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SUMMARY

Predicting protein structure from sequence is a cen-
tral challenge of biochemistry. Co-evolutionmethods
show promise, but an explicit sequence-to-structure
map remains elusive. Advances in deep learning that
replace complex, human-designed pipelines with
differentiable models optimized end to end suggest
the potential benefits of similarly reformulating struc-
ture prediction. Here, we introduce an end-to-end
differentiable model for protein structure learning.
The model couples local and global protein structure
via geometric units that optimize global geometry
without violating local covalent chemistry. We test
our model using two challenging tasks: predicting
novel folds without co-evolutionary data and predict-
ing known folds without structural templates. In the
first task, the model achieves state-of-the-art accu-
racy, and in the second, it comes within 1–2 Å;
competing methods using co-evolution and experi-
mental templates have been refined over many
years, and it is likely that the differentiable approach
has substantial room for further improvement, with
applications ranging from drug discovery to protein
design.

INTRODUCTION

Proteins are linear polymers that fold into very specific and or-

dered three-dimensional (3D) conformations based on their

amino acid sequence (Branden and Tooze, 1999; Dill, 1990).

Understanding how this occurs is a foundational problem in

biochemistry. Computational approaches to protein folding not

only seek to make structure determination faster and less costly;

they aim tounderstand the foldingprocess itself. Existing compu-

tational methods fall into two broad categories (Gajda et al.,

2011a, 2011b). The first category builds explicit sequence-to-

structure maps using computational procedures to transform

raw amino acid sequences into 3D structures. This includes

physics-based molecular dynamics simulations (Marx and Hut-

ter, 2012), which are restricted by computational cost to small

proteins, and fragment assembly methods (Gajda et al., 2011a),

which find energy-minimizing conformations by sampling statis-
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tically derived protein fragments. Fragment assembly usually

achieves high accuracy only when homologous protein struc-

tures are used as templates. Such template-based methods

use one ormore experimental structures—found through homol-

ogy searches—as the basis for making predictions.

The second category of methods eschews explicit sequence-

to-structure maps and instead identifies co-evolving residues

within protein families to derive residue-residue contact maps,

using co-evolution as an indicator of contact in physical space

(Hopf et al., 2014; Marks et al., 2011). With a large and diverse

set of homologous sequences—typically tens to hundreds of

thousands—co-evolution methods can accurately predict con-

tact maps (Juan et al., 2013). A correct contact map can guide

fragment assembly methods to an accurate 3D structure 25%–

50% of the time (Ovchinnikov et al., 2017). However, because

co-evolutionary methods do not construct a model of the rela-

tionship between individual sequences and structures, they are

unable to predict structures for which no sequence homologs

exist, as in new bacterial taxa or de novo protein design. More-

over, even for well-characterized proteins, such methods are

generally unable to predict the structural consequences of minor

sequence changes such asmutations or indels because they op-

erate on protein families rather than individual sequences (they

do, however, show promise in predicting the functional conse-

quences of mutations [Hopf et al., 2017]). Thus, there remains

a substantial need for new and potentially better approaches.

End-to-end differentiable deep learning has revolutionized

computer vision and speech recognition (LeCun et al., 2015),

but protein structure pipelines continue to resemble the ways

in which computers tackled vision and speech prior to deep

learning, by having many human-engineered stages, each inde-

pendently optimized (Xu and Zhang, 2012; Yang et al., 2015)

(Figure 1). End-to-end differentiable models replace all compo-

nents of such pipelines with differentiable primitives to enable

joint optimization from input to output. In contrast, use of deep

learning for structure prediction has so far been restricted to in-

dividual components within a larger pipeline (Aydin et al., 2012;

Gao et al., 2017; Li et al., 2017; Lyons et al., 2014; Zhao et al.,

2010), for example, prediction of contact maps (Liu et al.,

2018b; Wang et al., 2017). This stems from the technical chal-

lenge of developing an end-to-end differentiable model that re-

builds the entire structure prediction pipeline using differentiable

primitives. We have developed such a model by combining four

ideas: (1) encoding protein sequence using a recurrent neural

network, (2) parameterizing (local) protein structure by torsional

angles to enable a model to reason over diverse conformations
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Figure 1. Conventional Pipelines for Protein Structure

Prediction

Prediction process begins with query sequence (top, green box)

whose constituent domains and co-evolutionary relationships are

identified through multiple sequence alignments. In free modeling

(left), fragment libraries are searched to derive distance restraints,

which, along with restraints derived from co-evolutionary data, guide

simulations that iteratively minimize energy through sampling.

Coarse conformations are then refined to yield the final structure. In

template-based modeling (right pipeline), the PDB is searched for

templates. If found, fragments from one or more templates are

combined to assemble a structure, which is then optimized and

refined to yield the final structure. Orange boxes indicate sources of

input information beyond query sequence, including prior physical

knowledge. Diagram ismodeled on the I-Tasser and Quark pipelines

(Zhang et al., 2018).
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Figure 2. Recurrent Geometric Networks

Protein sequences are fed one residue at a time to the computational units of an RGN (bottom-left), which compute an internal state that is integrated with the

states of adjacent units. Based on these computations, torsional angles are predicted and fed to geometric units, which sequentially translate them into Cartesian

coordinates to generate the predicted structure. dRMSD is used to measure deviation from experimental structures, serving as the signal for optimizing RGN

parameters. Top-left inset: geometric units take new torsional angles and a partial backbone chain and extend it by one residue. Bottom-right inset: compu-

tational units, based on long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), use gating units (blue) to control information flow in and out of the

internal state (gray) and angularization units (purple) to convert raw outputs into angles. Rightmost inset: angularization units select from a learned set of torsion

angles (‘‘alphabet’’) a mixture of torsions, which are then averaged in a weighted manner to generate the final set of torsions. Mixing weights are determined by

computational units.
without violating their covalent chemistry, (3) coupling local pro-

tein structure to its global representation via recurrent geometric

units, and (4) using a differentiable loss function to capture

deviations between predicted and experimental structures. We

find that the new approach outperforms other methods,

including co-evolution ones, when predicting novel folds even

though it uses only primary sequences and position-specific

scoringmatrices (PSSMs) that summarize individual residue pro-

pensities for mutation. We also find that when predicting known

folds, the new approach is on average within 1–2 Å of other ap-

proaches, including template-based ones, despite being tem-

plate-free.

RESULTS

Recurrent Geometric Networks
Our model takes a sequence of amino acids and PSSMs as input

and outputs a 3D structure. It comprises three stages—compu-

tation, geometry, and assessment—which we term a recurrent

geometric network (RGN). The first stage is made of computa-

tional units that for each residue position, integrate information

about its amino acid and PSSM with information coming from

adjacent units. By laying these units in a recurrent bidirectional

topology (Figure 2), the computations for each residue integrate

information from residues upstream and downstream all the way

to the N and C terminus, covering the entire protein. By further

stacking units in multiple layers (data not shown), the model

implicitly encodes a multi-scale representation of proteins.

Each unit outputs three numbers, corresponding to the torsional

angles of the residue. We do not specify a priori how angles are
294 Cell Systems 8, 292–301, April 24, 2019
computed. Instead, each unit’s computation is described by an

equation whose parameters are optimized so that RGNs accu-

rately predict structures.

The second stage is made of geometric units that take as

input the torsional angles for a given residue and the partially

completed backbone resulting from the geometric unit upstream

of it, and output a new backbone extended by one residue,

which is fed into the adjacent downstream unit (AlQuraishi,

2019a; Parsons et al., 2005). The last unit outputs the completed

3D structure of the protein. During model training, a third stage

computes deviations between predicted and experimental

structures using the distance-based root mean square deviation

(dRMSD) metric. The dRMSD first computes pairwise distances

between all atoms in the predicted structure and all atoms in

the experimental one (separately) and then computes the root

mean square of the distance between these sets of distances.

Because dRMSD is distance-based, it is invariant to reflections,

which can lead RGNs to predict reflected structures (effectively

wrong chirality) that must be corrected by a counter-reflection.

RGN parameters are optimized tominimize the dRMSD between

predicted and experimental structures using backpropagation

(Goodfellow et al., 2016). Hyperparameters, which describe

higher-level aspects of the model such as the number of compu-

tational units, were determined through manual exploration of

hyperparameter space. See Supplemental Information for a

complete mathematical treatment.

Assessment of Model Error
Machine learning models must be trained against as large a pro-

portion of available data as possible to fit model parameters and



Table 1. Comparative Accuracy of RGNs Using dRMSD

FM (Novel Folds) Category (Å) TBM (Known Folds) Category (Å)

CASP7 CASP8 CASP9 CASP10 CASP11 CASP12 CASP7 CASP8 CASP9 CASP10 CASP11 CASP12

RGN 9.3* 7.3* 8.7* 10.0* 8.5* 10.7* 5.6 5.9 6.5 6.9 7.4 6.9

1st server 9.3 8.3 9.0 10.3 9.3 11.0 4.0* 4.3* 5.2* 5.3* 5.8* 4.7*

2nd server 9.9 8.6 9.1 10.6 9.6 11.2 4.0 4.6 5.2 5.4 6.0 4.8

3rd server 10.0 9.2 9.7 10.9 11.2 11.3 4.1 4.8 5.4 5.7 6.5 5.6

4th server 10.1 9.9 10.1 11.7 11.7 11.4 4.2 5.0 5.4 5.9 6.8 5.8

5th server 10.4 10.4 13.5 12.0 12.9 13.0 4.8 5.0 5.5 7.2 6.9 5.9

The average dRMSD (lower is better; asterisk indicates best performingmethod) achieved by RGNs and the top five servers at each CASP is shown for

the novel folds (left) and known folds (right) categories. Numbers are based on common set of structures predicted by top 5 servers during each CASP.

A different RGN was trained for each CASP, using the corresponding ProteinNet training set containing all sequences and structures available prior to

the start of that CASP. See also Tables S1–S3.
then evaluated against a distinct test set to assess accuracy.

Reliable evaluation is frequently complicated by unanticipated

information leakage from the training set into the test set, espe-

cially for protein sequences that share an underlying evolutionary

relationship. Partly to address this problem, the critical assess-

ment of protein structure prediction (CASP) (Moult et al., 1995)

was organized to assessmethods in a blinded fashion, by testing

predictors using sequences of solved structures that have

not been publicly released. To assess RGNs, we therefore

sought to recreate the conditions of past CASPs by assembling

the ProteinNet datasets (AlQuraishi, 2019b). For every CASP

from 7 through 12, we created a corresponding ProteinNet test

set comprising CASP structures, and a ProteinNet training set

comprising all sequences and structures publicly available

prior to the start of that CASP. Using multiple CASP datasets en-

ables a deeper and more thorough assessment that spans a

broad range of dataset sizes than relying on the most recent

CASP alone. We also adopted the CASP division of test struc-

tures into free modeling (FM) targets that assess prediction of

novel folds and template-based modeling (TBM and TBM-

hard) targets that assess prediction of folds with known homo-

logs in the Protein Data Bank (PDB) (Bernstein et al., 1977). We

set aside a subset of the training data as a validation set to deter-

mine when to stop model training and to further insulate training

and test data.

ProteinNet datasets were used for all analyses described here.

RGN hyperparameters were fit by repeated evaluations on the

ProteinNet 11 validation set, followed by three evaluations on

the ProteinNet 11 test set. Once chosen, the same hyperpara-

meters were used to train models on ProteinNet 7–12 training

sets, with a single evaluation made at the end on each test set

(excepting ProteinNet 11) to generate Table 1. Subsequently,

additional test set evaluations were made to generate Table S1,

with one evaluation per number reported. No additional test set

evaluations were made. Overall, this represents a rigorous

approach to evaluationwith the lowest possible risk of information

leakage.

Predicting New Folds without Co-evolution
We first assessed RGNs on a difficult task that has not consis-

tently been achieved by any existing method: predicting novel

protein folds without co-evolutionary data. FM structures served

as targets for this exercise. Table 1 compares the average
dRMSD of RGNpredictions on FM structures to the top five auto-

mated predictors in CASP 7–12, known as ‘‘servers’’ in CASP

parlance (‘‘humans’’ are combined server and human-expert

pipelines—wedo not compare against this group as our process-

ing is automated). In Figure 3A, we break down the predictions by

target against the top performing server and in Figure 3C against

the dRMSD distribution of all CASP servers.

On all CASPs, RGNs had the best performance, even

compared to servers that use co-evolution data (in CASP 11

[Kryshtafovych et al., 2016; Ovchinnikov et al., 2016] and CASP

12 [Schaarschmidt et al., 2018]). RGNs outperformed other

methods at both short and long multi-domain proteins, suggest-

ing their performance is not limited to one regime (e.g., short sin-

gle-domain proteins), despite having no explicit knowledge of

domain boundaries. While the margin between RGNs and the

next best server is small for most CASPs, such small gaps are

representative of the differences between the top five performers

in Table 1. In general, small gains in accuracy at the top end are

difficult, with only minimal gains obtained over a 10-year time

span from CASP 6 to CASP 11 (Kryshtafovych et al., 2018).

More substantial gains were seen in CASP 12 as a result of the

use of co-evolutionary information (Moult et al., 2018), but

RGNs match these advances without using co-evolutionary

data and by operating in a fundamentally distinct and comple-

mentary way. The accuracy gap betweenRGNsand other servers

is highest on CASP 11, which benefits from having the RGN hy-

perparameters fit on the ProteinNet11 validation set, suggesting

similar gains may be obtained by optimizing RGN hyperpara-

meters for each dataset (this would not correspond to overfitting

as only the validation set is used to fit hyperparameters but

would require substantially more compute resources for training).

ProteinNet datasets of earlier CASPs are smaller, whichmay have

also reduced accuracy. To assess the contribution of dataset size

to model error, we used RGNs trained on earlier ProteinNet data-

sets to predict later CASP test sets (Table S1). As expected,

accuracy drops as datasets shrink.

The dRMSD metric does not require structures to be pre-

aligned and is consequently able to detect regions of high local

concordance even when global concordance is poor. dRMSD

assesses predictions at all length scales, however, it penalizes

large global deviations in proportion to their distance, which

can result in a very high error for far apart regions. To obtain a

complementary assessment of model accuracy, we also tested
Cell Systems 8, 292–301, April 24, 2019 295
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Figure 3. Results Overview

(A and B) Scatterplots of individual FM (A) and TBM (B) predictions made by RGN and top CASP server. Two TBM outliers (T0629 and T0719) were dropped for

visualization purposes.

(C) Distributions of mean dRMSD (lower is better; ends of boxes correspond to upper and lower quartiles, whiskers to highest and lowest values, and white line to

median) achieved by servers predicting all structures with >95% coverage at CASP 8–12 are shown for FM (novel folds) and TBM (known folds) categories. Thick

black (white on dark background) bars mark RGN dRMSD. RGN percentile rankings are shown for the TBM category (below whiskers). CASP 7 is omitted

because of lack of server metadata.

(legend continued on next page)
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RGNs using TM scores (Zhang and Skolnick, 2004), which are

defined by the following equation:

TM score=max

2
6664 1

Ltarget

XLaligned
i

1

1+

�
di

d0ðLtargetÞ
�2

3
7775;

where Ltarget and Laligned are the lengths of the full protein and the

aligned region, respectively, di is the distance between the ith

residues in the experimental and predicted structures, and

d0ðLtargetÞ= 1:24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ltarget � 153

p � 1:8 is used to normalize scores.

TM scores do require structures to be pre-aligned and thus can

penalize predictions with high local concordance if a global

alignment cannot be found, but they are less sensitive to large

deviations because they only compute error over the aligned

regions. TM scores range from 0 to 1, with a score of <0.17 cor-

responding to a random unrelated protein, and >0.5 generally

corresponding to the same protein fold (Xu and Zhang, 2010).

Since TM scores are not invariant to reflections, we compute

them for both the original and reflected RGN structures and

use the higher of the two. Table S2 compares TM scores of

RGN predictions to CASP servers. In general, RGNs rank among

the top five servers but do not consistently outperform all other

methods as they do on dRMSD, possibly reflecting the lack of

partial credit assignment by TM scores.

Predicting Known Folds without Templates
We next assess RGNs on predicting known protein folds without

experimental templates, a challenging task that provides an

advantage to template-based methods (Zhou et al., 2011). TBM

structures served as targets for this purpose. Tables 1 and S2

compare RGN predictions to top CASP servers using dRMSD

and TM score, respectively, while Figure 3B breaks down predic-

tions by target, and Figure 3C shows the distribution over all

CASP servers. A representative sampling of the full quality spec-

trum of FM and TBMpredictions is shown in Figure 3E. In general,

RGNs underperform the very top CASP servers, all of which use

templates, although �60% of predictions are within 1.5 Å of the

best-performing server.

Since RGNs do not use templates, this suggests that they learn

generalizable aspects of protein structure, and their improved

accuracy on TBM targets relative to FM reflects denser sampling

in TBM regions of protein space. To investigate this possibility, we

partitioned ProteinNet validation sets into groups based on

maximum sequence identity to the training set and computed

dRMSDs within each group across CASPs 7–12 (Figure 3D) and

by individual CASP (Figure S1). RGN performance robustly

transfers to sequences with >40% sequence identity, predicting

structureswith amedian dRMSDof�5 Å and then begins to dete-

riorate. There was little difference in dRMSD between 50% and

90% sequence identity, with substantial error remaining at 90%,

which is suggestive of underfitting.
(D) Distribution of RGN dRMSDs (ends of boxes correspond to upper and lower q

short white line to mean) on ProteinNet validation sets grouped by maximum %

(E) Traces of backbone atoms of well (left), fairly (middle), and poorly (right) p

counterparts (top). CASP identifier is displayed above each structure and dRMS

See also Figure S1.
Template-based methods are particularly accurate where

template and query sequences overlap and are inaccurate

where they do not; unfortunately, non-overlapping regions are

often the regions of high biological interest. Errors in these crit-

ical non-overlapping regions can be masked by large over-

lapping regions, inflating overall accuracy (Contreras-Moreira

et al., 2005; Dill and MacCallum, 2012; Liu et al., 2018a; Perez

et al., 2016). To determine whether RGNs suffer from similar

limitations, we split TBM domains into short fragments ranging

in size from 5 to 50 residues and computed the RMSD for every

fragment (with respect to the experimental structure) from the

best template, the best CASP prediction, and the RGN predic-

tion (Figure 4). We found CASP predictions to be correlated

(average R2 = 0.44) with template quality across length scales

as previously reported (Kryshtafovych et al., 2018), whereas

RGN predictions were not (average R2 = 0.06). This distinc-

tion persists even when predictions with >3 Å accuracy are

excluded (average R2 = 0.49 for best CASP predictions; average

R2 = 0.02 for RGN predictions). Thus, RGNs perform equally

well on regions of proteins with experimental templates and

on those without.

RGNs Learn an Implicit Representation of Protein
Fold Space
Applications of deep learning in sensory domains often result in

models whose internal representation of the data is interpret-

able, e.g., placing semantically similar words nearby in a natural

language model. To ascertain whether RGNs behave similarly,

we extracted the internal state of their computational units after

processing each protein sequence in the ProteinNet12 training

set. For each protein, we obtained multiple high-dimensional

vectors, one per layer and direction of the RGN. We then used

linear dimensionality reduction techniques to visualize these

vectors in two dimensions, separately for each layer and direc-

tion (Figure 5A) and by concatenating all layers together (Fig-

ure 5B). When we color each protein (dot) according to the frac-

tion of secondary structure present in its original PDB structure,

clear visual patterns emerge (Figure 5B). This is notable because

secondary structure was neither used as input to aid model pre-

diction nor as an output signal to guide training; i.e., the model

was not explicitly encoded with the concept of secondary struc-

ture, yet it uses secondary structure as the dominant factor in

shaping its representation of protein fold space.

We next used the CATH database (Dawson et al., 2017), which

hierarchically classifies proteins into structural families, to parti-

tion data points into CATH classes and visualize their distribution

in RGN space. At the topmost CATH level, divided into ‘‘Mainly

Alpha,’’ ‘‘Mainly Beta,’’ ‘‘Alpha Beta,’’ and ‘‘Few Secondary

Structures,’’ we see clearly demarcated regions for each class

(represented by differently colored contour plots), with ‘‘Alpha

Beta’’ acting unsurprisingly as the bridge (leftmost panel in Fig-

ure 5C). We then reapplied dimensionality reduction to data in

each class and visualized the distributions of their respective
uartiles, whiskers to highest and lowest values, wide white line to median, and

sequence identity to training set over all CASPs.

redicted RGN structures are shown (bottom) along with their experimental

D below. A color spectrum spans each protein chain to aid visualization.
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Figure 4. Correlation between Prediction Accuracy and Template Quality

Scatterplots of fragment RMSDs, ranging in size from 5 to 50 residues, comparing the best CASP templates to the best CASP server predictions (top) and RGN

predictions (bottom). R2 values are computed over all data points (non-parenthesized) and over data points in which predictions achieved <3 Å accuracy

(parenthesized). TBM domains were used (excluding TBM-hard that do not have good templates), and only templates and predictions covering >85% of full

domain sequenceswere considered. Templates and predictionswere selected based on global dRMSDwith respect to experimental structure. CASP 7 and 8 are

omitted because of lack of full template information.
second-level CATH categories (three right panels in Figure 5C).

We again see contiguous regions for each category, albeit with

greater overlap, likely owing to the continuous nature of protein

structure space and reduction of RGN space to just two dimen-

sions. These visualizations suggest RGNs are learning a useful

representation of protein sequence space that may yield insights

into the nature of protein structure space.

RGNs Are 6–7 Orders of Magnitude Faster Than Existing
Methods
Existing structure prediction pipelines aremulti-staged (Figure 1),

first detecting domains that can be separately modeled and

running multiple algorithms to estimate secondary structure

propensities, solvent accessibility, and disordered regions. Co-

evolutionary methods use multiple sequence alignments to pre-

dict contact maps, and template-based methods search the

PDB for templates. Their predictions are converted into geomet-

ric constraints to guide a conformation sampling process, where

fragments are swapped in and out of putative structures to

minimize an expertly derived energy model. Because of this

complexity, prediction times range from hours to days and re-

quires codebases as large as several million lines of code

(Leaver-Fay et al., 2011).

In contrast, a trained RGN model is a single mathematical

function that is evaluated once per prediction. Computation of

this function implicitly carries out domain splitting, property

finding, energy minimization, and conformational sampling

simultaneously. We found that 512 concurrent RGN-based pre-
298 Cell Systems 8, 292–301, April 24, 2019
dictions, with sequence length�700, can bemade in�5.4 s on a

single GPU, i.e.,�10ms per structure. Table 2 compares training

and prediction speeds of RGNs to established methods that rely

heavily on simulation with limited learning (first row), and deep

learning plus co-evolution-based contact prediction methods

that rely on learning (second row), combined with CONFOLD

(Adhikari et al., 2015) to convert predicted contact maps into ter-

tiary structures. While training RGNs can take weeks to months,

once trained, they make predictions 6–7 orders of magnitude

faster than existing pipelines. This speed enables new types of

applications, such as the integration of structure prediction

within docking and virtual screening in which ligand-aware

RGNs could output distinct protein conformations in response

to distinct ligand poses.

DISCUSSION

A key limitation of explicit sequence-to-structuremaps, including

molecular dynamics and fragment assembly, is a reliance on

fixed energy models that do not learn from data; a second limi-

tation is the exclusive use of single-scale atomic or residue-

level representations. In contrast, modern co-evolution methods

leverage learning andmulti-scale representations to substantially

improve performance (Liu et al., 2018b;Wang et al., 2017). RGNs

go one step further by building a fully differentiable map extend-

ing from sequence to structure with all of the steps in existing

prediction pipelines implicitly encoded and learnable from

data. Through their recurrent architecture, RGNs can capture



Figure 5. The Latent Space of RGNs

(A and B) 2D projection of the separate (A) and combined (B) internal state of all RGN computational layers, with dots corresponding to individual protein

sequences in the ProteinNet12 training set. (B) Proteins are colored by fractional secondary structure content, as determined by annotations of original protein

structures.

(C) Contour plots of the probability density (50%–90%quantiles) of proteins belonging to categories in the topmost level of the CATH hierarchy (first from left) and

proteins belonging to categories in the second-level CATH classes of ‘‘Mainly Alpha’’ (second), ‘‘Mainly Beta’’ (third), and ‘‘Alpha Beta’’ (fourth). Distinct colors

correspond to distinct CATH categorizations; see Figures S2–S5 for complete legends. The topmost CATH class ‘‘FewSecondary Structures’’ is omitted because

it has no subcategories.
sequence-structure motifs and multiple scales from residues to

domains (Alva et al., 2015; Ponting and Russell, 2002). When

tracking structure prediction during RGN training (Video S1),

RGNs appear to first learn global aspects of protein folds and

then refine their predictions to generate a more accurate local

structure.

RGNs are multi-representational, operating on three distinct

parameterizations of protein structure. The first is torsional,

capturing local relationships between atoms with bond lengths

and angles held fixed and torsional angles as the immediate

outputs of computational units. This virtually guarantees that

predictions are structurally correct at a local level. The second

is Cartesian, built by geometric units and capturing the global

coordination of multiple atoms in 3D space, the catalytic triad of

an enzyme’s active site for example, even if the residues are

distant along the protein chain. Future augmentations—e.g., 3D

convolutional networks that operate directly on the Cartesian
representation—may further improve the detection and quality

of long-range interactions. The third parameterization, built in

the dRMSD stage, is the matrix of inter-atomic distances and is

simultaneously local and global. It is useful for optimizing RGN

parameters de novo, as we have used it, but can also be used

to incorporate prior knowledge expressible in terms of atomic dis-

tances; such knowledge includes physical features (e.g., electro-

statics) and statistical data on interactions (e.g., evolutionary

couplings).

One limitation of current RGNs is their reliance on PSSMs,

which we have found to be helpful to achieving high-accuracy

predictions. PSSMs are much weaker than multiple sequence

alignments, as they are based on single residue mutation fre-

quencies and ignore how each residue mutates in response to

all other residues. Co-evolutionary couplings require pairwise

frequencies, resulting in quadratically rather than linearly scaling

statistical cost. Nonetheless, removing PSSMs and relying
Cell Systems 8, 292–301, April 24, 2019 299



Table 2. Prediction and Training Speeds of Structure Prediction

Methods

Model Prediction Speed Training Time

Rosetta, I-Tasser, Quark Hours to days N/A

Raptor X, DeepContact +

CONFOLD

One to few hours Hours

Recurrent geometric

networks (RGNs)

Milliseconds Weeks to months

Top row corresponds to the most complex and established set of

methods, which rely heavily on simulation and sampling and typically

have only a minimal learning component. Second row corresponds to

methods combining co-evolution-based contact prediction with deep

learning, which rely on a learning procedure, plus the CONFOLD method

to convert predicted contact maps into tertiary structures. Time esti-

mates are based on workflows used for CASP predictions, which

(excepting RGNs) generate a large ensemble of structures, increasing

prediction time. RGN predictions are deterministic and thus necessi-

tate only a single prediction. All time estimates exclude multiple

sequence alignment (MSA) generation times.
exclusively on raw sequences could robustify RGNs for many

applications, including prediction of genetic variants. Achieving

this may require more data-efficient model architectures. For

protein design, RGNs can be used as is, by fixing the desired

structure and optimizing the raw sequence and PSSMs to match

it (i.e., by computing derivatives of the inputs—as opposed to

model parameters—with respect to the dRMSD between pre-

dicted and desired structures). Co-evolution methods do not

have this capability as their inputs are the inter-residue couplings

themselves, making the approach circular.

The history of protein structure prediction suggests that new

methods complementary to existing ones are eventually incor-

porated into hybrids. RGNs have this benefit, being an almost

entirely complementary modeling approach. For example, struc-

tural templates or co-evolutionary information could be incorpo-

rated as priors in the distance-based parameterization or even

as raw inputs for learning. RGNs can also include secondary

structure predicted by other algorithms. This is likely to be ad-

vantageous since the RGNs described here often predict global

fold correctly but do less well with secondary structure (e.g.,

T0827 in Figure 3E). RGNs can also be made to predict side-

chain conformations, by outputting a branched curve in lieu of

the current linear curve, and are applicable to a wide range of

other polymers (e.g., RNA tertiary structure). Our demonstration

that state-of-the-art performance in structure prediction can be

achieved using an end-to-end differentiable model will make

very rapid improvements in machine learning across a wide

range of scientific and technical fields available to protein folding

and biophysics. We predict that hybrid systems using deep

learning and co-evolution as priors and physics-based ap-

proaches for refinement will soon solve the long-standing prob-

lem of accurate and efficient structure prediction. It is also

possible that the use of neural-network-probing techniques

(Alain and Bengio, 2016; Koh and Liang, 2017; Nguyen et al.,

2016; Shrikumar et al., 2017; Simonyan et al., 2013) with RGNs

will provide new insight into the physical chemistry of folding

and the types of intermediate structures that proteins use to

sample conformational space.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

TensorFlow Abadi et al., 2016 tensorflow.org

ProteinNet AlQuraishi, 2019b https://github.com/aqlaboratory/proteinnet
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mo-

hammed AlQuraishi (alquraishi@hms.harvard.edu).

METHOD DETAILS

Model
We featurize a protein of length L as a sequence of vectors (x1,/,xL) where xt˛Rd for all t. The dimensionality d is 41, where 20

dimensions are used as a one-hot indicator of the amino acid residue at a given position, another 20 dimensions are used for the

PSSM of that position, and 1 dimension is used to encode the information content of the position. The PSSM values are sigmoid

transformed to lie between 0 and 1. The sequence of input vectors are fed to an LSTM (Hochreiter and Schmidhuber, 1997), whose

basic formulation is described by the following set of equations.

it = sðWi½xt;ht�1�+biÞ:

ft = sðWf ½xt; ht�1�+bfÞ:

ot = sðWo½xt; ht�1�+boÞ:

~ct = tanhðWc½xt; ht�1�+bcÞ:

ct = it1~ct + ft1ct�1:

ht = ot1tanhðctÞ:
Wi,Wf,Wo,Wc are weight matrices, bi,bf,bo,bc are bias vectors, ht and ct are the hidden and memory cell state for residue t, respec-

tively, and1 is element-wise multiplication. We use two LSTMs, running independently in opposite directions (1 to L and L to 1), to

output two hidden states h
ðfÞ
t and h

ðbÞ
t for each residue position t corresponding to the forward and backward directions. Depending

on the RGN architecture, these two hidden states are either the final outputs states or they are fed as inputs into one or more LSTM

layers.

The outputs from the last LSTM layer form a sequence of a concatenated hidden state vectors ð½hðfÞ1 ; h
ðbÞ
1 �;/; ½hðfÞL ; h

ðbÞ
L �Þ. Each

concatenated vector is then fed into an angularization layer described by the following set of equations:

pt = softmax
�
W4

h
h
ðfÞ
t ; h

ðbÞ
t

i
+b4

�
:

4t = argðpt expðiFÞÞ:
W4 is a weight matrix, b4 is a bias vector, F is a learned alphabet matrix, and arg is the complex-valued argument function. Expo-

nentiation of the complex-valued matrix iF is performed element-wise. The F matrix defines an alphabet of size m whose letters

correspond to triplets of torsional angles defined over the 3-torus. The angularization layer interprets the LSTM hidden state outputs

as weights over the alphabet, using them to compute a weighted average of the letters of the alphabet (independently for each

torsional angle) to generate the final set of torsional angles 4t˛S13S13S1 for residue t (we are overloading the standard notation

for protein backbone torsional angles, with 4t corresponding to the (j,4,u) triplet). Note that 4t may be alternatively computed using

the following equation, where the trigonometric operations are performed element-wise:

4t = atan2ðpt sinðFÞ;pt cosðFÞÞ:
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In general, the geometry of a protein backbone can be represented by three torsional angles 4, c, and u that define the angles

between successive planes spanned by the N, Ca, and C’ protein backbone atoms (Ramachandran et al., 1963). While bond lengths

and angles vary as well, their variation is sufficiently limited that they can be assumed fixed. Similar claims hold for side chains as well,

although we restrict our attention to backbone structure. The resulting sequence of torsional angles ð41;/;4LÞ from the angulariza-

tion layer is fed sequentially, along with the coordinates of the last three atoms of the nascent protein chain ðc1;/;c3tÞ, into recurrent

geometric units that convert this sequence into 3D Cartesian coordinates, with three coordinates resulting from each residue, cor-

responding to the N, Ca, and C’ backbone atoms. Multiple mathematically-equivalent formulations exist for this transformation; we

adopt one based on the Natural Extension Reference Frame (Parsons et al., 2005), described by the following set of equations:

~ck = rk mod 3

2
4 cosðqk mod 3Þ
cos

�
4k=3;k mod 3

�
sinðqk mod 3Þ

sin
�
4k=3;k mod 3

�
sinðqk mod 3Þ

3
5:

mk = ck�1 � ck�2:

nk =mk�1 3 cmk :

Mk = ½cmk ;cnk 3 cmk ;cnk �:

ck =Mk ~ck + ck�1:

Where rk is the length of the bond connecting atoms k� 1 and k, qk is the bond angle formed by atoms k� 2, k� 1, and k, 4k=3;k mod 3

is the predicted torsional angle formed by atoms k� 2 and k� 1, ck is the position of the newly predicted atom k, bm is the unit-normal-

ized version of m, and 3 is the cross product. Note that k indexes atoms 1 through 3L, since there are three backbone atoms per

residue. For each residue t we compute c3t�2; c3t�1, and c3t using the three predicted torsional angles of residue t, specifically

4t;j =43t
3 ;ð3t + jÞ mod 3 for j = {0,1,2}. The bond lengths and angles are fixed, with three bond lengths (r0,r1,r2) corresponding to N-Ca,

Ca-C’, and C’-N, and three bond angles (q0,q1,q2) corresponding to N-Ca-C’, Ca-C’-N, and C’-N-Ca. As there are only three unique

values we have rk = rk mod 3 and qk = qk mod 3. In practice we employ a modified version of the above equations which enable much

higher computational efficiency (AlQuraishi, 2019a).

The resulting sequence ðc1;/; c3LÞ fully describes the protein backbone chain structure and is the model’s final predicted output.

For training purposes a loss is necessary to optimizemodel parameters. We use the dRMSDmetric as it is differentiable and captures

both local and global aspects of protein structure. It is defined by the following set of equations:

~dj;k = kcj � ckk2:

dj;k = ~d
ðexpÞ
j;k � ~d

ðpredÞ
j;k :

dRMSD=
kDk2

LðL� 1Þ :

Where fdj;kg are the elements of matrix D, and ~d
ðexpÞ
j;k and ~d

ðpredÞ
j;k are computed using the coordinates of the experimental and

predicted structures, respectively. In effect, the dRMSD computes the [2-norm of the distances over distances, by first computing

the pairwise distances between all atoms in both the predicted and experimental structures individually, and then computing

the distances between those distances. For most experimental structures, the coordinates of some atoms are missing. They are

excluded from the dRMSD by not computing the differences between their distances and the predicted ones.

Hyperparameters
RGN hyperparameters weremanually fit, through sequential exploration of hyperparameter space, using repeated evaluations on the

ProteinNet11 validation set and three evaluations on the ProteinNet11 test set. Once chosen the same hyperparameters were used to

train RGNs on ProteinNet7-12 training sets. The validation sets were used to determine early stopping criteria, followed by single

evaluations on the ProteinNet7-12 test sets to generate the final reported numbers (excepting ProteinNet11).

The final model consisted of two bidirectional LSTM layers, each comprised of 800 units per direction, and in which outputs from

the two directions are first concatenated before being fed to the second layer. Input dropout set at 0.5 was used for both layers, and

the alphabet size was set to 60 for the angularization layer. Inputs were duplicated and concatenated; this had a separate effect from

decreasing dropout probability. LSTMswere random initialized with a uniform distribution with support [�0.01, 0.01], while the alpha-

bet was similarly initializedwith support [�p,p]. ADAMwas used as the optimizer, with a learning rate of 0.001, b1 = 0.95 and b2 = 0.99,

and a batch size of 32. Gradients were clipped using norm rescaling with a threshold of 5.0. The loss function used for optimization

was length-normalized dRMSD (i.e. dRMSD divided by protein length), which is distinct from the standard dRMSDwe use for report-

ing accuracies.
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RGNs are very seed sensitive. As a result, we used a milestone scheme to restart underperforming models early. If a dRMSD loss

milestone is not achieved by a given iteration, training is restarted with a new initialization seed. Table S3 summarizes themilestones,

which were determined based on preliminary runs. In general, 8 models were started and, after surviving all milestones, were run for

250k iterations, at which point the lower performing half were discarded, and similarly at 500k iterations, ending with 2 models that

were usually run for�2.5M iterations. Once validation error stabilized we reduced the learning rate by a factor of 10 to 0.0001, and run

for a few thousand additional iterations to gain a small but detectable increase in accuracy before ending model training.

Dataset
Weuse the ProteinNet dataset for all analyses (AlQuraishi, 2019b). ProteinNet recreates the conditions of past CASP assessments by

restricting the set of sequences (for building PSSMs) and structures used to those available prior to the start of each CASP assess-

ment. Each ProteinNet entry is comprised of two inputs, the raw protein sequence, represented by a one-hot vector, and the protein’s

PSSM and information content profiles, derived using 5 iterations of JackHMMer with an e-value threshold of 10-10. PSSM values are

normalized to lie between 0 and 1. The output for each ProteinNet entry is comprised of the Cartesian coordinates of the protein’s

backbone atoms, annotated by metadata denoting which atoms are missing from the experimental structure. These atoms are

excluded from the dRMSD loss calculation, which enables use of partially resolved experimental structures that would otherwise

be excluded from the dataset.

For ProteinNet7-11, the publicly available CASP structures were used as test sets. For ProteinNet12, the publicly available CASP12

structures are incomplete, as some structures are still embargoed. We obtained a private set of structures from the CASP organizers

that includes all structures used in CASP12 (except two), andwe used this set for model assessment. For training all RGNmodels, the

90% ‘‘thinning’’ version of ProteinNet was used.

DATA AND SOFTWARE AVAILABILITY

TensorFlow (Abadi et al., 2016) code for training new RGN models, as well as pre-trained RGN models used in reporting results for

CASP 7-12, are available on GitHub at https://github.com/aqlaboratory/rgn.
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Figure S1. RGN performance based on percent sequence identity, related to Figure 3.  
Distribution of RGN dRMSDs of ProteinNet validation sets grouped by maximum % sequence 
identity to training set and broken down by each CASP (medians are wide white lines, means are 
short white lines).  
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Figure S2. RGN representation of CATH classes, related to Figure 5. 
Contour plots of the topmost CATH classes projected onto RGN latent space.  
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Figure S3. RGN representation of “Mainly Alpha” CATH classes, related to Figure 5. 
Contour plots of subcategories in the “Mainly Alpha” CATH class projected onto RGN latent 
space.  
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Figure S4. RGN representation of “Mainly Beta” CATH classes, related to Figure 5. 
Contour plots of subcategories in the “Mainly Beta” CATH class projected onto RGN latent 
space.  
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Figure S5. RGN representation of “Alpha Beta” CATH classes, related to Figure 5. 
Contour plots of subcategories in the “Alpha Beta” CATH class projected onto RGN latent 
space.  
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Table S1. Effect of dataset size on RGN accuracy, related to Table 1.  
RGNs trained on ProteinNet (PN) training set X were tested on all CASP test sets subsequent to 
X (e.g. RGN trained on ProteinNet 7 was tested on CASP 8-12) to assess the effect of data set 
size on model accuracy. Numbers shown are differences in average dRMSD (lower is better) 
relative to RGNs trained and tested on matching data sets (i.e. trained on ProteinNet X and tested 
on CASP X.)  

  FM (novel folds) test set (Å)  TBM (known folds) test set (Å) 
  CASP12 CASP11 CASP10 CASP9 CASP8 CASP7  CASP12 CASP11 CASP10 CASP9 CASP8 CASP7 

Tr
ai

ni
ng

 se
t 

PN7 +0.9 +0.3 +1.1 +1.0 +1.8 0  +1.7 +1.8 +0.9 +1.5 +0.4 0 
PN8 +0.6 +0.2 +1.2 +0.3 0   +1.4 +1.0 +0.2 +0.9 0  
PN9 0 +0.7 +0.8 0    +0.6 +0.6 0 0   
PN10 +0.5 +1.2 0     +0.6 0 0    
PN11 +0.2 0      +0.1 0     
PN12 0       0      
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 FM (novel folds) category (TM score)  TBM (known folds) category (TM score) 
 CASP7 CASP8 CASP9 CASP10 CASP11 CASP12 CASP7 CASP8 CASP9 CASP10 CASP11 CASP12 
RGN 0.27 0.36 0.28 0.25 0.28 0.29 0.49 0.50 0.48 0.48 0.47 0.43 
1st Server 0.33 0.37 0.32 0.30 0.29 0.35 0.72 0.72 0.71 0.69 0.66 0.70 
2nd Server 0.30 0.33 0.32 0.29 0.27 0.33 0.71 0.70 0.71 0.68 0.66 0.70 
3rd Server 0.29 0.31 0.30 0.27 0.26 0.31 0.71 0.70 0.70 0.68 0.65 0.70 
4th Server 0.27 0.25 0.29 0.27 0.25 0.31 0.70 0.69 0.70 0.68 0.64 0.68 
5th Server 0.24 0.24 0.28 0.26 0.22 0.30 0.68 0.69 0.70 0.67 0.64 0.68 

Table S2. Comparative accuracy of RGNs using TM score, related to Table 1.  
The average TM score (higher is better, range is between 0 and 1) achieved by RGNs and the top 
five servers at each CASP is shown for the novel folds (left) and known folds (right) categories. 
Numbers are based on common set of structures predicted by top 5 servers during each CASP. A 
different RGN was trained for each CASP, using the corresponding ProteinNet training set 
containing all sequences and structures available prior to the start of that CASP.  
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ProteinNet 7 Iteration 1,000 5,000    
 dRMSD (Å) 14 13.6    
       
ProteinNet 8 Iteration 1,000 5,000 20,000 50,000  
 dRMSD (Å) 13.4 13.2 12.6 12  
       
ProteinNet 9 Iteration 1,000 5,000 20,000 50,000 100,000 
 dRMSD (Å) 13 12.7 12.2 11.2 10.3 
       
ProteinNet 10 Iteration 1,000 5,000 20,000 50,000 100,000 
 dRMSD (Å) 12.8 12.3 11.5 10.7 9.4 
       
ProteinNet 11 Iteration 1,000 5,000 10,000 100,000 150,000 
 dRMSD (Å) 13.7 13.5 13.2 12.1 11.4 
       
ProteinNet 12 Iteration 1,000 5,000 20,000 50,000 100,000 
 dRMSD (Å) 13.5 12.6 12.2 11.4 10.6 

Table S3. Validation set milestones for training RGNs, related to Table 1.  
RGN validation performance was monitored during training, and if the shown accuracy 
milestones were not achieved by the given iteration number, training was terminated and a new 
model started. 
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