-of-the-art on the nine DMS function 

prediction datasets from Gray et al.35. The exploratory nature of the authors’ analysis of 

these datasets for in-domain prediction led them to use their test set during hyperparameter 

selection, making their results incomparable with the best machine learning practices we 

followed here. This is in contrast to out-of-domain/transfer performance, which was the 

main objective of the Gray et al.’s analysis. Unlike in-domain prediction, Gray et al. 

followed best practices for leave-one-protein-out (LOPO) transfer analysis (see below).

Supplemental generalization analysis.

Mathematical definitions.—Using the framework established in the previous 

foundational work of Glorot et al.69, we assume we have a set of ‘source’ (sequence, 

function) pairs, S. We also assume we have available a set of ‘target’ (sequence, function) 

pairs, T. Typically, T is drawn from a different distribution from S and we would like to 

quantify how well a model trained on S can generalize or ‘transfer’ knowledge from S to 

making predictions about T. We assume we may have several target sequence sets on which 

we would like to evaluate generalization. We will refer to this collection as T .

We first define transfer error as a measure of how well a model trained on single source set S 
generalizes to a sincle target set T,

em(S, T ) = 1
T i ∈ T

(yi − ms(xi))2

Here, xi and yi represent a sequence and its (true/measured) associated quantitative function, 

respectively, ms corresponds to a model trained on source set (sequence, function) pairs and 

ms(xi) is the model predicted function of xi.

To contextualize generalization performance, we define a baseline in-domain error, eb(T, T). 

Here, b is a simple baseline model that is both trained and evaluated on a target set of 

(sequence, function) pairs.

Combining, we report a model’s overall generalization performance as its (mean) transfer 

ratio:

Transfer ratio = 1
T T ∈ T

em(S, T )
eb(T , T )

In words, the transfer ratio is a comparison of how well a model generalizes relative to a 

baseline model that has full access to the target domain.
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It is likely that the target sets in T  have different degrees of modeling difficulty. To account 

for this, we can compare the transfer ratio to the model’s (mean) in-domain ratio:

In – domain ratio 1 1
T T T

em(T T )
eb(T T )

Note, here the model in question is trained and evaluated on the target set. The in-domain 

ratio therefore represents how well the model would perform if it had full access to the 

domain it was asked to generalize to.

Finally, to obtain an estimate of variability about the (mean) transfer and in-domain ratios, 

we compute the empirical standard deviation of all target-specific transfer and in-domain 

ratios.

LOPO generalization.—This analysis was done for the quantitative function prediction 

(including data for eight different proteins) and for 17 (natural and de novo) protein DMS 

stability prediction datasets. The LOPO generalization analysis was performed separately for 

the quantitative function prediction data and the stability prediction data. Briefly, in the 

LOPO generalization analysis we used all proteins but one as the source and use the held-out 

protein as the target. The proteins that comprise the source and target were cycled such that 

every protein’s mutational data became the target set once. Transfer and in-domain ratios 

and their standard deviations were calculated across all of these held-out target proteins. We 

used the same linear model deployed earlier for in-distribution regression analysis (L1 prior, 

LARS algorithm). The value of regularization parameter alpha was obtained through LOPO 

cross validation internally within the source set.

In the case of 17 DMS stability datasets (Supplementary Table 7), we also constructed an 

additional extrapolation Source/Target split—from central to remote proteins 

(Supplementary Fig. 11d) as follows. We computed a string median of initial sequences of 

17 proteins in these datasets, and selected the four proteins with the largest edit distance 

from the median. We then computed a multidimensional scaling (MDS) two-dimensional 

plot of the Levenshtein distance matrix of the 17 initial proteins, and selected four most 

peripheral proteins along each axis of the plot (Supplementary Fig. 11e). Together, the DMS 

datasets for these eight proteins constituted the Target dataset (also known as test set shown 

in red in Supplementary Fig. 11e) to evaluate our generalization/transfer performance. The 

other nine datasets served as the Source dataset to be trained on. Once the Source/Target 

split was defined, the generalization analysis was performed as described above.

Supervised remote homology detection.

Datasets—Håndstad fold and superfamily.—We used two standard benchmarks 

based on the SCOP database from Håndstad et al.70: the superfamily-level remote homology 

detection and the harder fold-level similarity detection.

Briefly, the superfamily benchmark sets up a binary classification problem for each of the 

superfamilies in the dataset: a single family in the superfamily presenting a positive test set, 

the other families in that superfamily serving as the positive training set, a negative test set 
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comprising one random family from each of the other superfamilies and the negative 

training set combining the rest of the families in these superfamilies.

The fold-level benchmark is analogous at the fold level, setting up a classification problem 

for each of the folds in the dataset: one superfamily in the fold is used as positive test set, the 

others in that fold serving as the positive training set, a single random superfamily from 

every other fold comprising a negative test set and taking the remaining sequences as the 

negative training set.

This structured training/test set could not be straightforwardly subsampled, so to protect 

against overfitting we instead held out training and evaluation on the entire fold-level dataset 

until the model was trained and our Bayesian hyperparameter tuning procedure finalized on 

the superfamily-level benchmark dataset. Because these are standard benchmarking datasets 

and the task was computationally expensive, we choose to evaluate only UniRep 

performance. Many of the more recent published methods for remote homology 

detection71,72 use PSSMs as a source of evolutionary information, which we excluded for 

equal comparison to UniRep, which was trained on strictly dehomologized sequences and 

had no access to local evolutionary information such as a PSSM.

Binary classification with Random Forests.—For supervised remote homology 

benchmarks, we used Random Forest implementation from the same scikit-learn package 

with 1,000 estimators and a ‘balanced’ class weight. For each of the binary classification 

tasks in each benchmark, we conducted a Bayesian hyperparameter optimization as 

implemented in the skopt package (https://scikit-optimize.github.io/), picking the following 

hyperparameters: maximum proportion of features to look at while searching for the best 

split (between 0.5 and 1), function to measure the quality of a split (Gini impurity or 

information gain), the minimum number of samples required to be at a leaf node (between 

0.1 and 0.3) and the minimum number of samples required to split an internal node (between 

0.01 and 1) with 75 iterations of optimization, three-fold cross validation on the training data 

and receiver operating characteristic (ROC) score as the scoring metric.

To make our model comparable with the scores of previously developed remote homology 

detection models in the literature, we used two standard metrics: ROC score (normalized 

area under the receiver operating characteristic curve) and ROC50 (ROC score at the point 

where the first 50 false positives occur).

Two out of 102 superfamilies, identified in the data through the name of the family 

presenting the positive test set (c.2.1.3 and c.3.1.2), and one out of 86 folds, identified in the 

data by the name of the superfamily representing the positive test set (c.23.12), were 

excluded from the consideration due to our failure to obtain a coherent positive/negative 

train/test split from the published data source72.

Unsupervised clustering of distant but functionally related proteins.

Agglomerative clustering of representations and hierarchical clustering 
confirmation.—We used basic agglomerative clustering (implemented in Python with 

sklearn73) with the average linkage metric and Euclidean distance for all vector 
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representations, and a precomputed Levenshtein distance matrix using the Python 

Levenshtein package for the sequence-only control.

To confirm our cluster assignments, we picked a small set of three cytochromeoxidase 

(1,2,3) families from OXBench, eight proteins in total. We used the fastcluster package to 

produce a linkage matrix with average linkage and Euclidean distance (for UniRep) and 

average linkage and Levenshtein distance, implemented in Python Levenshtein, for the 

sequence-based control. We visualized the resulting dendrograms using the scipy74 package.

Goodness of clustering metrics.—We selected three standard clustering metrics to 

evaluate the quality of inferred cluster identities compared to the true family classification 

given by the expert-annotated labels. The metrics we selected were required to be bounded 

between 0 and 1, to be invariant to the number of families and clusters present in the data, 

and to be symmetric. We therefore selected Adjusted Mutual Information, Adjusted Rand 

Index and Fowlkes Mallows Score for these properties. The definition, usage and properties 

of these metrics are described elsewhere75.

Fine-tuning to generalize GFP function prediction for protein engineering.

Collecting fluorescent protein homologs with EBI JackHMMer.—We sourced 

fluorescent protein sequences from the literature and public databases (Interpro IPR011584, 

IPR009017; PFAM:PF01353, PF07474 and refs. 39,76). We were left with 1,135 sequences 

total after cleaning sequences longer than 1,000 AAs or containing invalid letters. We the 

used the Python Levenshtein package to compute distances from sfGFP. Looking to source 

sequences of varying dissimilarities from sfGFP, we sampled <100 sequence proximity-

ordered subsets, first selecting the most distant subset with probability proportional to the 

distance from sfGFP, and then continuing iteratively until the most similar set was 

apportioned (this subset contained fewer than 100 sequences, unlike the rest). We then used 

the EBI JackHMMer web server77 to batch search each subset, with no more than 20 

iterations. Search was stopped after more than 100,000 sequences were discovered or the 

search converged. We expected this batched approach to generate unique hits within each 

subset, but we found that after cleaning to remove long (>500 AAs) or invalid seqs, and 

dropping duplicates with preference to the subset nearest sfGFP, almost all the sequences 

were discovered by the most nearby subset search. We continued with these 32,225 

sequences.

With the goal of establishing a validation set that was measuring something closer to 

extrapolation, we took these sequences and recomputed distance with sfGFP. We selected a 

distance-biased 10% out-of-domain validation set by sampling with probability proportional 

to the fourth power of the distance (strongly weighting distant examples). We also selected a 

10% ‘in-domain’ validation set uniformly randomly from the remaining sequences. This left 

25,781 training sequences.

Model fine-tuning with extant GFP sequences.—We loaded the weights learned by 

UniRep in the exact same architecture as before, but replacing the final layer, which 

previously predicted the next character, with a randomly initialized feed-forward layer with 

a single output and no nonlinearity. As a control, we initialized the same randomly. We 
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trained both models with exactly the same procedure: low learning rate (0.00001), 128 batch 

size and only partially feeding forward along the sequence, stopping prediction after 280 

amino acids, with full back propagation rather than truncated as during the UniRef50 

training process. This was determined by the computational constraint to fit the unrolled 

recurrent computational graph into GPU memory; however, we expected this was 

sufficiently long to capture the context of GFP because most well-characterized fluorescent 

proteins are shorter than 280 AA. Both models trained for ~13,000 weight updates, 

corresponding to ~65 epochs and ~1.5 d wall clock time on one Nvidia Volta GPU. Stopping 

was determined by computational constraints, not overfitting as measured by increasing 

validation set loss, which never occurred.

Training LASSO regression on representation featurized sequences from the 
fitness landscape of avGFP.—Sequences from Sarkisyan et al.37 were featurized using 

a given representation (for example, UniRep). A sparse LASSO linear regression model was 

trained using this representation as input. A range of 20 L1 penalties, log-spaced over six 

orders of magnitude, was scanned using ten-fold cross validation. The selected level of 

regularization was set to be the strongest (most regularizing) penalty that had statistically 

equal out-of-sample error to the penalty with lowest out-of-sample error across the ten folds.

Baseline selection for retrospective fluorescent protein sequence discovery 
task.—Doc2Vec is a standard tool for numerically representing text documents in natural 

language processing. Yang et al. use this simple approach to represent protein sequences21 

and achieve good supervised function prediction performance with simple models based on 

their representation. We also found these Doc2Vec representations to be especially 

appropriate baselines as they were originally validated, in part, by reaching state-of-the-art 

performance on a rhodopsin absorption wavelength prediction task, which bears similarity to 

fluorescent prediction task at hand.

We did not consider Rosetta an appropriate baseline here for three reasons: (1) Rosetta 

provides measures of stability, which does not completely define function, (2) the 

computational requirements to mutate and relax a reference structure for >32,000 sequences, 

let alone de novo fold, are impractical and (3) in general, we would not expect to have 

structures for sequences we have yet to discover, meaning we would need to rely on the 

distant avGFP as a template.

We additionally could not apply simple linear regression or naïve Bayes approaches here as 

those methods require fixed-length inputs whereas the protein length sequences examined 

here were variable length.

Processing well-characterized GFP sequences from FPBase.—A raw collection 

of 452 fluorescent proteins was sourced from FPbase.org39 (Collection ‘FP database’ 

available at https://www.fpbase.org/collection/13/ as of 2 November 2018). This was then 

filtered as follows:

1. Sequences shorter than 200 amino acids or longer than 280 amino acids were 

removed.
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2. Remaining sequences were then multiply aligned using ClustalW (gap open 

penalty = 10, gap extension penalty = 0.1)78. BLOSUM62 was used as the 

scoring matrix.

3. Using these aligned sequences, we computed their pairwise minimum edit 

distance (insertions/deletions counting as one edit). Sequences that were more 

than 50 mutations away from their nearest neighbor were removed. These were 

enriched for circularly permuted fluorescent proteins and tandem fluorescent 

proteins.

4. Remaining sequences that had an average edit distance >180 mutations (length 

of avGFP = 238) to all other sequences were also removed.

5. Where possible, His tags and likely linker sequences were manually removed, 

and start methionine amino acids were added to all sequences that did not have 

one.

6. At this point, the major phylogenetic clusters of Anthozoan (corals/anemones) 

and Hydrozoan (Jellyfish) fluorescent proteins remained including engineered 

variants. Note that hydrozoan and anthozoans are almost entirely different, often 

sharing as little as 30% sequence similarity. The hydrozoan clade was almost 

entirely composed of fluorescent proteins found in A. victoria or engineered 

versions thereof. The set of sequences for the retrospective sequence discovery 

analysis was therefore set to be all natural or engineered green (emission 

wavelength between 492 and 577 nm) fluorescent proteins of Aequorean descent.

This set of sequences included well-known engineered variants of avGFP including EGFP, 

mVenus, superfolder GFP, mCitrine and Clover.

Exploratory analysis and data visualization.

Principal components analysis (PCA) of amino-acid embeddings.—We extracted 

embedding vectors for each amino acid from the trained UniRep model. We performed PCA 

as implemented in the sklearn library and used the three first principal components for the 

visualization.

t-SNE of organism proteomes.—We obtained 53 reference proteomes (Supplementary 

Table 1) of model organisms from UniProt Reference Proteomes. We used the UniRep 

trained model to obtain representations for each of the proteins in each proteome. We then 

averaged all the proteins in each proteome to obtain the representation for the ‘average 

protein’ for each of the organisms. We used t-SNE24—a common technique for visualizing 

high-dimensional datasets (as implemented in the sklearn library, with perplexity = 12) to 

obtain a two-dimensional projection.

PCA of conserved protein organism relationships.—To allow embedding of new 

points into the projected space, we computed a PCA using a subset of better characterized 

reference proteomes (as labeled in Supplementary Fig. 3). We manually sourced five 

conserved sets of proteins from Humans, Saccharomyce cerevisiae and Danio rerio using the 

OrthoDB79 as well as manual inspection and UniProt characterization data. These proteins 
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were: dihydrofolate reductase, methylenetetrahydrofolate reductase, nucleotide excision 

repair protein, elongation factor and heat-shock protein 70. We projected the representations 

for each of these variants into the space given by the first two principal components from the 

model organism PCA and drew the vector from S. cerevisiae to Human, which we translated 

so the base sits on the S. cerevisiae variant for each protein.

Correlation of representation with structural features.—We computed the full 

sequence of hidden states at every position of 3,720 single-domain proteins from the SCOP 

database60 (for which we had secondary structure annotation for each of the positions 

obtained from the PDB80). For each sequence, this amounts to computing a (sequence length 

× 1,900) matrix of hidden states (note that this position-level representation of the sequence 

is what is averaged across the length of the sequence to obtain UniRep, a sequence-level 

representation). We refer to a particular coordinate of the 1,900-dimensional hidden state as 

a neuron for consistency with previous neurolinguistic programming work23. We proceeded 

to calculate correlations between neuron activations and secondary structure across the 

length of the sequence for all 3,720 proteins mentioned above. Neuron 341 was a strong 

helix and beta-sheet detector. Its activation correlated positively with alpha-helicity (+0.33 

Pearson correlation) and negatively with beta-sheets (−0.35 Pearson correlation).

We then cut out all continuous helices and beta-sheets with surrounding context (including 

(30% × the length of the helix/sheet) context amino acids on each side) from the proteins in 

the database to look at the average activation of neuron 341 at each relative position in the 

helix/sheet, obtaining ~14,000 alpha helices and 20,000 beta-sheets.

We next computed the full sequence of hidden states for 1,500 randomly sampled proteins 

with available structures from the Protein Data Bank (PDB). We attempted to compute 

define secondary structure of proteins (DSSP)81 annotations for each structure, keeping only 

those sequences and corresponding structures such that the DSSP calculation executed 

without error and DSSP secondary structure amino-acid indices lined up with the primary 

amino-acid indices. These calculations succeeded for 448/1,500 structures. After exploratory 

correlational analysis of various structural features, we decided to focus on solvent 

accessibility. Without explicit regularization on the hidden state of the LSTM, we felt it was 

likely that the representation was entangled, with multiple neurons possibly encoding the 

same biophysically relevant features. We therefore also learned, in a supervised manner, 

simple and sparse linear combination of neurons that were predictive of solvent accessibility. 

To train this model we used a position by hidden-sequence dimension matrix as the feature 

matrix, and solvent accessibility as a response. These were both input to LASSO and the 

strength of L1 regularization was selected using ten-fold cross validation.

Single neuron activations or linear combinations thereof were visualized on protein 

structures using the NGLview Python package (https://github.com/arose/nglview).

The supplementary protocol for the method described in this paper is available at ref. 82.
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Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability.

All data are available in the main text or the supplementary materials.

Code availability

Code for UniRep model training and inference with trained weights along with links to all 

necessary data is available in a public repository at https://github.com/churchlab/UniRep. 

Code to reproduce all analysis and regenerate figures with links to preprocessed benchmark 

datasets is available online https://github.com/churchlab/UniRep-analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Workflow to learn and apply deep protein representations.
a, UniRep model was trained on 24 million UniRef50 primary amino-acid sequences. The 

model was trained to perform next amino-acid prediction (minimizing cross-entropy loss) 

and, in so doing, was forced to learn how to internally represent proteins. b, During 

application, the trained model is used to generate a single fixed-length vector representation 

of the input sequence by globally averaging intermediate mLSTM numerical summaries (the 

hidden states). A top model (for example, a sparse linear regression or random forest) 

trained on top of the representation, which acts as a featurization of the input sequence, 

enables supervised learning on diverse protein informatics tasks.
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Fig. 2 |. UniRep encodes amino-acid physicochemistry, organism level information, secondary 
structure, evolutionary and functional information, and higher-order structural features.
a, PCA of amino-acid embeddings learned by UniRep (n = 20 amino acids). b, t-SNE of the 

proteome-average UniRep vector of model organisms (n = 53 organism proteomes, 

Supplementary Table 1). c, Low dimensional t-SNE visualization of UniRep represented 

sequences from SCOP colored by ground-truth structural classes, which were assigned after 

crystallization60 (n = 28,025 SCOP proteins). a/b, alphas and betas. d, Agglomerative 

distance-based clustering of UniRep, a Doc2Vec representation method from Yang et al.21, a 

deep structural method (RGN) from AlQuraishi16, Levenshtein (global sequence alignment) 

distance and the best of a suite of machine learning baselines (Methods). Scores show how 

well each approach reconstitutes expert-labeled family groupings from OXBench and 

HOMSTRAD. All metrics vary between 0 and 1, with 0 being a random assignment and 1 

being a perfect clustering (Methods). e, Activation pattern of the helix-sheet secondary 

structure neuron colored on the structure of the Lac repressor LacI (PDB 2PE5, right). f, 
Average helix-sheet neuron (as visualized in e) activation as a function of relative position 

along a secondary structure unit (Methods).
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Fig. 3 |. UniRep predicts structural and functional properties of proteins.
a, Spearman correlation with true measured stability rankings of de novo designed mini 

proteins UniRep Fusion-based model predictions and two alternative approaches: negative 

Rosetta total energy and buried nonpolar surface area (NPSA; Methods). UniRep Fusion 

outperforms both alternatives (P < 0.001, Welch’s two-tailed t-test on n = 30 bootstrap 

replicates). b, UniRep performance compared to a suite of baselines across 17 proteins in the 

DMS stability prediction task (Pearson’s r). UniRep Fusion achieved significantly higher 

Pearson’s r on all subsets (P < 0.006, Welch’s two-tailed t-test on n = 30 bootstrap 

replicates). c, Average magnitude of top-model regression coefficients for de novo designed 

and natural protein stability prediction show significant co-activation (P<0.01, permutation 

test). d, Activations of the helix-sheet neuron colored onto the de novo designed protein 

HHH_0142 (PDB 5UOI). e, UniRep Fusion achieves statistically lower mean squared error 

than a suite of baselines across a set of eight proteins with nine diverse functions in the DMS 
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function prediction task (P < 0.009 on Pab1 and P < 0.0002 on all other tasks, Welch’s two-

tailed t-test on n = 30 bootstrap replicates).
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Fig. 4 |. UniRep, fine-tuned to a local evolutionary context, facilitates protein engineering by 
enabling generalization to distant peaks in the sequence landscape.
a, UniRep trades-off nuance for universality in a theoretical protein engineering task. By 

unsupervised training on a subspace of sequences related to the engineering target

—’evotuning’—UniRep representations are honed to the task at hand. b, Predicted 

brightness of 27 homologs and engineered variants of avGFP under various representations 

+ sparse linear regression models trained only on local avGFP data. Box and whisker plots 

indicate predicted distribution of dark negative controls (n = 32,400; center line, median; 

box limits, upper and lower quartiles; whiskers, full data range). Green region above dotted 

line is predicted bright, below is predicted dark. On the left in gray is the training 

distribution from local mutants of avGFP. c, Predicted brightness versus mutation curves for 

each of the 27 avGFP homologs and engineered variants (the generalization set). Each gray 

line depicts the average predicted brightness of one of the 27 generalization set members as 

an increasing number of random mutations is introduced. Red line shows the average 

empirical brightness versus mutation curve for avGFP37. Average Pearson correlation 

between predicted and empirical brightness curves also shown. d, Recall versus sequence 

testing budget curves for each representation + sparse linear regression top model (bottom). 

Efficiency gain over random sampling (top) depicted as the ratio of a method’s recall 

divided by the recall of the null model as a function of testing budget. e, Maximum 

brightness observed versus sequence testing budget curves for each representation + sparse 

linear regression top model (bottom). Efficiency gain over random sampling analogously 

defined for recall but instead with normalized maximum brightness (top). Error bands depict 

±1 standard deviation calculated over n = 100 bootstrap replicates.
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