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In Brief

Basket clinical trials simultaneously test a

single drug in multiple tumor subtypes,

but statistical challenges limit the

comparison of responses across

subtypes. We describe a rigorous

approach to permutation testing using

empirical null distributions that can

identify previously overlooked

opportunities for use of targeted therapy

in genetically defined cancer subtypes.
nc.
ll

mailto:peter_sorger@hms.harvard.�edu
https://doi.org/10.1016/j.cels.2020.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2020.09.003&domain=pdf


OPEN ACCESS

ll
Methods

Comparing the Efficacy of Cancer Therapies
between Subgroups in Basket Trials
Adam C. Palmer,1,3,4 Deborah Plana,1,2,3 and Peter K. Sorger1,5,*
1Laboratory of Systems Pharmacology, and the Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
2Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
3These authors contributed equally
4Present address: Department of Pharmacology, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
5Lead Contact

*Correspondence: peter_sorger@hms.harvard.edu

https://doi.org/10.1016/j.cels.2020.09.003
SUMMARY
The need to test anticancer drugs in multiple indications has been addressed by basket trials, which are
Phase I or II clinical trials involving multiple tumor subtypes and a single master protocol. Basket trials typi-
cally involve few patients per type, making it challenging to rigorously compare responses across types. We
describe the use of permutation testing to test for differences among subgroups using empirical null distri-
butions and the Benjamini-Hochberg procedure to control for false discovery. We apply the approach retro-
spectively to tumor-volume changes and progression-free survival in published basket trials for neratinib, lar-
otrectinib, pembrolizumab, and imatinib and uncover examples of therapeutic benefit missed by
conventional binomial testing. For example, we identify an overlooked opportunity for use of neratinib in
lung cancers carrying ERBB2 Exon 20 mutations. Permutation testing can be used to design basket trials
but is more conservatively introduced alongside established approaches to enrollment such as Simon’s
two-stage design.
INTRODUCTION

In a traditional clinical trial for a cancer therapy, a potential ther-

apeutic agent is tested in patients defined by specific inclusion

and exclusion criteria that usually involves tissue of origin and

disease stage.Widespread development ofmolecularly targeted

therapies has driven interest in simultaneously evaluating multi-

ple patient populations having different tumor ‘‘types.’’ In a bas-

ket trial, ‘‘tumor type’’ can refer to tissue of origin or to tumors

distinguishable by histopathology, but with targeted drugs, tu-

mors can alternatively be classified by genetic biomarkers (mu-

tations, amplifications, or gene fusions) implicated in drug

response. ‘‘Master-protocol’’ trial designs test several therapeu-

tic hypotheses at the same time via multiple parallel substudies

(‘‘baskets’’) under a single clinical protocol (and its associated

ethical and regulatory reviews) (Park et al., 2019).

The use of master protocols facilitates evaluation of drugs in

multiple subtypes while involving fewer patients and using fewer

resources than performing multiple traditional trials of the same

set of hypotheses. Additionally, because master protocols can

rigorously assess drug benefit in small numbers of patients,

they are well-suited to studying rare types of cancer (Hirakawa

et al., 2018; Park et al., 2019; Renfro and Mandrekar, 2018).

For example, the NCI-MATCH Phase II precision medicine trial

(ClinicalTrials.gov, number NCT02465060) currently underway
Cell Systems 11, 449–460, Nove
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is comparing �40 treatment arms and multiple genetic bio-

markers using a master protocol (Mullard, 2015). Basket trials

are particularly helpful when: (1) expanding from an initially suc-

cessful indication to one or more additional tumor types, (2)

searching for a responsive setting in which to perform pivotal tri-

als, (3) studying the predictive value of a biomarker in, multiple

cancer types (Redig and J€anne, 2015; Tao et al., 2018; Wood-

cock and LaVange, 2017), and (4) evaluating rare tumors and/

or tumors with rare molecular subgroups (for example, the study

of vemurafenib in BRAFV600 Erdheim-Chester disease and Lang-

erhans cell histiocytosis; NCT01524978, Diamond et al., 2018).

Two recently completed trials demonstrate the potential

for basket trials to identify tissue-agonistic biomarkers.

When the TRK inhibitor larotrectinib was tested in a diverse set

of 12 solid-tumor types (NCT02122913, NCT02637687, and

NCT02576431) (Drilon et al., 2018), the presence of a TRK-fusion

gene, irrespective of tumor tissue of origin, was found to identify

tumors responsive to larotrectinib. Similarly, in 12 tumor types,

mismatch repair (MMR) deficiency was found to be predictive

of responsiveness to the PD-1 immune checkpoint inhibitor

pembrolizumab (NCT01876511) (Le et al., 2017). In most cases,

however, both biomarker status and tissue of origin have an in-

fluence on drug activity; for example, BRAF inhibitors (such as

vemurafenib) are much less effective in BRAF-mutant colorectal

carcinomas than in BRAF-mutant melanomas (Hyman et al.,
mber 18, 2020 ª 2020 The Authors. Published by Elsevier Inc. 449
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2015; Korphaisarn and Kopetz, 2016; Subbiah et al., 2020). For

any single gene, the type of mutation (i.e., inhibitory, truncating,

or activating) can also affect response (Tao et al., 2018). Depend-

ing on theway subtypes are defined, a basket trial can be used to

assess the impact of one or more of these variables. In a basket

trial, as in a conventional trial, the clinical hypothesis being tested

is specific to a particular drug and disease since drugs with the

same nominal targets can elicit different responses, even when

used in the same cancer type (Hafner et al., 2019). Direct com-

parison of drugs in the same class is not a common use of basket

trials, which would generally be underpowered as compared

with conventional noninferiority or superiority trials.

The ongoing SUMMIT trial, which is studied in detail in the cur-

rent paper, is testing the activity of the ERBB kinase inhibitor ner-

atinib in 21 types of cancer having 42 different mutations in the

ERBB2 and ERBB3 receptor tyrosine kinases (HER2 and

HER3, respectively) (Hyman et al., 2018). Neratinib is an irrevers-

ible pan-ERBB (pan-HER) inhibitor approved in 2017 for a rela-

tively narrow indication: patients with early-stage HER2-positive

breast cancer who had postsurgical adjuvant therapy using the

ERBB2 inhibitor trastuzumab (Singh et al., 2018). Mutation or

overexpression of ERBB receptors is implicated in a range of hu-

man cancers, but ERBB biology is complex, and preclinical

models provide conflicting data on the potential efficacy of

ERBB inhibition in human disease. The multicenter SUMMIT

basket trial seeks to resolve this issue by testing neratinib in a

wide range of tumor types and genotypes.

In common with a majority of Phase II clinical trials, SUMMIT

has no comparator control arm, and instead makes use of a

Simon two-stage optimal design (Simon, 1989). In this approach

a trial has two stages: stage 1 tests a drug in few patients

(commonly�7) per tumor type, and stage 2 expands the number

of patients to be tested (commonly to � 25) specifically for tumor

types that showedpromise in stage 1.Drug response ismeasured

using a radiological assessment of tumor volume according to

RECIST (response evaluation criteria in solid tumors) (Eisenhauer

et al., 2009) followed by dichotomous scoring. Patients whose tu-

mors shrink by R30% are scored as responders and the others

as nonresponders; the fraction of responders represents the over-

all response rate (ORR). A binomial test is then used to evaluate

the ORR statistically. Using a prespecified value of ORR for a

lack of efficacy (the null hypothesis, typically set at ORR %

10%), the ORR expected under the alternative hypothesis (typi-

cally ORRR30%), and the desired rates of type I and type II error

(% 5% and % 20%, respectively, corresponding to R80% po-

wer), the Simon design uses a binomial distribution to calculate

the minimum number of patients who must respond in each sub-

group for the null hypothesis to be rejected; this calculation is per-

formed separately for each subgroup. If the number of responses

in the first stage of a basket is consistent with the null hypothesis,

then the treatment is considered futile and corresponding trial arm

is terminated. Otherwise the arm expands in a second stage

involving additional patients with the goal of testing the alternative

hypothesis (e.g., 30% ORR); parameters of the trial design deter-

mine the number of patients enrolled in the second stage and the

number of responses needed for a therapy to be considered

efficacious. The Simon design thereby seeks to detect strong re-

sponses in the first phase while minimizing futility—the number of

patients subjected to ineffective treatments—and then expands
450 Cell Systems 11, 449–460, November 18, 2020
potentially positive subgroups for a larger and more rigorous

test in the second phase. In the case of the SUMMIT trial, up to

seven patients were initially enrolled per subgroup in stage 1

and response was evaluated radiologically. Enrollment in each

basket was expanded in stage 2, typically to include 25 patients

in total, only if at least one stage 1 patient exhibited an objective

overall response.

Because all basket trials described to date use ORR, in which

the assessment of response is dichotomous, themagnitude of tu-

mor-volume changes, and changes in other measures of drug

response such as the rate of tumor progression, are not consid-

ered. The Simon design, as well as supporting Bayesian and fre-

quentist interim analyses developed to help determine whether to

close enrollment in any subgroups (Cunanan et al., 2017a, 2017b;

Drilon et al., 2018; Hyman et al., 2015; LeBlanc et al., 2009; Simon

et al., 2016), also assesses efficacy independently for each sub-

group thereby answering the question, ‘‘Which cancer subtypes

surpass a prespecified threshold for response?’’ Note that sub-

type in this case can refer either to the tumor tissue of origin or

to a genomic feature such as type of mutation.

In this paper, we propose a complementary approach in which

tumors are compared across subtypes in a basket trial by using

permutation testing to evaluate two related null hypotheses: no

difference in efficacy by tumor type or no difference in efficacy

by class of mutation. These hypotheses are directly relevant to

basket trials that may ultimately lead to Phase III trials, which

test therapies for multiple tumor types defined by genetic fea-

tures. Moreover, the formulation of hypothesis testing with

respect to difference has the substantial benefit that all patients

enrolled in a trial contribute to the null distribution, and that

continuous response variables rather than dichotomous scores

can be evaluated (in the current work, magnitude of change in tu-

mor volume and duration of Progression-Free Survival or PFS).

For any specific subgroup, null distributions having an appro-

priate number of patients are generated by subsampling the all-

patient distribution. When response rates are low, as in SUMMIT,

the no-difference null hypothesis is similar to a null hypothesis of

low or no activity and can be used to test whether any group has

significantly superior responses. When response rates are high,

as with larotrectinib, the no-difference hypothesis tests for both

inferior and superior responses. In the case of SUMMIT, lung can-

cers fail Simon criteria but significantly exceed the no-difference

null with respect to volume changes and PFS. In contrast, breast

cancers in SUMMIT exhibit a high ORR, but are no different from

average with respect to PFS. These data suggest an alternative

approach for interpreting basket trials with the potential to better

discover therapeutic opportunities for subsequent testing in

Phase III trials. While these applications of permutation testing

represent post hoc analysis of published trials, the approach

can be used for analyzing ongoing basket trials and potentially

adapted for making real-time enrollment decisions.

RESULTS

Analysis of SUMMIT Trial Reveals Overlooked
Therapeutic Opportunity for Neratinib in Lung Cancers
Carrying ERBB2 Exon 20 Mutations
Results for the first 141 patients in the SUMMIT basket trial were

recently reported (Hyman et al., 2018). Multiple genetic markers
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were assessed, including 31 unique ERBB2 and 11 unique

ERBB3mutations. Clinical response was measured by radiolog-

ical assessment of tumor-volume changes and by progression-

free survival (PFS), the time from enrollment until death or

radiological evidence of tumor progression. FDA guidance

recommends the use of ORR as measured by RECIST criteria

(Eisenhauer et al., 2009) in master-protocol trials (U.S. Food

and Drug Administration, 2018) largely because ORR is an

accepted surrogate endpoint for accelerated drug approval

(Pazdur, 2008). Although the SUMMIT trial uses ORR, the au-

thors report changes in tumor volume as a continuous variable.

In common with previous basket trials (Cunanan et al., 2017b)

SUMMIT (Hyman et al., 2018) recorded PFS data, but it was not

analyzed formally or compared with ORR; this reflects the

perceived challenge of evaluating 21 tumor types using data

from only 141 patients. Another commonly expressed concern

is that PFS duration may not be comparable for cancers having

different rates of progression. However, it is also controversial

whether tumor-volume changes are predictive of overall survival

(OS), the ‘‘gold standard’’ (Buyse et al., 2000; El-Maraghi and Ei-

senhauer, 2008; Fleming and DeMets, 1996; Kaiser, 2013). For

example, in a retrospective analysis of non-small-cell lung can-

cer, PFS was correlated with OS (Blumenthal et al., 2015), but

ORR was not. The use of PFS in breast cancer trials is also sup-

ported by a variety of other data (Adunlin et al., 2015). Thus,

although it is standard practice to rely on ORR rather than PFS

in basket trials, we hypothesized that the use of both of types

of information might provide new therapeutic insights (see Dis-

cussion). There is no established method for thresholding PFS

data into dichotomous responder and nonresponder classes.

Thus, it is not possible to use a binomial test. Instead we used

permutation testing by repeated Monte Carlo resampling of the

distribution of continuous volume changes and PFS from all pa-

tients as a means to construct null distributions for each sub-

group. We tested the null hypothesis: following exposure to ner-

atinib, there was no difference in volume change or PFS for a

subgroup (as defined by tumor type or genotype) relative to all

patients.

When neratinib-treated patients in SUMMIT were classified by

tissue of origin (Figure 1A) and compared with an appropriately

resampled no-difference null distribution, breast cancers ex-

hibited significantly greater volume reduction than any other tu-

mor type (a 45% difference in average volume change from all

nonbreast tumors; p < 10�6). This agrees with the conclusion

by Hyman et al. that breast cancers are the most neratinib-

responsive of all tumor types tested based on ORR (Hyman

et al., 2018). Because breast cancers dominate volume-change

data, we constructed a second set of null distributions for vol-

ume changes that included only nonbreast (NB) tumors (see

STAR Methods).

When NBdistributions were resampled and compared with tu-

mor-specific volume-change data, lung, cervical, and biliary

cancers were found to significantly exceed the no difference

by type null hypothesis (p = 0.04, 0.04, and 0.06, significant ac-

cording to Benjamini-Hochberg procedure; Figure 1B). Whereas

cervical and biliary cancers passed the criteria for the first stage

of a Simon two-stage design, lung cancer failed at the second

stage (Table 1). Thus, evaluation of continuous volume-change

data identified a statistically significant volume change in lung
cancers that was found to be negative by dichotomous scoring

and by a binomial test used in a traditional two-stage design.

This discordance arises because half of lung cancers shrank

on therapy but only one shrank enough to surpass a threshold

of >30% tumor-volume change and was therefore classified as

a response by RECIST. The permutation test and Simon criteria

therefore provide different insights into the drug responsiveness

of this small patient population.

Analysis of Progression-Free Survival
Comparison of response duration among different types of tu-

mors is potentially complicated by differences in tumor kinetics.

While slow growth is not in and of itself a measure of ‘‘sensitivity’’

to therapy, the durability of response asmeasured by PFS is clin-

ically important, is commonly used as an endpoint in conven-

tional cancer trials, and can provide complementary insight to

volume changes. We therefore applied permutation testing to

PFS. The null distribution was drawn from all tumor types (n =

141) because no tumor type was so responsive as to dominate

the distribution (STAR Methods). Significantly smaller hazard ra-

tios, which are indicative of longer PFS, were identified by a no-

difference test in cervical cancers (p = 0.03; median PFS,

20 months) and lung cancers (p = 0.003; median PFS,

5.4 months) but—strikingly—not in breast cancers (p = 0.36; me-

dian PFS, 3.5months, Figure 1C). Only five neratinib-treated cer-

vical cancers are present in the SUMMIT dataset, and the empir-

ical null distribution was consequently broad (Figure 1A).

Nonetheless, the observed responses were sufficiently strong

and durable to achieve statistical significance, (Cervical tumors

also met the criteria to begin stage 2, and so additional patients

are currently accruing [Table 1]). Whereas lung cancers exceed

no-difference tests for both volume changes and hazard ratios

based on PFS data, breast cancers differ from the overall popu-

lation by volume change alone. Lung cancers therefore appear to

represent a therapeutic opportunity for neratinib missed by

dichotomous assessment of response.

Our approach identifies differences in PFS that are statistically

significant, but interpreting whether this is clinically meaningful

requires attention to absolute duration in context of the kinetics

of that specific tumor type. In this case, as noted by Hyman, a

therapeutic response exceeding 12 months in non-small-cell

lung cancer is clinically meaningful (Hyman et al., 2018). More-

over, in the case of neratinib-treated lung and cervical cancers,

significant differences from the null distribution were observed

for both volume-change and PFS data, increasing confidence

in the conclusion that the drug may be active in these tumor

types (see also Discussion).

Analysis of Genetic Biomarkers
Differences in neratinib sensitivity have been observed in cell

lines with different mutations in ERBB receptors (Nagano et al.,

2018), but the impact of such differences on therapeutic

response has not been reported for patients. When a basket trial

is structured as many subtrials each involving tumors having

different tissues of origin (as in SUMMIT), the evaluation of

response rate (and cohort expansion in the case of a two-stage

trial) is exclusively based on the tissue of origin and not geno-

type. However, such trials generate the necessary data for

post hoc analysis of the influence of genotype. SUMMIT enrolled
Cell Systems 11, 449–460, November 18, 2020 451
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Figure 1. Analysis of Neratinib Response by Tumor Tissue of Origin

(A) Red line, observed response; blue histogram, responses simulated according to the null hypotheses of no difference in response between tumors types. As

explained in the main text, breast-tumor-volume changes are compared with null distributions drawn by Monte Carlo resampling from all tumors; for this reason,

the null distribution for breast-tumor volume changes has a different mean. For all other tumor volume changes, the null distributions are drawn from all nonbreast

tumors due to breast tumors being a strong outlier (p < 10�6; see STAR Methods).

(BandC) ‘‘Hazard ratio for progression’’ null distributionsaredrawn fromall tumors. (B)Observed responses that significantly exceed thenull hypothesis, according to

Benjamini-Hochberg procedure (to control the false discovery rate duringmultiple hypothesis testing), are indicatedwith +; N.S. denotes not significant; +++ denotes

p < 10�6 (B and C). (C) Observed responses that significantly exceed the null hypothesis for hazard ratio for progression, according to Benjamini-Hochberg

procedure (to control the false discovery rate during multiple hypothesis testing), are indicated with +; N.S. denotes not significant; +++ denotes p < 10-6.
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patients on the basis of qualifyingmutations inERBB2 orERBB3,

which were classified as ‘‘hotspot’’ if they occurred in recurrently

mutated regions of either gene or ‘‘nonhotspot’’ if they lay in

other, rarely mutated regions (Hyman et al., 2018). When we

applied permutation testing to ERBBgenotypes and neratinib re-
452 Cell Systems 11, 449–460, November 18, 2020
sponses we found that tumors with ERBB2 hotspot mutations

exceeded the no-difference null model as judged by changes

in tumor volume and also PFS (Figure 2A) (p = 0.03 for volume

changes and p = 0.0005 for PFS; Figures 2B and 2C), which

agrees with Hyman’s conclusion that ERBB2 hotspot tumors



Table 1. Conclusions from Analysis of Neratinib in ERBB-Mutant Tumors in Context of Trial Status

Tumor Type Number of Patients

Status in Simon Optimal

2-Stage Design Responses Significantly Different from Other Tumorsa?

Stage 1 Stage 2 Volume PFS

Ovarian 4 ongoing – – –

Gastroesophageal 5 ongoing – – –

Colorectal 12 failed – – –

Bladder 16 failed – – –

Endometrial 7 failed – – –

Biliary 9 passed ongoing superior –

Cervical 5 passed ongoing superior superior

Lung 26 passed failed superior superior

Breast 25 passed passed superior –
aDash denotes no significant difference by Benjamini-Hochberg procedure.
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are responsive to therapy. When ERBB2 hotspot mutations were

further divided into functional classes (e.g., S310; Exon 20 inser-

tions; V777; L755; and a class of ‘‘other hotspot mutations’’),

Exon 20 insertions significantly exceeded the no-difference null

for PFS (p = 0.01), which could be attributed almost exclusively

to lung tumors (Hyman et al., 2018). (Six lung tumorswere among

the seven most durable responses observed for all cancer types

having Exon 20 insertions.) No other significant signals were de-

tected among subgroups when scoring for classes of ERBB2

mutation (Table S1).

ERBB2 mutations are substantially less common in lung can-

cer than ERBB1 (EGFR) mutations, having been identified in

about 3% of patients with non-small-cell lung cancer; however,

90% of these mutations lie in Exon 20 (Arcila et al., 2012). Exon

20 in ERBB1 and ERBB2 encodes residues in the middle of the

tyrosine kinase domain and recurrent mutations in this region

have been associated with intrinsic resistance to clinically

approved EGFR inhibitors and correlate with a poor patient prog-

nosis (Robichaux et al., 2018; Vyse and Huang, 2019). The

demonstration that neratinib is potentially active clinically in

lung cancers with Exon 20 mutant ERBB2 is therefore of clinical

significance.

Permutation Testing Provides Statistical Support for the
Use of Imatinib in Select Cancer Types
As a second application of our approachwe examined the Phase

II, open-label Imatinib Target Exploration Consortium Study

B2225, which tested imatinib in 186 patients having 40 different

malignancies. (In this trial only 145 out of 186 patients who were

enrolled had evaluable responses and also fell into subtypes with

a sample size greater than 2; thus, only 145 responses were used

for the analysis presented here) (Heinrich et al., 2008). Objective

responses were observed in six types of malignancy, of which

five were described as ‘‘notable’’ by Heinrich et al. but not sub-

jected to formal statistical analysis. By testing against a no-dif-

ference null we found that three malignancies had a significantly

higher ORR to imatinib than all other tumors tested (dermatofi-

brosarcoma protuberans, myeloproliferative disorders, and hy-

pereosinophilic syndrome; Table 2). These malignancies were

represented by 6 to 13 patient measurements each, out of 186

total patients, confirming that statistically significant drug activity
can be detected in small subgroups. Imatinib was approved for

use in dermatofibrosarcoma protuberans by the FDA in 2006,

partly based on earlier data from the Imatinib Target Exploration

Consortium Study B2225 ((McArthur et al., 2005) and, following a

Phase II study published in 2010 (NCT00122473), it was incorpo-

rated into the National Comprehensive Cancer Network’s treat-

ment guidelines for this malignancy (Navarrete-Dechent et al.,

2019). The use of imatinib in hypereosinophilic syndrome is sup-

ported by case studies (Gleich et al., 2002; Pardanani and Tefferi,

2004), and our analysis provides additional support from a Phase

II basket trial for this use (Heinrich et al., 2008).

Permutation Testing Provides Statistical Support for
Tumor-Agnostic Use of Larotrectinib and
Pembrolizumab in Biomarker Positive Populations
Basket trials of the immune checkpoint inhibitor pembrolizumab

(Le et al., 2017) and kinase inhibitor larotrectinib (Drilon et al.,

2018; Lassen et al., 2018) contrast with the trials of neratinib

and imatinib described above because response rates were

high: both drugs were found to be effective in tumors from mul-

tiple tissues positive for a particular genetic biomarker. In the

case of a basket trial of pembrolizumab (NCT01876511)

involving 86 patients and 12 tumor types, tumors with mismatch

repair (MMR)-deficiency were found to be highly responsive to

PD-1 blockade regardless of tissue of origin (Le et al., 2017).

Similarly, high rates of larotrectinib response were observed

among 122 patients having 15 different types of tumors express-

ing TRK-fusion proteins (NCT02122913, NCT02637687, and

NCT02576431) (Drilon et al., 2018; Lassen et al., 2018). When

we compared data from each of these trials with a no-difference

null hypothesis, testing in for both superiority and inferiority, no

significant differences were observed for any tumor type repre-

sented by three or more patients. (This corresponded to eight tu-

mor types for larotrectinib and seven types for pembrolizumab.)

The sole exception was infantile fibrosarcomas, which were

more responsive to larotrectinib than other TRK-fusion tumors

(Figures 3A, 3B, 4A, and 4B). Our reanalysis therefore supports

tumor-type agnostic approval of pembrolizumab for MMR-defi-

cient cancers and larotrectinib for cancers carrying TRK fusions.

More recent trials of pembrolizumab in noncolorectal cancers in

KEYNOTE-158 (NCT02628067) (Marabelle et al., 2020) and in
Cell Systems 11, 449–460, November 18, 2020 453



96

14ERBB2 Non-hotspot

ERBB3 Hotspot

ERBB3 Non-hotspot

N.S.

12

3

ERBB2 Hotspot

-40 -20 0 20 40 60

+

N.S.

N.S.

Average tumor volume change (%)
-40 -20 0 20 40 60

Mutation
type

Number of 

measurements
Average tumor

volume change (%)
Hazard ratio for  

progression
More sensitive to therapy More durable response

Number of 
patient PFS patient volume 

measurements

106

15

12

4

0.3 0.5 1 2 4

Hazard ratio for progression

N.S.

N.S.

N.S.

0.3 0.5 1 2 4

+

Mutation Type 
(n= number of patients per 

subgroup) 

Test for larger benefit in 
hazard ratio for 

progression Conclusion 
based on 25% False 

Discovery Rate 
p-value 

Benjamini-Hochberg 
critical value 

for 1-sided test 
ERBB2 Hotspot (n= 106) 0.0005 0.063 Larger benefit 

ERBB2 Nonhotspot (n= 15) 0.950 0.125 N.S. 
ERBB3 Nonhotspot (n= 4) 0.962 0.188 N.S. 
ERBB3 Hotspot (n= 12) 0.970 0.250 N.S. 

Mutation Type  
(n= number of patients 

per subgroup) 

Test for larger benefit in 
tumor volume Conclusion 

based on 25% False 
Discovery Rate 

p-value 
Benjamini-Hochberg 

critical value 
for 1-sided test 

ERBB2 Hotspot (n= 96) 0.030 0.063 Larger benefit 
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ERBB3 Hotspot (n= 12) 0.931 0.250 N.S. 

A

B C

Figure 2. Analysis of Neratinib Response by General Mutation Class

(A) Red line, observed response; blue histogram, responses simulated according to the null hypotheses of no difference in response between tumors types.

(B) Observed responses that significantly exceed the null hypothesis, according to Benjamini-Hochberg procedure (to control the false discovery rate during

multiple hypothesis testing), are indicated with +; N.S. denotes not significant. (C) Observed responses that significantly exceed the null hypothesis for hazard

ratio for progression, according to Benjamini-Hochberg procedure (to control the false discovery rate during multiple hypothesis testing), are indicated with +;

N.S. denotes not significant. See also Table S1.
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colorectal cancer in KEYNOTE-164 (NCT02460198) (Le et al.,

2020) found that patients in both trials exhibited similar distribu-

tions of tumor-volume changes (Figure S1). Unfortunately,

volume-change data for KEYNOTE-158 were not reported for

specific tumor types, so we cannot test whether differences exist.

One of the two published larotrectinib trials reported drug re-

sponses by NTRK paralog and fusion partner (Drilon et al., 2018;

Lassen et al., 2018) and reanalysis of this trial (n = 55) revealed

no difference by NTRK-fusion type (Table S2). However, patient-

level response andmutation datawere not reported in larger, sub-

sequent trials of larotrectinib or pembroluzimabmaking reanalysis

of mutation-specific differences impossible with published data.

Permutation testing could be applied by trial sponsors, however,

or mandated by regulatory agencies to determine whether a

refinement in the current tumor-agnostic approval is warranted.

Comparison of Type 1 and Type 2 Errors of Permutation
Tests and Binomial Tests in Basket Trials
As described above, when some but not all tumor subtypes

respond to therapy, responsive subtypes canbe identified by per-

mutation tests that evaluate a ‘‘no difference by tumor type’’ null

based on continuous measures of responses or a prespecified

‘‘low efficacy’’ null for each tumor type using dichotomous mea-

sures of response—typically ORR—and binominal testing (as in

the Simon two-stage design). To compare rates of type I error
454 Cell Systems 11, 449–460, November 18, 2020
(a false positive corresponding to misclassification of a nonre-

sponsive tumor type as responsive) and type II error (a false nega-

tive, corresponding to misclassification of a responsive tumor

type as nonresponsive) between these approaches, we simulated

basket trials in which a proportion of tumor subtypes responded

to therapy to differing degrees (see STAR Methods).

As expected, by permutation testing on continuous volume-

change data, the false-positive rate (type 1 error) declined as

the treatment effect increased (i.e., the decrease in tumor vol-

ume was greater). In small cohorts typical of the first stage of a

two-stage trial (n = 7 patients per tumor type), permutation tests

had substantially smaller false-positive rates than binomial tests

(Figure 5). Two-stage trial designs balance the two aims of de-

tecting positive signals in small patient populations and mini-

mizing the number of patients exposed to a potentially futile

treatment. In the Simon two-stage design, stage 1 is intentionally

permissive with a high false-positive rate (stage 2 is more strin-

gent). In contrast, permutation tests had a smaller false-positive

rate in stage 1, and positive findings were associated with

greater confidence. This came at the expense of a lower true-

positive rate (also known as power, or 1 minus the type II error

rate), making permutation tests more stringent than binomial

tests in stage 1. Power could in principle be increased in the per-

mutation test, at the cost of greater Type 1 error, but we did not

explore this in simulation.



Table 2. Analysis of Imatinib Tumor-Volume Responses by Tumor Type

Tumor Type (n = number of patients per subgroup)

Test for Larger Benefit in Tumor Volume

Conclusion Based on 25% False

Discovery RatepValue

Benjamini-Hochberg Critical

Value for 2-Sided Test

Dermatofibrosarcoma protuberans (n = 11)a < 0.001 0.015 larger benefit

Myeloproliferative disorders (n = 6)a 0.008 0.029 larger benefit

Hypereosinophilic syndrome (n = 13)a 0.012 0.044 larger benefit

Aggressive fibromatosis (n = 17) 0.798 0.059 N.S.

Synovial sarcoma (n = 15) 0.934 0.074 N.S.

Myelofibrosis (n = 6) 1.000 0.088 N.S.

Multiple myeloma (n = 6) 1.000 0.103 N.S.

Intraocular melanoma (n = 3) 1.000 0.118 N.S.

Malignant melanoma (n = 4) 1.000 0.132 N.S.

Mesothelioma (n = 3) 1.000 0.147 N.S.

Adenoid cystic carcinoma (n = 11) 1.000 0.162 N.S.

Desmoplastic small round cell tumor (n = 5) 1.000 0.176 N.S.

Chordoma (n = 4) 1.000 0.191 N.S.

Ewing’s sarcoma (n = 3) 1.000 0.206 N.S.

Chondrosarcoma (n = 6) 1.000 0.221 N.S.

Liposarcoma (n = 11) 1.000 0.235 N.S.

Leiomyosarcoma (n = 9) 1.000 0.250 N.S.
aSignificant by Benjamini-Hochberg procedure.
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In larger cohorts typical of stage 2 (n = 25 patients per tumor

type), permutation tests had greater true-positive rate than a

binomial test for all effect sizes. Permutation testing also had a

smaller false-positive rate for treatment effects stronger than

20% difference in tumor volume. These findings remained qual-

itatively the same irrespective of the number of responsive sub-

groups chosen for the simulation. (Figure 5 shows simulations for

1 out of 10 responsive subgroups, 3 out of 10 responsive sub-

groups, 3 of 10 responsive subgroups in which one of these sub-

groups is doubly responsive, and 5 out of 10 responsive sub-

groups.) We also found that significant signals could be reliably

detected (with 80% power) using permutation tests when only

3 patients exhibit objective responses in either stage of the

Simon design (Figure S2), demonstrating the utility of this

approach in detecting signals in small numbers of patients.

The superior performance of permutation testing in these simu-

lations is in agreement with recent theoretical analysis (Arfè et al.,

2020). Historically, an important advantage of binomial tests was

that they could be computed rapidly and exactly using simple al-

gorithms and slow computers. Permutation testing with resam-

pling (necessary when n is too large for an exact enumeration)

is more computationally intensive; this was an issue in 1980s

when basket trials were first proposed but is no longer relevant.

DISCUSSION

A primary motivation for performing a basket trial is to determine

which of several tumor types or genotypes are sufficiently

responsive to an investigational therapy to warrant further study

in a Phase III pivotal trial. Because Phase II trials rarely involve a

no-treatment control population, contemporary designs for bas-

ket trials use a prespecified cutoff to evaluate whether or not a
drug is effective. Currently this involves a dichotomous assess-

ment of tumor-volume changes to determine if the ORR exceeds

a threshold set by a binomial test. In this paper we demonstrate

an alternative approach involving a permutation test in which

both continuous volume changes and survival data (PFS) are

formally compared against empirical null distributions that are

constructed using data from all patients in the trial. Responses

in subgroups are then compared with the null distribution to

test the hypothesis of no difference in efficacy by subtype

(most commonly tumor tissue of origin ormutation class or geno-

type) as a means to identify subtypes that are most responsive.

Constructing subtype-specific null distributions involves

repeated Monte Carlo resampling of an all-patient distribution,

drawing the same number of samples as the number of patients

in the subtype. The resulting null distributions appropriately

anticipate the greater variability observed in small cohorts,

thereby adjusting the threshold for identifying a statistically sig-

nificant increase or decrease in response based on a prespeci-

fied false-positive (type 1) error rate. For example, the SUMMIT

trial reported PFS data for five cervical cancer patients. In this

case, the null distribution was calculated by repeatedly sampling

five response durations from the set of duration data for all pa-

tients, generating a relatively wide subtype-specific null distribu-

tion. Despite this, the observed hazard ratio in cervical cancers

was significantly smaller than the no-difference null distribution

(p = 0.03) implying an above-average response. Conclusions

drawn from testing for no difference in continuous volume

change can differ from binomial testing based on ORR. For

example, lung cancers exposed to neratinib exceed the no-dif-

ference null with respect to both volume changes (p = 0.04; sam-

pling from all nonbreast tumors) and PFS (p = 0.003, sampling

from all tumors) even though lung cancers failed the second
Cell Systems 11, 449–460, November 18, 2020 455
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Infantile fibrosarcoma (n= 16) 0.001 0.016 0.999 0.125 Larger benefit 
GIST (n= 5) 0.096 0.031 0.901 0.109 N.S. 

Lung tumor  (n= 7) 0.283 0.047 0.714 0.094 N.S. 
Soft tissue sarcoma (n= 25) 0.307 0.063 0.691 0.078 N.S. 
Salivary-gland tumor (n= 18) 0.524 0.078 0.473 0.063 N.S. 

Thyroid tumor (n= 15) 0.736 0.094 0.262 0.047 N.S. 
Melanoma (n= 5) 0.753 0.109 0.244 0.031 N.S. 

Colon Tumor (n= 5) 0.782 0.125 0.215 0.016 N.S. 

A

B

Figure 3. Analysis of Larotrectinib by Tumor

Tissue of Origin Finds Consistent Activity in

Multiple Tumor Types, and Even Greater Ac-

tivity in Infantile Fibrosarcoma

(A) Red line, observed average response; blue

histogram, responses simulated according to the

null hypothesis of no difference in response be-

tween tumors types.

(B) Observed responses that significantly exceed

the null hypothesis, according to Benjamini-

Hochberg procedure (to control the false discov-

ery rate during multiple hypothesis testing), are

indicated with +; N.S. denotes not significant. See

also Table S2.
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stage of a Simon design. In contrast, breast cancers exhibited

highly significant changes in tumor volume by both Simon and

no-difference criteria but failed the no-difference test with

respect to PFS. We therefore propose that neratinib be studied

further in ERBB-mutant lung tumors and that early evidence be

sought in expansion cohorts to ascertain whether neratinib can

in fact provide a clinically meaningful survival benefit in breast

cancer patients.
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Basket trials of larotrectinib in TRK-

fusion-positive cancers and pembrolizu-

mab in MMR-deficient cancers are char-

acterized by high response rates (Drilon

et al., 2018; Lassen et al., 2018; Le

et al., 2017). By permutation testing, no

subgroup was identified in either trial as

being significantly less responsive than

the average of all tumors. Thus, a formal

no-difference test supports the recent tu-

mor-agnostic FDA approvals of larotrecti-

nib and pembrolizumab for cancers with

specific genetic features. Infantile fibro-

sarcomas stood out in our reanalysis as

being more responsive to larotrectinib

than other TRK-fusion tumors, but unfor-

tunately recent publications of larger trials

of larotrectinib (and pembrolizumab) lack

the patient-level data needed to look

more broadly at subtype-specific differ-

ences in drug response.

Comparison of Subgroups in Basket
Trials
The continuing growth of genomic

and biomarker-driven oncology enables

refined subdivision of patient popula-

tions whether in a basket trial or by

stratifying patients in conventional

Phase II and Phase III studies (Hyman

et al., 2018). The promise of such subdi-

vision is better precision in oncology,

but the risk is smaller subsamples and

reduced statistical significance; thus,

new approaches to analyzing tumor

subtypes are required. Our reformula-
tion of null hypotheses, generation of null distributions by per-

mutation, and derivation of empiric p values for comparing re-

sponses across subgroups in basket trials has the potential to

better identify therapeutic opportunities for targeted drugs.

The approach is grounded less in novel statistical theory (per-

mutation tests are well established) than in the accumulation

of empirical evidence from completed basket trials. Nonethe-

less, among all tests that control the type I error rate at a fixed
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Figure 4. Analysis of Pembrolizumab by Tu-

mor Tissue of Origin Finds Consistent Activ-

ity in Multiple Tumor Types

(A) Red line, observed average response; blue

histogram, responses simulated according to the

null hypothesis of no difference in response be-

tween tumors types.

(B) Observed responses that significantly exceed

the null hypothesis, according to Benjamini-

Hochberg procedure (to control the false discov-

ery rate during multiple hypothesis testing), are

indicated with +; N.S. denotes not significant. See

also Figure S1.
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a level, the permutation test has been proven mathematically

to be the procedure that maximizes finite-sample power for a

late-stage study conditional on early-stage data (Arfè et al.,

2020). Simulation shows that permutation testing is even

applicable to small patient populations and makes it possible

to obtain appropriately scaled null distributions and derive

empirical p values for drug response as measured by both

volume change and PFS. The methodology is expected to

be of value other Phase II studies that lack control arms and

involve multiple patient subgroups each of which is generally
Cell Syst
thought to be too small for formal com-

parison (Hyman et al., 2018).

Despite the clear importance for preci-

sion medicine of reliably comparing drug

response across subgroups, this is not

conventionally done; FDA guidance spe-

cifically discourages it, probably because

of the dangers of false discovery (Pazdur,

2008; U.S. Food andDrug Administration,

2018). The specific concern is that, in tri-

als with a large number of arms, testing

all arms against each other involves

a potentially uncontrolled multihypothe-

sis test. However, in the procedure

described here, all null distributions are

sampled from the same all-patient distri-

bution, and the Benjamini-Hochberg pro-

cedure is used to appropriately correct

significance thresholds used to test indi-

vidual hypotheses. In some cases, one

tumor subtype can dominate responses

for the entire trial, obscuring smaller but

potentially significant differences in other

subtypes. In SUMMIT this was true of

volume changes in neratinib-treated

breast cancers (p<10-6 relative to the

no-difference null). To enable detection

of next-most-different volume responses,

we created an additional null distribution

in which breast cancers were removed

from the all-patient distribution. We per-

formed this procedure only for a single

outlier subgroup because repeated

adjustment of the null distribution

heightens the risk of false discovery, as
described above (Bishop and Thompson, 2016) (see STAR

Methods).

A second potential concern arises when comparing the magni-

tude of volume changes across subgroups; because tumors

respond differently to therapy, the magnitude of volume changes

and the frequency of confounding factors, such pseudoprogres-

sion (an increase in the size of a primary tumor for reasons other

thandisease progression, such as immune infiltration, followedby

tumor regression), (Ma et al., 2019) also differ. However, in scoring

ORR in the Simon design, a very similar issue arises; the same
ems 11, 449–460, November 18, 2020 457



Figure 5. Comparison of False-Positive and

True-Positive Rates of Permutation Tests

and Binomial Tests in Basket Trials for

Different Numbers of Responsive Sub-

groups

Basket trials were simulated in which 1 out of 10, 3

out of 10, and 5 of 10 tumor types respond to

therapy. False-positive and true-positive rates

(also known as type 1 error rate and power,

respectively) for detecting one of the responsive

subgroups were compared between: (blue) per-

mutation tests, comparing all tumor types to find

those significantly more responsive than average,

and (orange) binomial tests of objective response

rate, such as are used in two-stage trial designs

(see STAR Methods). Note that the third row de-

picts the characteristics for detecting either one of

the two responsive groups, in the presence of one

other group that is doubly responsive. Simulations

were repeated across a range of treatment effect

sizes (difference in mean volume change between

responsive and nonresponsive tumors) for 7 pa-

tients per tumor type (typical of the first stage of a

two-stage trial), and 18 patients per tumor type

(typical of the second stage). Inset: zoom on the

type 1 error rate (<4%). See also Figure S2.
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threshold for volume change is used to establish a meaningful

response in all subgroups. Thus the need for a common interpre-

tation of subgroups is not specific to our methodology and arises

with all other methods (e.g., Bayesian or frequentist) of assessing

drug efficacy (Berry, 2015). It is also noteworthy that the 30%

reduction in volume conventionally used to threshold ORR subdi-

vides a unimodal distribution of tumor-volume changes. The need

for a threshold is often justified based on the technical complex-

ities of tumor-volume assessment (Sharma et al., 2012); a 30%

difference is generally judgedas greater thanmeasurement noise,

but the introduction of threshold is nonetheless arbitrary.

A third potential concern involves our use of PFS data to

compare subgroups. Historically, a key limitation on the use of
458 Cell Systems 11, 449–460, November 18, 2020
PFSdata in basket trials is that there exists

no agreed upon threshold in duration that

can define a meaningful (or ‘‘objective’’)

response. (In contrast, tumor-volume

changes are commonly thresholded to

determine ORR.) In the absence of a PFS

threshold and a dichotomous score, the

binomial test in the Simon two-stage

design cannot be used. Permutation

testing using an all-patient null distribution

overcomes this issue. A biological

concern in comparing PFS data across tu-

mor types derives from the observation

that different cancers naturally progress

at different rates (Friberg and Mattson,

1997). However, rates of progression for

solid tumors in the SUMMIT trial were

similar to each other; tumors that did not

shrink on therapy progressed rapidly irre-

spective of tumor type (85% of nonshrink-
ing tumors progressed in% 3 months). Moreover, it is well estab-

lished that overall survival, the gold standard for measuring

response to anticancer drugs, correlatesmore strongly with dura-

tion of PFS than with tumor-volume changes (Fleming and De-

Mets, 1996; Kaiser, 2013; Seymour et al., 2010; Zabor et al.,

2016). Significant reductions in tumor volume do not necessarily

predict durable PFS, and durable PFS can be achieved with

modest changes in tumor volume. Thus, past experience and

theoretical considerations suggest that PFS and tumor volume

can both provide valuable data in a permutation testing frame-

work for most tumor types.We nonetheless note that the strength

of correlation between PFS or tumor-volume changes and overall

survival differs across cancer types, and ultimately the decision
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regarding whether to include one or both of these data types is

likely to be influenced by clinical experience in a specific disease

and treatment setting (Davis et al., 2012). If an effect is only

apparent in PFS but not size change, one should carefully

consider whether the particular tumor type is naturally slow

growing. The ideal situation arises when reductions in tumor

volume and increases in PFS are concordant and both significant,

as observed for neratinib in ERBB-mutant lung and cervical

cancers.

Limitations of This Study
The current study involves only retrospective analysis of pub-

lished trials. A key limitation in such an approach is that it is

contingent on the availability of patient-level outcome data

across tumor subtypes. Unfortunately, such information is not

currently required for the publication of basket trials and is often

missing in favor of summary statistics. There is no ethical reason

for failing to report these data, and their omission introduces a

substantial barrier to gaining new insight from a completed trial.

Going forward, we believe that new basket trials should use per-

mutation testing to compare response between tumor types and

genetic features, whenever this method is compatible with the

trial design. An appropriately conservative approach might be

to apply an established Simon or Bayesian-Simon design for

enrollment decisions and use permutation testing for analysis.

Using permutation testing for real-time enrollment decisions is

also feasible but requires an exploration of how differences in

accrual rates across subgroups would impact power and false-

positive rates; examination of how external, historical control

arms could contribute to null distributions for such analysis;

and a comparison of permutation methods to Bayesian adaptive

approaches. Such analysis would be best performed when a trial

is first designed.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Basket trial data files analyzed in article: ‘‘Comparing the efficacy of

cancer therapies between subgroups in basket trials’’

This manuscript https://github.com/labsyspharm/

palmer-plana-2020.

Software and Algorithms

Mathematica code for article: ‘‘Comparing the efficacy of cancer This manuscript https://github.com/labsyspharm/
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Prof.

Peter Sorger (peter_sorger@hms.harvard.edu, cc: sorgeradmin@hms.harvard.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
d Basket trial data analyzed in this study is available at https://github.com/labsyspharm/palmer-plana-2020.

d The original code reported in this study is available at https://github.com/labsyspharm/palmer-plana-2020.

d The scripts used to generate the figures reported in this paper are available at https://github.com/labsyspharm/palmer-

plana-2020.

d Any additional information required to reproduce this work is available from the Lead Contact.

therapies between subgroups in basket trials’’ palmer-plana-2020.
METHOD DETAILS

To test the null hypothesis that patient subgroups are equally responsive to a therapy, outcome data as reported in a basket trial

(comprising either change in tumor volume, or duration of PFS) were pooled for all patients who received the drug, regardless of tu-

mor type. We derive a null distribution for each subgroup by permutation of responses among tumor subgroups. We have elected to

consider both PFS and tumor volume for all of analysis when both types of response data were available. However, we note that a

meaningful correlation between PFS or tumor volume changes and overall survival has not been demonstrated in all cancer types,

and ultimately the decision of whether to include both of these data types into post-hoc analysis should be informed by clinical expe-

rience in a specific disease and treatment setting (Davis et al., 2012).

Exact permutation tests compute all possible combinations of categorical variables, but this is computationally intractable for

continuous variables (e.g. there are 1023 ways to choose 25 samples from 100 patients). We therefore usedMonte Carlo permutation

tests, in which a large but non-exhaustive set of permutations is randomly generated. Monte Carlo permutation yields type 1 error

rates (false positive rate) equal to those of an exact permutation test for probabilities P >> 1/N where N is the number of random per-

mutations; we used N=107 and therefore can accurately report P values as small as 0.0001 (106 simulations were performed for the

neratinib PFS analysis due to the computational time required to calculate hazard ratio, and since neratinib PFS analyses produced

no P values smaller than 10–4, sufficient precision was provided by 106 simulations). Monte Carlo permutation of trial outcomes in-

volves randomly drawing from a pool of all patient responses, with the number of samples drawn equal to the number of patients

found in the cohort being tested (e.g. 26 patients for lung and 5 patients for cervical cancer). A response metric (volume change

or PFS) for the sampled set is then calculated and the procedure repeated N=107 times to compose a reliable null distribution for

the cohort. For the analysis of changes in tumor volume, the response metric was the average volume change for a cohort; for

the analysis of PFS, the response metric was the hazard ratio (computed using the Cox proportional hazards model) of the Ka-

plan-Meier survival function for a subset of patients as compared to the survival function for all patients. An empiric P value was

then determined by the location of the observed response metric (which was the test statistic) on that null distribution. In common

with an exact permutation test, the rate of type I error is the significance level. The Benjamini-Hochberg procedure (Benjamini and

Hochberg, 1995) was used to control the False Discovery Rate (FDR) associated withmultiple hypothesis testing (multiple hypothesis

correction is generally absent from analyses of basket trials). Consistent with practice in genomics, we used an FDR of 25%, which

we observed by simulations to yield a false positive (type I error) ratez 3% (see Results); this is smaller than the 10% false positive

rate commonly chosen for Simon two-stage designs.
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In the case of the SUMMIT trial permutation testing was separately applied to reported tumor volume changes and to durations of

PFS; in the case of the larotrectinib and pembrolizumab trials (Drilon et al., 2018; Lassen et al., 2018; Le et al., 2017) it was applied

only to tumor volume changes (PFS outcomes by tumor type are not available). For imatinib, permutation tests were applied to objec-

tive response rates (Heinrich et al., 2008). For the SUMMIT trial, volume (but not PFS) changes in breast tumors were far stronger than

for any other tumor type: none of 107 simulations of the null hypothesis matched the observed average tumor volume change of

breast tumors (we report this as P < 10-6). The magnitude of difference between breast tumors and all tumors (45% difference in

average volume change) is so large that the inclusion of breast tumors in the null distribution makes it impossible to detect any dif-

ference among other tumor types. Because breast tumors represent an outlier with regard to volume changes in response to neratinib

treatment, we considered it inappropriate to include breast tumor volume changes in the between-tumor comparison of all other tu-

mor types. We therefore constructed a ‘‘no breast tumor’’ (NB) null distribution using volume data for all non-breast cancers (n=116).

This reformulation of the null distribution was applied only for this case of a P<10-6 outlier, and we advocate for a similarly stringent

approach to any future application that may remove subtypes from the null distribution. We did not encounter any other tumor sub-

type in any basket trial for which reformulation of the null distribution was appropriate

Responses in any one tumor type could not be meaningfully inferior to the poor response across all patients to neratinib (median

volume changez 0%;median PFSz 2months; objective response rate 12%).We therefore tested only for superiority of each tumor

type or mutation class relative to all types; the same was true of imatinib (objective response rate 13% over all patients), and basket

trials in general use one-sided tests for efficacy. In the cases of larotrectinib and pembrolizumab, overall response rates were high,

and we tested for both superiority and inferiority relative to the average of all tumors in those trials.

Finally, basket trials were simulated in which only some tumor types respond to therapy, in order to compare type I and type II error

rates between permutation tests (comparing efficacy across tumor types) and binomial tests (evaluating objective response rate in

individual tumor types, according to a Simon two-stage trial design). A ‘non-responsive’ distribution of tumor volume changes was

empirically defined based on the observed volume changes in non-responsive tumor types in the SUMMIT trial: volume changes

were drawn from a normal distribution with mean response m = +20%, and standard deviation s = ±30%; these parameters resulted

in fewer than 5% of tumors exhibiting volume change % -30%, defined as ‘objective response’ for these simulations. Basket trials

were simulated in which ten tumor types were studied, of which seven types were ‘non-responsive’ (m = 20%, s = ±30%), and three

typeswere ‘responsive’ (m = a + 20%,s =±30%;where a is the ‘treatment effect’, the average difference in volume change compared

to non-responsive tumors). 1000 basket trials were simulated for each value of ‘treatment effect’ between -60% and 0%, first with 7

patients per tumor type, and next with 18 patients per tumor type, matching the intended number of patients in Stages One and Two

of the two-stage design of the SUMMIT trial. Each simulated trial’s results were analyzed by both permutation testing, and by the

binomial test used in the Two-Stage design (pass requiresR 1 objective response at stage 1, andR 4 objective responses at stage

2). Type 1 error rates were calculated as the fraction of truly non-responsive tumor types that were misclassified as responsive, and

type 2 error rates were calculated as the fraction of truly responsive tumor types that were misclassified as non-responsive.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analysis was performed usingWolframMathematica Version 12.1.0.0. Details of the statistical analysis performed, exact values of

n and what they represent, definitions of the summary statistics used, definitions of significance, and participant inclusion and exclu-

sion criteria can be found in the Method Details, Figure captions, and Results sections of the manuscript.
e2 Cell Systems 11, 449–460.e1–e2, November 18, 2020
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A. 

Mutation Type 
(n= number of patients per 

subgroup) 

Test for larger benefit in 
tumor volume Conclusion 

based on 25% False 
Discovery Rate p-

value 
Benjamini-Hochberg 

critical value 
for 1-sided test 

L755 Hotspot (n =13) 0.031 0.025 N.S. 
Exon20 Insertion Hotspot (n= 28) 0.162 0.050  N.S. 

S310 Hotspot (n= 30) 0.267 0.075 N.S. 
V777 Hotspot (n= 15) 0.276 0.100 N.S. 

ERBB3 Nonhotspot (n= 4) 0.421 0.125 N.S. 
Other Hotspot (n= 9) 0.529 0.150 N.S. 

PKD Nonhotspot (n= 12) 0.651 0.175 N.S. 
 ERBB3 Hotspot (n= 12) 0.931 0.200 N.S. 

PKD Hotspot (n= 14) 0.950 0.225 N.S. 
Other Nonhotspot (n= 4) 0.954 0.250 N.S. 

 

B. 

Mutation Type 
(n= number of patients per 

subgroup) 

Test for larger benefit in 
hazard ratio for progression Conclusion 

based on 25% 
False Discovery 

Rate p-value 
Benjamini-Hochberg 

critical value 
for 1-sided test 

Exon20 Insertion Hotspot (n= 26) 0.011 0.025 Larger Benefit 
S310 Hotspot (n= 30) 0.094 0.050  N.S. 
Other Hotspot (n= 8) 0.274 0.075 N.S. 
L755 Hotspot (n= 13) 0.456 0.100 N.S. 
PKD Hotspot (n= 14) 0.499 0.125 N.S. 

PKD Nonhotspot (n= 11) 0.759 0.150 N.S. 
V777 Hotspot (n= 15) 0.944 0.175 N.S. 

 ERBB3 Nonhotspot (n= 4) 0.962 0.200 N.S. 
 ERBB3 Hotspot (n= 12) 0.970 0.225 N.S. 
Other Nonhotspot (n= 4) 0.985 0.250 N.S. 

 

 

Supplementary Table S1. Benjamini-Hochberg critical values for analysis of neratinib tumor volume 

responses (A) and hazard ratios for progression (B) by specific mutation type. Related to Figure 2. 

 

 

 

 



A.  

NRTK paralog 
(n= number of patients 

per subgroup) 

Test for larger benefit in 
tumor volume 

Test for smaller benefit in 
tumor volume Conclusion 

based on 25% False 
Discovery Rate 

p-value 

Benjamini-
Hochberg 

critical value 
for 2-sided test p-value 

Benjamini-
Hochberg 

critical value 
for 2-sided test 

NTRK3 (n= 28)  0.147 0.063 0.854 0.125 N.S. 
NTRK1 (n= 24) 0.804 0.125 0.197 0.063 N.S. 

 

B.  

NRTK fusion partner 
(n= number of patients 

per subgroup) 

Test for larger benefit in 
tumor volume 

Test for smaller benefit in 
tumor volume Conclusion 

based on 25% False 
Discovery Rate 

p-value 

Benjamini-
Hochberg 

critical value 
for 2-sided test p-value 

Benjamini-
Hochberg 

critical value 
for 2-sided test 

ETV6-NTRK3 (n= 27) 0.160 0.042 0.840 0.125 N.S. 
TPM3-NTRK1 (n= 9) 0.757 0.083 0.246 0.083 N.S. 
LMNA-NTRK1 (n= 5) 0.941 0.125 0.059 0.042 N.S. 

 

Supplementary Table S2. Benjamini-Hochberg critical values for analysis of larotrectinib tumor volume 

responses by genomic status. Related to Figure 3. 

 

 

 

 

 

 

 

 



 

 

Supplementary Figure S1. Comparison of tumor volume changes in response to pembrolizumab in 

colorectal and non-colorectal cancers. Related to Figure 4.  Patient tumor volume change data was extracted 

from the KEYNOTE-158 (n=233) and KEYNOTE-164 (n=124) trials. Both trials tested the PD-L1 inhibitor, 

pembrolizumab, in colorectal and noncolorectal cancers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure S2. Number of responsive patients needed to achieve 80% power using a 

permutation test. Related to Figure 5. Computational simulation identifies number of patients with objective 

responses (greater than 30% decrease in tumor volume) in a subgroup, across different average treatment 

effects. Dotted lines indicate the number of responsive patients needed for 80% power in a permutation test 

(based on the simulation and tumor volume change values reported in Figure 5, row 2).  
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